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Abstract 

This paper presents a Diophantine equation, known as the Coordinate Equation, which is 

identical in form to that of Fermat's Last Theorem barring a modification that permits 

solutions for all exponents, quadratic and higher. The modification adds an extra term 

containing a factor such that, when the factor is zero, the equation reduces to Fermat's Last 

Theorem. It is then shown that any FLT counter-example, exponent n, is a solution to the 

Coordinate Equation, with a non-zero factor, for all higher order exponents mn, arbitrary odd 

m, three or greater. 

Theory 

(1) Definition. The Coordinate Equation (CE) is defined as follows in terms of three, non-

zero integers zyx ,, , exponent n, for some integer k : 

 kxyzzyx nnn 0  (1) 

The full list of conditions1 used herein is 

 nkzyx ,,,, ℤ, 2n , zyx 1  (1b) 

1),gcd(),gcd(),gcd(  xzzyyx  

The exponent purposefully includes the 2n  Pythagorean case since this too is covered in the 

work. There is no restriction on n being odd, even or composite, just 2n . 

(2) Fermat's Last Theorem states that there are no solutions to the following Diophantine 

equation (hereafter referred to as The FLT Equation) for exponent 2n  and positive integers 

zyx ,,0  : 

 nnn zyx 0  (2) 

FLT was first proven by Wiles [1] but, nevertheless, it is assumed one or more FLT solutions, 

i.e. counter-examples, exist. Given the Pythagorean exponent 2n  is included in (1), which 

does, of course, have solutions, this also gives a check on all developments in the paper. 

(3) Lemma. Every FLT solution satisfies the following congruences: 

)mod( xzy nn   

 )mod( yzx nn   (3) 

)mod( zyx nn   

Proof. By taking residues of (1) to moduli zyx ,,  then the three congruences can be seen to be 

true and, therefore, every solution must necessarily satisfy them. The congruences by 

themselves are not sufficient to only define solutions zyx ,, . That they are not sufficient can 

be seen by solving the congruences to give, for some arbitrary integers cba ,, , 

axzy nn   

 byxz nn   (4) 
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czyx nn   

These three equations can only agree with FLT (2) for the unique values 1 nxa , 1 nyb  

and 1 nzc , whereas the congruences have an infinite set of solutions for arbitrary integers 

cba ,, . Hence the congruences are not a sufficient condition to only give counter-example 

solutions to FLT. 

In contrast to FLT (2), the CE (1) is derived such that the above congruences are both 

necessary and sufficient as in the next theorem. 

(5) Theorem: All solutions to the congruences (3) are solutions to the CE2 

Proof. Keeping with the expansion of the congruences (4), the most general form for the 

integers cba ,,  are arbitrary polynomials of up to degree 1n  in zyx ,, . Given cba ,,  

multiply linear factors zyx ,,  respectively, then taking the modulus zyx ,, , respectively, 

reduces czbyax ,,  to zero regardless of the polynomial forms of cba ,, .  

Without loss of generality, the polynomials cba ,,  are expanded in the following form, for 

some polynomials f, g and h, and non-zero integers uts ,, , both discussed shortly: 

),,( zyxxfsxax n   

 ),,( zyxygtyby n   (6) 

),,( zyxzhuzcz n   

Looking at, for example, the first of these terms, i.e. ),,( zyxxfsxn  , all that has been done 

here is to separate-out the 
nx  term in ax , and ),,( zyxf  is another arbitrary polynomial in all 

three variables of degree 1n . Note that the multiplicative factor of x implies the term 

),,( zyxxf  has no constant term, i.e. the lowest degree term in ax  is x, and the highest degree 

term is 
nx . The other two equations are explained likewise. 

Substituting (6) into (4) gives 

),,( zyxxfsxzy nnn   

 ),,( zyxygtyxz nnn   (7) 

),,( zyxzhuzyx nnn   

and rearranging these into a common form as follows: 

),,(0 zyxxfzysx nnn   

 ),,(0 zyxygztyx nnn   (8) 

),,(0 zyxzhuzyx nnn   

immediately shows that for all three to be simultaneously satisfied, and hence the congruences 

(3) to be simultaneously satisfied, the integers uts ,,  must all be unity, i.e. 

