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This document details the Heisenberg XXX Spin Chain and its solution using the Algebraic
Bethe Ansatz. It is intended as the first instalment (Part I) of a two-part document, with
Part II (published at a later date) to cover the classical, non-linear Korteweg de Vries equation.
Whilst the Heisenberg Spin Chain and Korteweg de Vries equation may seem disparate subjects,
they are both examples of integrable systems that have, in more modern mathematical times,
been solved by broadly similar methods. In addition, and perhaps more importantly, they give
rise to similar physical concepts in terms of stable solutions with a particle interpretation and
associated scattering properties. It is the commonality of methods and physical phenomenology
that concludes the document upon Part II completion.
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Acronyms and Abbreviations

Only acronyms unique to the subject matter are listed, common Physics terms such as SU(2)
are not.

ABA : Algebraic Bethe Ansatz
BAE : Bethe Ansatz Equations
CBA : Coordinate Bethe Ansatz
FCR : Fundamental Commutation Relation
HSC : Heisenberg Spin Chain
KdV : Korteweg de Vries
QS : Quantum System
YBE : Yang-Baxter Equation

1 Introduction

1.1 Preamble

This document is Part I of an intended two-part document on the general subject of Integrability
in Classical and Quantum System via KdV and the Heisenberg Spin Chain. This first part
addresses the quantum integrable model known as the Heisenberg Spin Chain (HSC) [1], with
part II dedicated to the KdV equation, and finishing with a comparison of both HSC and KdV
models.

This Part I starts with a general introduction to integrable systems. Primarily classical, but
ending by extension of the same concepts to integrable quantum systems [2]. The HSC is one
such quantum system, but its modern algebraic solution has similarities to both classical models
and other quantum integrable models. The HSC is solved using a modern mathematical method
known as the Algebraic Bethe Ansatz (ABA) due to Faddeev [3]. Beforehand, there are quite
a lot of mathematical preliminaries to define matrix operators, that are also common to other
integrable systems. Once defined, the physics of the spin chain starts with the simplest, but
very illustrative, case of a one-magnon spin chain solved by an earlier, more intuitive method,
called the Coordinate Bethe Ansatz (CBA) [4],[5] due to Bethe [6] 1931. This then sets the
scene for a solution to the multiple magnon spin chain, thereby completing the document. A
common feature across all sections is the Hamiltonian and Spin, for which the Appendices also
give some simple background on standard SU(2) spin multiplets.

Key sources of information for the work are Faddeev [3],[7], primarily for the ABA method,
whilst Nepomechie [5], was motivation for the initial idea, and covers both the CBA and ABA,
albeit in not so much detail for the ABA, which is the only method used herein to solve
the HSC. There is also excellent coverage of CBA and ABA due to Beisert [4], especially
with regard to a more pictorial understanding of the algebra involved. Two other very useful,
and relatively elementary papers on quantum integrability, are Lamers [8] and Doikou et al
[2]. All aforementioned references, as would be expected, offer something different - which
unfortunately also includes notation (particularly indexing symbols). In this regard, the algebra
herein contains a mix of what the author considered the clearest.

1.2 Integrability in Dynamical Systems

A loose, intuitive definition of an integrable dynamical system is one in which its equations of
motion have been solved. A dynamical system, itself, can be broadly defined as a set of one or
more interacting objects, likely subject to internal and external forces, whose behaviour evolves,
usually over time, according to a set of differential equations describing the system.
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The simplest example of a dynamical system is just a single particle moving in a straight line,
possibly subject to a force acting along its line of motion By Newton II, the acceleration can be
determined from the force, integrated once to get the velocity, and integrated a second time to
get its position, providing that the force can, in principle, be integrated (a numeric integration
is allowed). If so, then given two constants for its initial velocity and position, its motion is
completely determined thereafter and it is thus an integrable system, albeit rather simple.

A more complicated, familiar example is the rigid body motion of a gyroscope (or spinning
top), spinning around its z-axis, which is pitched over from the vertical and, due to gravity, the
spin axis precesses around the z-axis in azimuth, whilst possibly periodically nodding (termed
nutation) under a perturbing force on the spin axis. This system can be completely solved for
the angular velocities and integrated (albeit using elliptic integrals) to give the attitude angles
- it is also an integrable system, see Goldstein [9].

Such an example brings us nicely to a more academic definition of integrability, namely a system
that possesses as many first integrals of motion as it has degrees of freedom. The gyroscope’s
position is specified by three ‘Euler’ angles (roll, pitch,yaw) and has three degrees of freedom.
To completely specify its motion, both three positions and three body rates (spin, precession
and nutation) are required. However, by specifying the initial positions and angular velocities,
only three (not six) first integrals of motion are required. These first integrals are obtainable as
functions of both the angles and their rates. In fact, the functions are equations of conservation
of angular momentum and energy. The point here is that the three first integrals are closely
tied to three conserved quantities. In effect, three functions of the body rates and angles can
be found such that the time-derivative of these functions is zero, and integrating them with
respect to time gives a constant of motion for each.

In general, for a dynamical system with n-degrees of freedom, if n first integrals of motion can be
found, equivalent to n conserved quantities, then the system is considered integrable. Invariably
one of these first integral functions is the Hamiltonian representing the energy conservation
equation; angular momentum (and/or spin) is usually another.

In the field of Hamiltonian dynamics, the independence of first integral functions translates to
two of them at a time possessing a zero Poisson Bracket. In this case, two such functions are
then said to be in involution, i.e. their Poisson bracket is zero. Integrability then becomes a
matter of finding n functions in involution. In a sense they commute, which then leads to a
similar notion in the quantum world.

Whilst the above is all classical theory, Hamiltonian dynamics beautifully spans both the classi-
cal and quantum world. It is no coincidence that a fundamental operator in Quantum Mechanics
(QM) is The Hamiltonian. The Poisson bracket of two functions translates very simply to the
commutator of their QM operator forms. The classical statement of integrability then trans-
lates to QM very nicely, i.e. if n commuting operators can be found (one of which is invariably
the Hamiltonian) then the Quantum system (QS) is integrable. Unfortunately, the notion of
integrability in QM is not universally defined but, nevertheless, obtaining commuting operators
is invariably where a solution to a QS starts, and it thus forms the working definition used
herein. Most importantly, it translates to finding n eigenstates of a QS, such as the Heisenberg
Spin Chain, that forms the example of quantum integrability in this document.

1.3 The Heisenberg XXX Spin Chain

The quantum-mechanical model of magnetism as a spin chain was proposed by Werner Heisen-
berg in 1928 [1], and later solved by Hans Bethe 1931 [6] using his method now known as the
CBA, albeit, as mentioned, the method used herein is due to Faddeev [3],[7], developed much
later in the 1970s.