 1 uts  (9) 

and all three equations must have a common polynomial form ' ),,( zyxxyzk ' for some 

polynomial 'constant' ),,( zyxk  as in 

),,(),,( zyxxyzkzyxxf   

 ),,(),,( zyxyxzkzyxyg   (10) 

),,(),,( zyxzxykzyxzh   
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Combining all three equations (8) using (9) and (10) gives one and the same Diophantine 

equation, i.e. 

 ),,(0 zyxxyzkzyx nnn   (11) 

which is just the CE (1), whereby ),,( zyxk  is hereafter abbreviated to just k, i.e. 

),,( zyxkk  . 

Thus, proving by its construction2, all solutions to the congruences (3) are solutions of the CE. 

(12) Theorem. Every solution to FLT (2) is a solution to the CE (1) 

Proof. By Theorem (5), the CE (1) captures every solution to the congruences (3) and, given 

every FLT solution must satisfy these congruences by Lemma (3), then every FLT solution 

must be a solution to the CE in the special case when 0k . 

(13) Definition. An integer root of unity u, simply termed a unity root hereafter, to exponent 

n, mod p, is defined as follows, where p is an integer greater than one but not necessarily 

prime: 

 )mod(1 pu n   (13) 

The modulus p is restricted to the set of the three integers zyx ,,  in (1), which are all greater 

than one by (1b) 

(19) Theorem. There exist unity roots RQP ,,  and RQP ,,  such that every CE solution 

satisfies the following three linear equations: 

 zQRyx   (14a) 

 PzxRy   (14b) 

 yPQxz   (14c) 

Symbols RQP ,,  and RQP ,,  are just labels here for six distinct unity roots, and no special 

significance or relevance is assigned to the over-struck bar within the context of this paper. 

Proof. Firstly, taking x as an example, then given the GCD condition (1b), x can be written as 

the linear superposition (4a) in terms of y and z for some integers, denoted here as R and Q . 

This is merely a statement that, for co-prime zyx ,, , there exist some integers R and Q  such 

that the above linear Diophantine equation (4a) has solutions [2]. 

Raising x (4a) to the exponent n gives an equation of the following form, for some 2n  

degree polynomial ),,,( zyQRS : 

 ),,,( zyQRyzSzQyRx nnnnn   (15a) 

Likewise, for y (4b) and z (4c), raising to the exponent n then, for some 2n  degree 

polynomials ),,,( zxRPT  and ),,,( yxQPU , gives 

 ),,,( zxRPxzTzPxRy nnnnn   (15b) 

 ),,,( yxQPxyUyPxQz nnnnn   (15c) 

Taking residues mod zyx ,,  gives nine separate congruences, six of which are 

 )(mod zyRx nnn  , )mod( yzQx nnn    

 )(mod zxRy nnn  , )(mod xzPy nnn   (16) 
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 )mod( yxQz nnn  , )mod( xyPz nnn    

and the less useful remaining three are 

 )mod(),,,(0 xzyQRyzSzQyR nnn   

 )(mod),,,(0 yzxRPxzTzPxR nnnn   (17) 

 )(mod),,,(0 zyxQPxyUyPxQ nnnn    

These last three congruences merely serve as defining conditions on the polynomials 

),,,( zyQRS , ),,,( zxRPT  and ),,,( yxQPU , and are of no further use given the polynomials 

require no further definition. 

The six congruences (16) are made consistent with the original congruences (3) by defining 

the variables RQP ,,  and RQP ,,  as unity roots (4), as follows: 

 )mod(1 xPn  , )mod(1 yQn  , )mod(1 zRn   (18) 

)mod(1 xP n  , )mod(1 yQ n  , )mod(1 zR n   

Given the above definitions, then none of the unity roots is ever zero, i.e. 

 RQP ,, ℤ, )0,0,0(),,( RQP , RQP ,, ℤ, )0,0,0(),,( RQP  (19) 

Thus, all solutions zyx ,,  to FLT can be written as three linear equations (14) in terms of the 

unity roots RQP ,,  and RQP ,, . 

Note that the three linear equations (19) can also be written as an eigenvector equation, unity 

eigenvalue, for the following eigenvector X and matrix A comprising the unity roots (18): 
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 XAX    

This eigenvector approach is detailed in [4] but not required further herein. 

(21) Example. An example solution zyx ,,  to the CE (1), constant k, for each exponent n 

from quadratic to quintic, is tabulated below, together with their unity roots (18); see [3] for 

an extensive list of solutions to the CE equation. 

n x y z k P  Q  R  P  Q  R  

2 4 3 5 0 -1 2 -2 -1 2 2 

3 9 31 70 16 -155 273 -11 -77 5 1209 

4 15 16 17 -8 8 -1 2 2 -1 -8 

5 5 11 31 16695 1 4 -8 1 3 -4 

(30) Theorem. For every odd exponent 12  pn , p ℤ , 1p , arbitrary yx,  (1b), the 

Coordinate Equation has a solution of the following form: 

 yxz   (30) 

Proof. Using yxz  , then expanding 
nz  by the binomial theorem gives 
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)(  (31) 

where 
r

nC  is the usual combinatorial expression !)!(! rrnnCr

n  . 

By the remainder theorem for polynomials, for odd exponent n , a factor of )( nn yx   on the 

right of (31) is )( yx  , since yx   is a solution to 0)(  nn yx . As the left of (31) is also 

a power of )( yx  , it is concluded that the summation term on the right also factors by 

)( yx  , for some function ),( yxf , as follows: 

 ),()(
1

1

yxfyxyxC rrn
n

r

r

n 




  (32) 

Furthermore, since the summation has terms of minimum, first degree in x  and y , then it can 

be factored further, for some function ),( yxg , as 

 ),()(
1

1

yxgyxxyyxC rrn
n

r

r

n 




  (33) 

Substituting this summation and yxz   (30) into the binomial expansion (31) gives 

 ),( yxxyzgyxz nnn   (34) 

This is the same as the Coordinate Equation (1), where polynomial )(xyzk  and function 

),( yxg  are identical, i.e. 

 ),(),,( yxgzyxk   (35) 

Hence, the solution yxz   is a solution to the CE for arbitrary, odd exponent n . Given 

this, it remains to show that theorem (19) is also satisfied, i.e. unity roots RQP ,,  and RQP ,,  

(18) can always be found for arbitrary yx,  (1b). Indeed, by choosing the following unity 

roots: 

 1P , 1P , 1Q , 1Q , 1R , 1R  (36) 

and applying these unity root values to linear equations (14) gives the following three 

equations: 

1R , 1Q zyx   

 1R , 1P zxy   (37) 

1Q , 1P yxz   

It is seen that these are all just rearrangements of the single equation yxz  , hence the 

yxz   solution is valid for the particular choice of unity roots (36). However, these unity 

roots satisfy their definitions (18) for all moduli zyx ,,  with no restriction on zyx ,,  barring 

conditions (1b), and thus satisfying Theorem (19) that there exists a set of unity roots for 

every CE solution. 

Thus, the solution yxz   (30) is a solution to the Coordinate Equation for arbitrary odd 

exponent 3n , arbitrary yx,  (1b), for which a set of unity roots (36) can always be found. 

(38) Corollary. The value of k for the yxz   solution to the Coordinate Equation is 

always positive. 
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Proof. This is almost trivially proven since the summation term in (31) is identical to the 

kxyz  term in the CE (1), i.e. rearranging (31) using (1) implies 

   kxyzyxCyxz rrn
n

r
r

nnnn  





1

1

 (39) 

and given 0r
nC for 11  nr , and yx 1  (1b), then every term in the summation is 

positive, and so the entire sum is always positive, i.e. 