4



The HSC model comprises a one dimensional lattice of sites (the chain), and each site can have
a quantum spin state of up or down, as mathematically represented by a C2 spinor. Hence it
is a quantum model with just two discrete states specified at each lattice site. For N sites, the
mathematical model operates in a C2N Hilbert space, and operators and state vectors are given
as tensor products, C2N × C2N for the matrix operators, and C2N for states. The algebraic
preliminaries for these operators and states is given in the next section.

The number of sites N is generally large (e.g. Avogadro’s number) but generally treated as
infinite as an asymptotic limit, with consequent exact integrability. The work herein treats the
chain as open-ended, albeit it could be closed, infinite or not. As such, the asymptotic limits
assume site interactions vanish in the limit, i.e. the scattering potential is zero at both spatial
and temporal times ±∞. A bit more discussion is given for the one-magnon example, Section
(3).

2 Matrix Operators and Tensor Products

2.1 Two-site 4x4 matrix forms

Before giving the full, N-site tensor product forms for all matrix operators, it is instructive to
give a brief overview of some of the key two-site, 4×4 matrix forms (C4⊗C4). This is especially
so because, whilst the full N-site, tensor product acts on a much larger C2N spinor space, the
operators (generally C2N ⊗ C2N ) only act non-trivially on two spinor sites at a time, so they
can be thought of (in a sense) as 4x4 matrices. Equally importantly, the integrability of this
HSC and many other non-linear models only needs to consider the action on two sites, because
all higher cases can factored into two-site scattering processes, see Section (2.2.6).

Note that only the permutation (P) and Lax matrices (R, L) are given here, but there are other
important operators, namely the monodromy (T ) and transfer (t), that are only detailed later
when discussing the full tensor product forms, Section (2.2). Indeed, more information on the
matrices P, R and L is also given in Section (2.2)

2.1.1 Permutation matrix P

The permutation matrix P is given by

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (1)

This matrix acts on the tensor product u⊗d of two spinors u and d, by swapping (or permuting,
transposing) their positions, i.e.

P(u⊗ d) = (d⊗ u)

The permutation matrix acts as a single transposition, exactly as per a two-cycle in the per-
mutation group Sn, i.e. a transposition (ab) swaps (permutes) a and b, and is its own inverse,
that is (ab)(ab) = I, just as P2 = I above. This association between the permutation ma-
trix and transposition comes into its own when moving to N-site tensor products and multiple,
consecutive permutations; more details are given in Section (2.2.3).

Matrix P is symmetric, hermitian and unitary, i.e.

P = PT = P∗

P† = P−1 P2 = I
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The eigenvalues and eigenvectors of the permutation matrix P are basically those of the SU(2)
spin multiplets (triplet and a singlet for a two-site spin system), which are also those of the
other matrix operators. The spin eigenvectors and eigenvalues are provided in the Appendices
for background information, but the eigenvectors are not required further.

2.1.2 The R Matrix

The ‘R’ matrix (a form of Lax matrix, see next), is defined in terms of the permutation matrix,
the 2x2 identity matrix I, and a spectral parameter λ (also known as a deformation parameter),
by

R(λ) = λI ⊗ I + iP (2)

Expanding in full 4× 4 form, using P (above), this is

R =


λ+ i 0 0 0
0 λ i 0
0 i λ 0
0 0 0 λ+ i


A useful relation, used much later, is the derivative of R with respect to λ, which is simply the
identity, i.e.

dR

dλ
= I (3)

Also useful for later, it is noted that for a zero spectral parameter, i.e. λ = 0, the R matrix
becomes the permutation matrix, multiplied by i as in

R(0) = iP (4)

2.1.3 The Lax Matrix L

The Lax matrix is defined in terms of R and the spectral parameter λ by

L(λ) = R(λ− i

2
) (5)

Substituting for R then L becomes

L =


λ+ i/2 0 0 0

0 λ− i/2 i 0
0 i λ− i/2 0
0 0 0 λ+ i/2


The L matrix has a more intuitive form, when given in terms of the spin operators Sz, S+ and
S−, as the following block matrix, where each element is itself a 2× 2 matrix (in the 4× 4 case,
but they are tensor product for larger order matrices):

L =

(
λI + iSz iS−
iS+ λI − iSz

)
(6)

This spin-operator form is very similar to the block matrix form of the monodromy matrix,
Section (2.2.7), whose elements are spin operators, and used to construct eigenstates of the
spin chain. In particular, the off-diagonal S+ operator is used to create down spins by flipping
up-spins at a lattice site.

Given the definition of L in terms of R (5) then, for spectral parameter λ = i/2,

L(i/2) = R(0) = iP λ = i/2 (7)

This is also useful for later.
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2.2 N-site tensor product forms

The aforementioned two-site, 4× 4 (C4 ×C4) matrix operators, i.e. P, R, L plus H, S, further
below, all have equivalent N-site C2N × C2N forms. Indeed, these N-site forms still act ‘non-
trivially’ on only two specific sites, i.e. the sub-space C4 × C4, and, otherwise, act trivially on
all other N − 2 sites (the identity operator occupies the other N − 2 locations in the tensor
product). The identification of the two-specific sites is given by a 2-letter subscript, e.g. Hij

acts on sites i and j, similarly for Pij etc.. Note that a one-letter subscript, such as σ̄i (next
section), pertains to an operator acting non-trivially on only a single site i.

2.2.1 Pauli Matrices

For an N-site Hamiltonian chain, the spin operator (barring the ℏ/2 factor) at site i is given by
the tensor product of σ̄ (96) with with the 2× 2 identity I as follows:

σ̄i = I
1
⊗ · · · σ̄

i
· · · · · · ⊗ I

N
, I ∈ C2 × C2

Likewise, for the spin at site j, j ̸= i:

σ̄j = I
1
⊗ · · · · · · σ̄

j
· · · ⊗ I

N

The multiplicative product of the site i and j spins is thus

σ̄iσ̄j = I
1
⊗ · · · σ̄

i
· · · σ̄

j
· · · ⊗ I

N

σ̄j σ̄i = I
1
⊗ · · · σ̄

i
· · · σ̄

j
· · · ⊗ I

N

From these it is seen that the operators at different sites commute, i.e.

σ̄iσ̄j = σ̄j σ̄i ⇒ [σ̄iσ̄j ] = 0

This is not the same as the commutator relations (95) for each matrix, as given by [σi, σj ] =
2iϵijkσk. Remember, the algebra here is that of tensor products of spin operators.