 00
1

1






 kyxC rrn
n

r
r

n  (40) 

Note that the solution yxz   is valid only for odd exponent 3n , excluding all even 

exponents. 

(41) Corollary. For a cubic exponent 3n , the yxz   (30) solution to the Coordinate 

Equation has a constant value 3k  for all yx,  (1b). 

Proof. For 3n , the polynomial expansion of (31) in Theorem (30) gives 

 )(3333 yxxyyxz   (42) 

and, since yxz  , this simply becomes 

 xyzyxz 3333   (43) 

Comparing this with the CE form (34), it is seen that the polynomial ),( yxg  is just a constant 

value 3),( yxg  and so, by (35), k is just the constant value 3k  for all solutions yx, . 

This smallest of odd exponents is the only value which has such a simple, constant value of k. 

For higher order, odd exponents 5n , k grows rapidly, see [3]. 

(44) Theorem. If zyx ,,  is an FLT counter-example or Pythagoras solution, exponent 2n , 

then for arbitrary odd, integer 12  pm , p ℤ , 1p ,  it is also a CE solution for exponent 

6mn , with a positive k. 

Proof. Defining ZYX ,,  as follows: 

 
nxX  , nyY  , 

nzZ   (45) 

then, since zyx ,,  is a solution (2) for 2n , 

 YXZyxz nnn   (46) 

However, by Theorem (30), for arbitrary yx, , and hence too arbitrary YX , , for odd exponent 

m, then YXZ   is a solution to 

 kXYZZYX mmm 0  (47) 

Substituting back for ZYX ,,  in terms of zyx ,,  and rearranging gives 

        xyzzykxzyx nnnmnmnmn 1110   (48) 

A new CE 'k-value' constant nk  is defined as follows: 

 111  nnn
n zykxk  (49) 
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and since, by Corollary (38), k in (47) is positive for the YXZ   solution, then so too is nk  

given zyx 1  (1b), i.e. 00  nkk  

Re-writing (48) in terms of nk  and tidying gives 

 xyzkzyx n

nmnmnm 0  (50) 

Thus, in this form it is seen that zyx ,,  is now a CE solution (1), exponent mn , for positive 

constant nk , hence proving the theorem. 

The converse of this theorem is that if there exist CE solutions ZYX ,,  for odd exponent m 

(47), whereby nxX  , nyY  , 
nzZ   (45), then zyx ,,  is an FLT counter-example, for 

2n , or a Pythagorean triple for 2n . For 2n  Wiles [1] tells us there are no such 

solutions. Nevertheless, this gives another restatement of FLT, namely that there are no CE 

solutions of the form ZYX ,,  (45) for all odd exponents 3m .  

(51) Corollary: Every FLT counter-example zyx ,, , exponent n, is a CE solution, positive 

constant nk  (50), exponent 3n. 

Proof. Since Theorem (44) is true for all odd exponents 3m , then it is true for the smallest, 

cubic exponent 3m . In this case, the composite exponent nmn 3 , and the CE equation 

(50) becomes, in terms of constant nk  (determined next), 

 xyzkzyx n

nnn  3330  (52) 

By Corollary (41), 3k  for 3m , so that constant nk  (49) has the following positive, non-

zero value: 

 1113  nnn
n zyxk  (53) 

Therefore proving zyx ,,  is a CE solution (52), for exponent n3  and positive constant nk  

(49). 