Note that, for tensor products, the notation used for the square of a vector (98) extends as
follows:

σ̄i
2 = σ̄iσ̄i = σ̄i · σ̄i = σ̄i · σ̄i (8)

σ̄iσ̄j = σ̄i · σ̄j = σ̄i · σ̄j = σ̄i · σ̄j

Two-site operators, such as σ̄iσ̄j , are act non-trivially on sites i and j, whilst they act trivially on
all other sites, i.e. leaving them as is due to the use of the identity operator at these sites.

If i = j, and treating the squared product σ̄i
2 as an inner product, see (97), then

σ̄i
2 = I

1
⊗ · · · · · · 3I

i
· · · ⊗ I

N
= 3I⊗

N

2.2.2 The Hamiltonian and Spin Operator

By defining the spin operator S̄i for the ith site as

S̄i =
ℏ
2
σ̄i (9)

and the two-site (i and j) Hamiltonian Hij as

Hij = JS̄i · S̄j (10)
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then the Hamiltonian for the N-site, completely isotropic (explanation follows) open spin chain
is ordinarily given by the total spin interaction across all sites i and j as in the sum

H = J
N∑

i=1,i<j

Hij = J
N∑

i=1,i<j

S̄i · S̄j (11)

This is a sum over all two-site interactions, where J is an exchange energy constant, discussed
again shortly.

The completely isotropic nature of this Hamiltonian alludes to the fact that the interactions
of spin in all three x, y, z axes are assumed to have the same energy scaling factor J . Mathe-
matically this means that the Hamiltonian commutes with all three component spin operators
at all sites, i.e. [S̄,H] = 0, where S̄ = (Sx, Sy, Sz), and that the exchange constant J , which
would ordinarily be the vector J = (Jx, Jy, Jz), is now the single value J (strictly speaking, the
vector J(1, 1, 1)), and can be moved outside of the sum as the single constant factor J . See
Lamers [8] for some more details on J . Because of this isotropy, the model is referred to as the
XXX spin-chain model, as opposed to the next, more-involved, XXZ model, which has X and
Y directions isotropic with consequent Jy = Jx, but Jz ̸= Jx.

Whilst XXX is isotropic, as usual in QM, a choice has to be made as to the spin-alignment
axis. Since the choice has been made herein to align along the z-axis, in accord with com-
mon convention, it is thus rather unfortunate that the model is referred to as XXX and not
ZZZ!

The sign of J may be positive or negative. The case J < 0 in the XXX model corresponds to
ferromagnetism, whereby the spins are parallel. In this case the ground state is very simply
constructed and the excitations can be found with the help of Bethe’s ansatz. Conversely,
when J > 0, this corresponds to anti-ferromagnetism, where anti-parallel spins are energetically
preferred. In the case of an electron, for example, since parallel spins cannot occupy the same
position, by the Exclusion Principle, they are actually further apart than anti-parallel spins,
which can occupy the same position. As a consequence, due to their distance, parallel spins
have a lower Coulomb potential than anti-parallel spins with a smaller separation.

Although J is referred to as the an energy exchange constant, from the Hamiltonian definition
(units of energy, i.e. Joules), and the spin vector squared (units of ℏ2, i.e. Joule2secs2 as per the
‘action’), then J is seemingly inversely proportional to the energy. Nevertheless, the quadratic
factor sec2 in the definition of ℏ actually makes the units of J equal to M−1L−2 (M=mass, L
= length). As such, it can be seen related to an inverse square law (1/L2 - ignoring the mass
term). This gives some hint to its Coulomb interaction background of J .

For a simple model, it suffices to consider only the nearest neighbour interactions so that the
condition i < j becomes j = i+ 1 and H then becomes

H = J

N∑
i=1

S̄i · S̄i+1 (12)

As an example, the simplest, two-site model (N = 2) has only one term for i = 1, j = 2, in
which case this Hamiltonian (now denoted H12) becomes a single term with no sum as in

H = H12 = JS̄1 · S̄2, N = 2 (13)

and using S̄1 = S̄ ⊗ I and S̄2 = I ⊗ S̄ then

H12 = J(S̄ ⊗ S̄)
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However, to keep things general for now, the two sites i and j will not be constrained as
neighbouring until necessary, and the Hamiltonian will be treated as per its first definition
(10).

The combined, total spin operator S̄ij for spins at the two unique sites i and j is

S̄ij = S̄i + S̄j (14)

To obtain the total squared spin (that with the familiar QM eigenvalues S(S + 1)) then, using
(14),

S̄2
ij = S̄2

i + S̄2
j + 2S̄i · S̄j

Since S̄i = (ℏ/2)σ̄i (9), and using the above results σ̄2i = σ̄2j = 3I⊗
N

this becomes

S̄2
ij =

3

2
ℏ2I⊗

N
+ 2S̄i · S̄j (15)

By rearranging to give the inner product S̄i · S̄j in terms of the squared spin S̄2
ij i.e.

S̄i · S̄j =
1

2
(S̄2

ij −
3

2
ℏ2I⊗

N
)

and substituting for S̄i · S̄j into the Hamiltonian Hij (10), then

Hij =
J

2
(S̄2

ij −
3

2
ℏ2I⊗

N
) (16)

This is not quite in the desired form and requires some adjustment to achieve a zero energy,
spin chain ground state. To determine this, an all-up spins, ground state Ωu is defined as
follows:

Ωu = | ↑↑ · · · ↑ |⟩ = |u1, u2, · · ·uN |⟩

Keeping in mind that S̄2
ij ∼ S̄2, and that in QM S̄2ψ = S(S + 1)ψ then, for the all up state,

Ωu, the eigenvector equation HijΩu = EΩu is

HijΩu =
J

2
(S(S + 1)− 3

2
)ℏ2Ωu = −2Jℏ2Ωu, S = 1

It is desirable to have the ground state energy zero (convention only) and, given the freedom to
arbitrarily raise or lower the eigenvalues (so long as it is by the same amount for all eigenvalues),
the Hamiltonian can easily be adjusted to achieve this by altering the identity term, changing
it from 3/2 to 2 to give

Hij =
J

2
(S̄2

ij − 2ℏ2I⊗
N
) (17)

Since S(S + 1) = 2 (for two sites i and j, S = 1), this now gives a zero energy ground state for
the all up (Ωu) spin state as in

HijΩu =
J

2
(S(S + 1)− 2)ℏ2Ωu = 0, S = 1

It is preferred to work with the Pauli spin matrices σ̄i, instead of spin operators S̄i, because the
permutation matrix is also defined in terms of them (further below), and so the Hamiltonian
and Permutation matrix can easily be related. To do this, the squared operator S̄2

ij is replaced

by the product σ̄iσ̄j (which is intentionally not the same as σ̄2ij)

Reverting back to an earlier relation (15), and using the definitions S̄i = (ℏ/2)σ̄i and S̄i =
(ℏ/2)σ̄i to write S̄i · S̄j in terms of σ̄i · σ̄j , then

S̄2
ij =

3

2
ℏ2I⊗

N
+

1

2
ℏ2σ̄i · σ̄j
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Substituting for S̄2
ij into Hij above gives

Hij =
J

4
ℏ2(σ̄i · σ̄j − I⊗

N
) (18)

From here onward, ℏ will be set to unity, and natural units used.