(54) Example. Since theorem (44) includes Pythagoras solutions for exponent 2n , 

corollary (51) is easily demonstrated for exponent 3m , as in the following numbers for the 

Pythagorean triple (4,3,5); see also Example (21) further above for the full unity root solution: 

2n  

4x , 3y , 5z , 
222 5340   (2) 

16X , 9Y , 25Z  (45) 

  (54) 

3m  

25.9.16.3259160 333  , 3k  (47) 

6mn  

1805.3.4.  kkn  (49) 

5.3.4.180`5340 666   (50) 

and for 5m , 7m  

10mn , 5.3.4.144300`5340 101010  , 144300k  

14mn , 5.3.4.971716205340 141414  , 97171620k  
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Summary 

A Diophantine equation, known as the Coordinate Equation, has been derived as the general 

solution to a set of congruences that any FLT counter-example or Pythagoras solution must 

satisfy. Unlike FLT, this Coordinate Equation has solutions, a special case being the 

yxz   solution valid for all odd exponents, and arbitrary x and y. Using this special 

solution, it is shown that any FLT counter-example or Pythagoras solution is also a solution to 

the Coordinate Equation to a higher order exponent mn, whereby m is an arbitrary odd integer, 

and 2n  for Pythagoras or 3n  (odd or even) for FLT. 

To summarise this algebraically... 

If zyx ,,  is an FLT counter-example or Pythagoras solution, exponent n, i.e. 

 nnn zyx 0 , 2n  (2) 

then defining ZYX ,,  as follows: 

 nxX  , nyY  , 
nzZ   (45) 

such that the FLT equation (2) is now written as 

YXZ   

then ZYX ,,  is a solution to the CE (47) for all odd exponent m, 12  pm , p ℤ , 1p , 

and some non-zero integer k 

 kXYZZYX mmm 0  (47) 

In addition, by defining constant nk  in terms of k and zyx ,,  as follows: 

 111  nnn
n zykxk  (49) 

then zyx ,,  is a solution to the CE (1) for composite exponent 6mn , 

 xyzkzyx n

nmnmnm 0  (50) 

Conclusion 

Every FLT counter-example or Pythagoras solution zyx ,,  is a special ' YXZ  ' solution, 

where 
nxX  , nyY  , 

nzZ  , 2n , to the CE equation kXYZZYX mmm 0 , for 

some integer constant k, odd 3m , and therefore also a solution to the CE, composite 

exponent 6mn , such that xyzkzyx n

nmnmnm 0 , where  111  nnn
n zykxk . 
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Addendum. Explanatory Notes 

1. The list of conditions is almost identical to those of FLT, barring the proof is valid for 

quadratic exponents, whilst FLT is stated for cubic and higher order exponents. In addition, 

FLT is usually restricted to positive integers greater than zero, whereas the proof is restricted 

to positive integers greater than one. This is because the proof uses the integers zyx ,,  as 

moduli, and these are greater than one to avoid triviality as in the fact that every non-zero 

integer is congruent to zero modulo one, and thus unity roots (4) have no meaning for a unit 

modulus - such roots being essential in this paper.  Furthermore, restricting to integers greater 

than one, rather than greater than zero, has absolutely no consequence for exponents 2n  

since there cannot possibly be any solutions with the smallest integer (x here by convention) 

being one. If 1x , then it implies, that there are integers y and z, ( 1 xyz ) such that 

nn yz 1 . This is not the case for 2y  or more since, rearranging FLT, this implies 

1 nn yz , i.e. the difference of two nth powers is unity.  Indeed, the difference of two 

numbers raised to an nth power is always much greater than unity and to see this (rather 

obvious fact), one need only expand nz  binomially using ayz   for some integer 0a , 

whereby ayayyz nnn  1  for 2n . Given 0a  and 2y  then this is clearly always 

greater than one. 

2. Theorem (5) and its following Theorem (12) are intended to prove that every solution to 

FLT is a solution to the CE (1) and there are no possible solutions to FLT outside of the CE. 

To that end, the CE has to capture ALL solutions that satisfy the congruences (3), i.e. there 

must be no solutions to the congruences, that are not solutions to the CE, and therefore also 

FLT. It is the intention that this is achieved by the construction of the CE so that it is 

effectively reverse-engineered from the congruences as their most general solution. Indeed, 

the 'catch-all' nature of the k term in the CE switches FLT in and out of the CE by its zero and 

non-zero value respectively. 

http://www.urmt.org/FLT_pythag_eigenvector.pdf