2.2.3 The Permutation Matrix P

The two-site permutation Pij matrix acts by swapping the spinors at sites i and j (i ̸= j).

The swapping action is at the heart of the translation operator as exhibited by the matrices
L and R, given they both contain the permutation matrix - the permute acts as a translation,
and consecutive permutations can be used to translate across consecutive sites, as will be seen
in the ABA algebra. With this in mind, its action can be thought of as a discrete momentum
operator - momentum being the generator of translation in QM - see Section (2.2.8).

The algebra of permutation matrices is identical to that of single transpositions (two-cycles) in
the permutation group SN , i.e. Pij ∼ (ij). For example, if (ab) is the transposition swapping
(permuting) a and b, and (bc) swapping b and c, then the compound operation (bc)(ab), whereby
convention dictates (ab) is performed first followed by (bc), is equivalent to a → c, b → a and
c→ b, and identical to the permutation matrix multiplication PbcPab. Indeed, this is equivalent
to a three cycle (acb) albeit, for the algebra herein, only decomposition into two-cycles, i.e.
consecutive transpositions, or consecutive multiplications of the two-site permutation matrix, is
required and/or useful. To this end, matrices operating on three-sites, such as Pabc, are not used
herein. This last case actually has relevance to three-particle scattering, and such interactions
are considered to always be factorizable into consecutive, two-particle scattering events - see
Section (2.2.6) for more details.

Some index permutation relations are now given that are very useful for the ABA algebra that
follows later in Section (4). Also see Section (2.2.4) for Auxiliary site notation and use of a
and b as subscript indices - briefly, 1 ≤ i, j, n ≤ N and a and b lie outside this N-site quantum
space, i.e. a, b /∈ {1 . . . N}.

This first relation simply states that transposition is its own inverse, i.e. (ab) = (ba) and
(ab)(ba) = I

Pab = Pba, PabPba = I⊗
N

(19)

Since distinct transpositions commute, i.e.

(ab)(cd) = (cd)(ab), a ̸= c, d b ̸= c, d

then two permutations that act on different sites also commute

[Pij ,Pkl] = 0, i ̸= k, l j ̸= k, l (20)

For example
[P12,P34] = 0

Because all other operators are built from the permutation matrix and the identity, this commu-
tation property applies to these operators too, and is usefully applied in further proofs.

Every permutation three-cycle (abn), by cyclic rotation, has three equivalent forms

(abn) = (nab) = (bna)

10



and given that every three-cycle can be decomposed into two, two-cycles, i.e. two transpositions,
then the above three-cycles are equivalent to the following transposition combinations:

(abn) = (an)(ab) = (nb)(na) = (ba)(bn)

Thus, in terms of the permutation operator, the following products of permutation matrices are
all identical

PanPab = PnbPna = PbaPan (21)

Using the symmetry of transpositions, i.e. (nb) = (bn), (na) = (an) and (ba) = (ab), these can
also be written as

PanPab = PbnPan = PabPbn (22)

This notation also makes clear that it matters not whether the auxiliary sites a and b come
before the quantum space or after it, e.g. (an) or (na). Equally, it is pseudo convention that a
comes before b, but algebraically immaterial - (ab) or (ba).

It is of note that decomposition of transportation of spin over lattice sites into transpositions and
their equivalent P operator products relates to the subject of scattering section, Section (2.2.6),
which also decomposes scattering events into successive two-particle interactions (transposi-
tions). With some additional considerations of commutation, as enforced by the Yang-Baxter
equation, Section (2.2.6), this then leads to the concept of factorised scattering and, ultimately,
integrability of the HSC XXX model.

Moving on, the two-site permutation matrix Pij can be written in terms of the Pauli spin
matrix1 as follows:

Pij =
1

2
(σ̄iσ̄j + I⊗

N
) (23)

Furthermore, because of the shared term σ̄iσ̄j , between Pij and the Hamiltonian Hij , above,
the Hamiltonian can be written in terms of the permutation matrix as

Hij =
J

2
(Pij − I⊗

N
) (24)

Summing over all i, j, i < j gives the full Hamiltonian

H =
JN

2

N∑
i,j=1,i<j

Pij −
JN

2
I⊗

N
(25)

Suffice to say, P plays an enormous role in the ABA algebra that follows later.

2.2.4 Auxiliary Space

The two-site auxiliary space is the C4 ⊗ C4 tensor product space bolted on to the front or end
of the C2N ⊗ C2N quantum space.

The auxiliary space doesn’t have a physical existence, i.e. it isn’t part of the the spin lattice
sites 1 . . . N , that are covered by the C2N ⊗ C2N quantum space and have an up/down z-axis
spinor on each site

The two auxiliary sites serve as a convenient mathematical intermediary - they are ‘traced’
over when forming the transfer matrix, Section (2.2.8), which is one of the desired commuting
operators for the integrable solution. As such, the auxiliary sites do not appear in the final
solution.

1that this is so seems quite remarkable

11



Only two auxiliary sites are required since the algebra is always reduced to two-particle scat-
tering as in factorized scattering. Indeed, all operators only act non-trivially on two sites such
as permuting them via P.

The notation for their use is best given by way of some examples, as follows.

Example 1. Nepomechie [5] 00′ notation

The subscripts 0 and 0′ represent two auxiliary sites at the front of the chain, before the first
lattice site, index 1, which is the first site in the C2N ⊗ C2N quantum space. For example, the
tensor product operator R acting on the auxiliary space, is given by

R00′ = I
0
⊗ I

0′
⊗ I

1
⊗ · · ·α

n
· · · ⊗ I

N
(26)

By its 00′ subscripted definition, it is considered to only act non-trivially on the auxiliary space
but, otherwise, acts trivially on the quantum space.

Faddeev [3] uses the indices a and b′ as in, for example Rab (see below), and they can be at the
front or back of the lattice chain, but it seems they are at the back in the reference. Front or
back, it matters not so long as they are used consistently.

In addition, the subscript/auxiliary-site ordering of 0 and 0′, i.e. 00′ or 0′0 (or ab, ba) is
immaterial so long as the ordering is consistently adhered to (of course).

The convention adopted herein is to use subscripts a and b (not 0 and 0′), with the, largely
irrelevant assumption that the auxiliary sites are at the beginning of the chain. The only reason
for this choice is that it avoids hard-to-see superscript primes as in 0′, and removes use of zero
twice in the subscript (even if one is primed) - a and b is considered clearer.

Example 2. (Faddeev [3] ab notation)

Two auxiliary sites a and b at the front of the chain as in

Rab = I
a
⊗ I

b
⊗ I

1
⊗ · · ·α

n
· · · ⊗ I

N

or two auxiliary sites at the rear of the chain, after the last lattice site N

Rab = I
1
⊗ · · ·α

n
· · · ⊗ I

N
⊗ I

a
⊗ I

b
, (27)

a = N + 1, b = N + 2

End of examples

In the ABA formulation, Section(4), R actually acts only on auxiliary lattice sites, the L
operators (which are identical to R to within the spectral parameter λ anyhow), usually act on
one auxiliary site and one quantum site. In both the R and L cases, plus operators H and T ,
the important point is that these operators always act on two sites, wherever these sites may be,
as indexed by their subscripts. The exception is the transfer matrix t(λ), which is ‘traced-over’
the auxiliary space, and acts only in the C2N ⊗C2N quantum space, generally indexed by letters
n, i, j where i, j, k ∈ 1 . . . N .

Excepting the transfer matrix, operators indexed like Lna operate on the lattice site n and
auxiliary space a.

Whatever the case, keep in mind that every operator with two subscripts acts on two C2 sites,
and since all operators contain the permutation matrix, then the operator action invariably
permutes spinors between these two sites amongst its other action - see the specific matrix
forms for the exact details.
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2.2.5 The Lax Matrix L

Before defining the Lax matrix operator L, the following pre-requisite definitions are given,
where α, β, γ, δ are 2x2, complex matrices, as per the earlier definitions of Sz, S+, S−, and the
N-site tensor products αn, βn, γn, δn, defined in terms of them

α = λI + iSz β = iS− γ = iS+ δ = λI − iSz (28)

αn = I
1
⊗ · · ·α

n
· · · ⊗ I

N
(29)

βn = I
1
⊗ · · ·β

n
· · · ⊗ I

N

γn = I
1
⊗ · · · γ

n
· · · ⊗ I

N

δn = I
1
⊗ · · · δ

n
· · · ⊗ I

N

The N-site Lax matrix L is now written in the following block form, whereby each element
is actually an N-fold tensor product of dimension 2N by 2N . The matrix itself, as shown, is
thus 22N+1 × 22N+1, albeit, it will be modified when an extra ‘auxiliary’ space is introduced
(in fact two, see Section (2.2.4). For notational clarity, L is often written in the following 2x2
form:

L(λ) =

(
αn βn
γn δn

)
(30)

but it is actually used later, Section (4), in the following expanded, pseudo 4 × 4 form, where
each element is really a 2N×2N matrix (hence pseudo acting non-trivially on C site n (subscript
n) of the N-site quantum space; subscript a denotes auxiliary space a, and b denotes auxiliary
space b.

Lan(λ) = L(λ)⊗ I (31)

Lan(λ) =


αn(λ) 0 βn(λ) 0

0 αn(λ) 0 βn(λ)
γn(λ) 0 δn(λ) 0
0 γn(λ) 0 δn(λ)

 (32)

Lbn(λ) = I ⊗ L(λ) (33)

Lbn(λ) =


αn(λ) βn(λ) 0 0
γn(λ) δn(λ) 0 0
0 0 αn(λ) βn(λ)
0 0 γn(λ) δn(λ)

 (34)

L can also be written terms of spin operators, see (6), and also in terms of R, i.e. L(λ) =
R(λ−i/2) (5). Because R is defined in terms of the permutation matrix and the identity R(λ) =
λI ⊗ I + iP (2), and given the commutation rule (20), then L also satisfies this commutation
rule, i.e.

[Lai, Lbj ] = 0, i ̸= j, a ̸= b (35)
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2.2.6 Yang-Baxter Equation

The matrix operator L and those that follow next (R and monodromy T ) satisfy a key equation
(key to the integrability of the HSC and other integrable systems), known as the Yang-Baxter
Equation2 [10].

S12(p1, p2)S13(p1, p3)S23(p2, p3) = S23(p2, p3)S13(p1, p3)S12(p1, p2) (36)

This equation is best described in its physical interpretation as a form of commutation relation
amongst three scattering matrices S(12), S(23) and S(13), where each represents a two-particle
scattering process, e.g. S(12) is for particles 1 and 2.

In effect, the YBE expresses the fact that, if the scattering is such that interactions (12) followed
by (13) followed by (23), in time-ordered sequence, is the same as the reverse ordered process,
i.e. (23) followed by (13) followed by (12), then the underlying system is integrable.

Note that this is a special case of three-particle scattering. In general, the three-particle inter-
action potential U(x, t) (a function of position and possibly time), is of a form such that the
YBE does not hold true. However, at least for the integrable HSC model, this is (must be)
satisfied. In effect it means a three body (or more) scattering process can be factorised into
two-body processes, and is thus known as factorized scattering

Alternatively stated, the YBE expresses the equivalence of two different ways to factorise a
three-particle scattering matrix into a product of three, two-particle matrices

The YBE, as actually given in terms of the operators used herein, is given shortly (40) but, in
brief, if R and T satisfy the YBE then the HSC is integrable.

The algebra above is that of permutations, specifically two-cycle transpositions, and one can ap-
ply the same rules, see Section (2.1.1) for more details on this aspect. There are also geometric-
equivalent, pictorial representations of the YBE given in, for example, [4].

It should be noted that general R matrices and the YBE pervade many integrable systems in
physics, and there is a nice introduction to YBE and general R matrices in [10], and [11]. There
is also, of course, an abundance of freely available, high quality literature on the web, search
Yang-Baxter.

2.2.7 Monodromy Matrix T

The Monodromy matrix is defined as the following product of all N Lax matrices Lai, i =
1 · · ·N :

Ta(λ) = LaN (λ)LaN−1(λ) . . . La2(λ)La1(λ) (37)

As for the Lax matrix L, further above, for notational clarity this is often written in the following
2x2 form

Ta(λ) =

(
A(λ) C(λ)
B(λ) D(λ)

)
(38)

but it is actually used, Section (4) in the following expanded pseudo 4 × 4 form, where each
element is really a 2N × 2N matrix - the term pseudo meaning that each element actually acts
non-trivially on C site n of an N-site tensor product (AKA the quantum space). Reminder:
subscript a denotes auxiliary space a, and b (below) denotes auxiliary space b.

Ta(λ) = T (λ)⊗ I (39)

2This is also known as the Fundamental Commutation Relation (FCR)
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Ta(λ) =


A(λ) 0 B(λ) 0
0 A(λ) 0 B(λ)

C(λ) 0 D(λ) 0
0 C(λ) 0 D(λ)

 (40)

Tb(λ) = I ⊗ T (λ) (41)

Tb(λ) =


A(λ) B(λ) 0 0
C(λ) D(λ) 0 0
0 0 A(λ) B(λ)
0 0 C(λ) D(λ)

 (42)

Looking at the original Lax matrix form (6), it can be seen that the diagonal matrix elements
A and D represent Cartan operators, e.g. Sz, whilst the two non-diagonal elements B and C
are akin to creation S− and annihilation S+ operators, respectively.

The monodromy matrix obeys the Yang-Baxter Equation, i.e., for two unique spectral param-
eters λa and λb, then

Rab(λa − λb)Ta(λa)Tb(λb) = Tb(λb)Ta(λa)Rab(λa − λb) (43)

A proof of this for three-sites, N = 3 follows, but is illustrative enough for the full N-site proof
to easily be seen by extension.

Using the definition (37) of the monodromy matrix in terms of operator L then, for three sites,
N = 3, Ta and Tb expand as follows, where the spectral parameters have been omitted for
clarity:

Ta = La3La2La1, N = 3

Tb = Lb3Lb2Lb1

Substituting for Ta and Tb into the left term of the YBE (43) gives

RabLa3La2La1Lb3Lb2Lb1

Using the L operator commutation rule [Lai, Lbj ] = 0, i ̸= j (35) then the two middle terms can
be swapped, i.e. La1Lb3 = Lb3La1 to give

RabLa3La2Lb3La1Lb2Lb1

similarly, Lb3 can be swapped with La2, and Lb2 swapped with La1 to give

RabLa3Lb3La2Lb2La1Lb1

The three matrix productRabLa3Lb3 can now easily be replaced using the YBE, i.e. RabLa3Lb3 =
Lb3La3Rab to obtain

Lb3La3RabLa2Lb2La1Lb1

Applying the YBE again, i.e. RabLa2Lb2 = Lb2La2Rab, gives

Lb3La3Lb2La2RabLa1Lb1

and a final application of YBE for RabLa1Lb1 = Lb1La1Rab gives

Lb3La3Lb2La2Lb1La1Rab
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Lastly, swapping Lb2 with La3, and rippling Lb1 left using the commutation rule, this be-
comes

Lb3Lb2Lb1La3La2La1Rab

Comparing with the starting term, it is seen that

RabLa3La2La1Lb3Lb2Lb1 = Lb3Lb2La3La2RabLa1Lb1

which, back in terms of monodromy matrices, is

RabTaTb = TbTaRab

This is just the YBE for the monodromy matrices (43) and hence, for N = 3, it is proven that
the monodromy matrices satisfy the YBE. By repeated application of the commutation rule
and YBE, this proof easily extends to any number of sites N .

2.2.8 Transfer Matrix t

The Transfer matrix is defined as the trace of the monodromy matrix over the auxiliary
space

t(λ) = traTa(λ) (44)

It acts on the N-site quantum space 22N × 22N and taking the trace over the auxiliary space
effectively removes it from the final solution, which is purely given in the physical, quantum
space.

The trace is effectively a block sum of the two block diagonal elements of Ta (40), i.e.

t(λ) = A(λ) +D(λ)

The transfer matrix commutes for two different spectral parameters, here λ and λ′, i.e.

[t(λ), t(λ′)] = 0

This is easily proven: using the identity R−1
ab Rab = I, then the trace of TaTb can be written

as
tr(TaTb) = tr(R−1

ab RabTaTb)

and by the cyclicity of the trace, this is the same as

tr(TaTb) = tr(RabTaTbR
−1
ab )

Using Yang-Baxter (43) then
RabTaTb = TbTaRab

and so
tr(TaTb) = tr(TbTaRabR

−1
ab )

finally, since RabR
−1
ab = I then the result follows:

tr(TaTb) = tr(TbTa)

Note too that the trace tr(TaTb) ≡ tr(Ta)tr(Tb) since they act on different auxiliary spaces

The transfer matrix, for specific spectral parameter λ = i/2 (see further), relates to the Hermi-
tian momentum operator P via

eiP = i−N t(i/2) (45)
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and can thus be interpreted as a unitary translation (shift) operator U . Before showing this, a
quick, pertinent refresher in QM.

QM Aside. With the momentum operator P given in the usual QM form as

P = −iℏ∂x

then the shift operator U , for a finite translation ∆a, is thus

U = eiPa/ℏ = e∆a∂x (46)

If ∆a now represents the small, finite distance between consecutive spin sites, then a spin state
ψ(x) at site x, is translated to site x+∆a by the action of U on ψ(x)

Uψ(x) = eiP∆aψ(x) ≈ (1 + ∆a∂x)ψ(x) = ψ(x) + ∆a∂xψ = ψ(x+∆a) (47)

For an operator Gn acting on site n, say, the equivalent action of U to translate G to the next
site n+ 1, denoted by Gn+1, is given in the usual operator transformation form

UGnU
−1 = Gn+1 (48)

End of QM aside.

Relating back to the monodromy matrix T , as given in (37), a key point regarding the transfer
matrix is that, for spectral parameter λ = i/2, the monodromy matrix is the product of N
permutation matrices P. This is easily shown as follows, given the definition (5) of the Lax
matrix L in terms of R, then for λ = i/2, L(i/2) is simply R(0), which itself is just iP by (2),
hence

L(i/2) = R(0) = iP

Thus, the Lax matrix terms LaN , LaN−1 etc.. in the monodromy matrix definition (37) are
are

LaN (i/2) = iPaN , LaN−1(i/2) = iPaN−1, etc.

and the monodromy matrix Ta(i/2) is therefore

Ta(i/2) = iNPaNPaN−1 . . .Pa2Pa1 (49)

The combination of permutations on the right can be manipulated into a more useful form to
obtain the trace of Ta(i/2) (further below), as given by the following identity:

PaNPaN−1 . . .Pa2Pa1 = P12P23 . . .PN,N−1PNa (50)

and verified as follows:

Evaluating the lhs permutation, working right to left, gives

a→ 1

1 → a→ 2

2 → a→ 3

...

N − 1 → a→ N

And so, by the theory of permutations, the LHS comprises N transpositions and can be written
as the following single N-cycle:

PaNPaN−1 . . .Pa2Pa1 = (a12 . . . N − 1, N)
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Similarly, evaluating the rhs permutation, working right to left, gives

N → a

a→ N → N − 1 . . .→ 1

N − 1 → N

N − 2 → N − 1

...

2 → 3

1 → 2

and this too can be written as the single N-cycle

P12P23 . . .PN,N−1PNa = (Na12 . . . N − 2, N − 1)

By cyclic permutation, i.e. rotate one to the left,

(Na12 . . . N − 1) → (a12 . . . N − 1, N)

this becomes identical to the original permutation, thus verifying that the two forms of permu-
tation are equivalent.

The key point about the second permutation form is that the auxiliary site, index a, now only
appears in a single permutation term, i.e. PNa and simplifies the calculation of the trace, as
required next in the evaluation of the transfer matrix. Specifically, the trace of PNa over the
auxiliary space is just the identity, i.e.

tra(PNa) = I⊗
N

By (50),

tra(PaNPaN−1 . . .Pa2Pa1) = tra(P12P23 . . .PN,N−1PNa)

and since the trace is over the auxiliary space only, all permutations (on the rhs above) not in
the auxiliary space, i.e. all but PaN , can be ignored so that

tra(P12P23 . . .PN,N−1PNa) = P12P23 . . .PN,N−1tra(PNa)

Finally, since tra(PNa) is just the identity, as given above, then

P12P23 . . .PN,N−1tra(PNa) = P12P23 . . .PN,N−1 (51)

Using the form of the monodromy matrix (49) then, by definition (44), the transfer matrix is
given by

t(i/2) = traTa(i/2) = iNP12P23 . . .PN,N−1 (52)

The sequence of permutations on the rhs above is equivalent to the unitary translation (or shift)
operator U given earlier (46), i.e.

U = P12P23 . . .PN,N−1 (53)

Using this, the expression for the transfer matrix now simplifies to

t(i/2) = iNU (54)

Alternatively, U is expressed in terms of the transfer matrix, by simple rearrangement as in

U = i−N t(i/2) (55)

and so t(i/2) is thus a translation through N sites resulting in the single permutation effectively
swapping site 1 with site N (multiplied by iN )
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2.3 The Hamiltonian Revisited

Armed with the transfer matrix derived in the previous section, this section now shows that it
relates to the Hamitonian and, most importantly, commutes with it. To get there, the work
starts back with the monodromy matrix (37), reproduced below

Ta(λ) = LaN (λ)LaN−1(λ) . . . La2(λ)La1(λ)

Differentatiating Ta(λ) (37), which introduces a summation, and evaluating at λ = i/2 so that
L = iP, gives

dTa(λ)

dλ

∣∣∣∣
λ=i/2

= iN−1
N∑

n=1

PaNPaN−1 . . . P̂an . . .Pa2Pa1 (56)

where P̂an denotes the term is omitted, hence each term in the sum is a product of N − 1
permutation operators, but there remain N terms in the total summation.

Using the permutation identity (50) and the trace of the permutation sequence (51), the above
expression can be recast as

dt(λ)

dλ

∣∣∣∣
λ=i/2

= iN−1
N∑

n=1

P12P23 . . .Pn−1,n+1PN−1,N (57)

To clear most of the permutations on the rhs, the inverse of the transfer matrix (54) is required,
as follows:

t(i/2)−1 = i−NU−1 (58)

where the inverse of the unitary shift matrix U (53) is

U−1 = PN,N−1 . . .P23 . . .P12 (59)

Multiplying the above derivative expression dt/dλ by the inverse, and utilising the inverse shift
operator definition U−1 clears nearly all of the permutations in the summation and, after some
algebraic manipulation, gives

dt(λ)

dλ
t(λ)−1

∣∣∣∣
λ=i/2

= −i
N∑

n=1

Pn,n+1 (60)

The derivative term on the left also simplifies to give

d

dλ
ln t(λ)

∣∣∣∣
λ=i/2

= −i
N∑

n=1

Pn,n+1 (61)

In accordance with (25), the full spin-chain Hamiltonian for neighbouring site interactions only
(n, n+ 1), is

H =
J

2

N∑
n,n+1

Pn,n+1 −
JN

2
I⊗

N
(62)

and equating this with the previous derivative term to clear the summation gives

H =
iJ

2

d

dλ
ln t(λ)

∣∣∣∣
λ=i/2

− JN

2
I⊗

N
(63)

In this form, it can now be deduced that the Hamiltonian actually commutes with the transfer
matrix. Although perhaps not obvious, the commutation hinges on the fact that if two operators
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F and G commute, then any polynomial function (power series) of G will also commute with
F , formally stated as

If [F,G] = 0 then [F, f(G)] = 0 where f(G) =
∑M

m=0 amG
m for constant coefficients am

This includes the case where the maximum degree M goes to infinity and so, since the natural
logarithm function has such an infinite degree power series expansion, then it can be concluded
that if an operator F commutes with G, then it commutes with ln(G). In fact here it has to
commute with the derivative, i.e. d/dλ ln(G), where G ∼ t(λ). However, the derivative of a
power series is just a another power series, so the derivative is superfluous.

Thus, if the Hamiltonian H can be written in terms of t(λ), as demonstrated above, then since
t(λ) commutes with itself, and by extension the power series d/dλ ln(t(λ)), then H must also
commute with t(λ). Note too that this result is independent of the spectral parameter λ.

3 A one-magnon spin chain

Consider the N-site ground state Ωu

Ωu = | ↑↑ · · · ↑ |⟩ = |u1, u2, · · ·un · · ·uN ⟩

To this a single spin site n is to be flipped from up to down, which will create the following new
state, ψn

ψn = | ↑ · · · ↑↓↑ · · · ↑ |⟩ = |u1, u2, · · · dn · · ·uN ⟩

and denoted by the N-site tensor product

ψn = u
1
⊗ · · · d

n
· · · · · · ⊗ u

N
, u, d ∈ C2, ψn ∈ C2N

To find the energy of this state, as in standard QM, it is operated on by the Hamiltonian,
e.g.

Hψn = Eψn

For the HSC, this is the two-site form Hij (24), given in terms of the permutation matrix,
reproduced below

Hij =
J

2
(Pij − I), i < j, I ≡ I⊗

N
(64)

Convention has it that i < j

As written, the Hamiltonian acts on all pairs (i, j) of sites i and j, which would ordinarily
give a sum of nC2 terms. For example, in a three-site case, it would be a sum of H acting on
the three site pairs (1, 2), (1, 3) and (2, 3). However, as noted, only nearest neighbour sites are
considered, with the energy exchange between a flipped site being zero for any swap of an up
and down spinor separated by one or more sites, i.e. j > i+1. In the above example, the three
site pairs therefore reduce to just the two (1, 2) and (2, 3), and adjacent sites are thus indexed
j = i + 1, i.e. (i, i + 1), so that Hij now becomes Hi,i+1. Thus, to obtain the total energy of
the one-flipped spin state, the two-site Hamiltonian becomes

H =

N∑
i

Hi,i+1ψn (65)

Firstly, the action of Hij on a pair of consecutive up spins, as given by example in the smallest,
non trivial, two-site case, N = 2, is given by

H12|u1, u2⟩ = (P12 − I)|u1, u2⟩
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Expanding out each term on the right gives

P12|u1, u2⟩ = |u2, u1⟩ = |u1, u2⟩, u1 = u2 = u

I|u1, u2|⟩ = |u1, u2⟩

It is seen that, since the two spins are identically up, the permutation and identity operator
just return the original input state, with the result that the difference is zero, i.e.

H12|u1, u2⟩ = 0, E = 0

This should be no surprise since |u1, u2⟩ is a ground state, and the Hamiltonian was intentionally
constructed (adjusted) to give a ground state energy of zero. Most importantly, this result
extends to any pair of consecutive spins with the same alignment (up or down) - exchanging
them gives no change in energy. Thus, if only one site n, as in eigenstate ψn, is a down-spin,
with all the rest up, the energy sum reduces to terms with index n− 1, n and n+ 1, i.e.

Hψn =
J

2
(Pn−1,n − I)ψn +

J

2
(Pn,n+1 − I)ψn

Each term on the right evaluates as

Pn−1,nψn = ψn−1, Iψn = ψn

Pn,n+1ψn = ψn+1, Iψn+1 = ψn+1

and putting them together gives

Hψn =
J

2
(ψn−1 − 2ψn + ψn+1) (66)

Note, some texts use a negative factor −J that is compensated by reversing the signs in the
right bracket, thus giving the same result, i.e. Hψn = −(J/2)(−ψn−1 + 2ψn − ψn+1)

As seen, Hψn is not an energy eigenvector equation since the rhs is not a simple eigenvalue
multiple of the state ψn on the left. However, this can be made a momentum eigenstate ψ(p)
by transforming to momentum space using a Fourier transform, again, standard QM,

Hψ(p) =
J

2

∞∑
−∞

(ψn−1 − 2ψn + ψn+1)e
ipn

where the momentum wave state ψ(p) is given by

ψ(p) =
∞∑
−∞

ψne
ipn (67)

This is not quite the desired form yet, and more follows. However, a couple of points before-
hand:

1. This is actually a discrete Fourier transform for a lattice with an infinite number of sites
(N → ∞), hence the summation limits. This assumption gives both a continuous momentum
spectrum and zeros any edge effects as the state is assumed to go to zero at infinity i.e. ψn → 0
n → ∞ (an asymptotic boundary condition). Because N is very large in practice, e.g. a 1d
crystal lattice has approximate order Avogadro number of sites, it is a very good approximation
and safe assumption. For a finite N , the momentum is quantised (just like the QM case of a
particle in a finite size (length N) infinite square-well potential), with quantisation ∆p = 2πi/N .
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This quantisation is also the case for a closed chain of N sites, but now the boundary conditions
are periodic and p restricted to modulo 2π as in eip = 1.

2. What would normally be the x position coordinate on the right (i.e. eipx) is simply the
lattice site index n. If the lattice spacing were ∆, then x = n∆, so ∆ has effectively been set
to unity and the x-coordinate position is just the index.

Returning to the Fourier transform, the infinite limits also permit a legitimate relabelling of the
position index n in each of the three bracket terms on the right (this is also be acceptable for
large N , as mentioned above)

Hψ(p) =
J

2

∞∑
−∞

ψne
ip(n+1) − 2ψne

ipn + ψne
ip(n−1)

This relabelling is actually the clever part, because now the states on the right are all the same,
so what looked like three individual states is now just the one ψn. Factoring ψn and common
factor eipn gives

Hψ(p) =
J

2

∞∑
−∞

(ei − 2 + e−i)eipnψn

The bracketed term simplifies to the following trigonometric form

(ei − 2 + e−i) = 2(cos p− 1) = −4 sin2(p/2)

and can be removed from the summation (since it is not over p) leaving

Hψ(p) = −J
2
4 sin2(p/2)

∞∑
−∞

eipnψn

Lastly, the summation term on the right is just ψ(p) (67) so

Hψ(p) = −J
2
4 sin2(p/2)ψ(p) (68)

which shows that ψ(p) is an energy eigenstate for eigenvalue (−J/2)4 sin2(p/2).

Discussion. It is hoped the reader can appreciate just how neat this bit of trickery using the
Fourier transform is. It has converted an operator equation in position space, that results in
a superposition of linear states (but not eigenstates), i.e. (66), into an eigenvector equation in
momentum space. In other words, there was an eigenvector equation always present, just in the
momentum space, not position space, and not visible at first (or second) glance.

Furthermore, this now just looks like a standard QM particle with momentum p - positive means
it is travelling to the right. What was initially a static lattice problem, with one spin flipped,
now has a quasi -particle interpretation. In fact, from a mathematical standpoint, the result
(68) is unequivocally a particle, because one wouldn’t know otherwise if shown this eigenvector
equation and asked to deduce the problem from which it arose. This single particle (there is
only one momentum p) is termed a magnon, and when two flipped spins are introduced, two
magnons with momentum p and q are seen - a bit more on this shortly.

The Fourier transform method, as above, for transforming a position space solution to mo-
mentum space, and thereby obtaining an eigenstate (where there was none before), is actually
a common trick in physics, equivalent to a change of basis to diagonalise a problem. As an
example, see the Tight Binding Model in condensed matter physics.

The general M (M < N) magnon eigenvector states were determined by Bethe [6] in 1931 by
essentially guessing the general solution (devising by much physical insight is a more accurate
description), and the method has become known as the Coordinate Bethe Ansatz (CBA).
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It is not the intention of this document to pursue the CBA method further because much
later mathematical developments (Faddeev 1971 [3], [7]) led to another method, known as the
Algebraic Bethe Ansatz (ABA). The ABA is common to many non-linear systems, classical
and quantum, and is the method used herein to solve the same quantum HSC problem. Part
II of this document details the solution to the classical Korteweg de Vries (kdV) non-linear
equation (a third order PDE). Solving the KdV and this quantum HSC share similar, modern
mathematical developments, and also have some remarkable physical commonality. To which
end, this brief section, essentially an introduction to magnons, closes with a quick mention of
the two-magnon CBA, that introduces two particles and leads to concepts of scattering and
dispersion - two very physical areas that are of relevance to both KdV soliton solutions and
Magnons. For more details of the CBA solution, see the accounts by Beisert [4] for the one, two
and three magnon solutions. Nepomechie [5] also gives a good but less-detailed account. The
ABA is the domain of Faddeev [3], [7] and detailed further herein.

The CBA Two-magnon Solution

The two magnon eigenstate has the following form, where p and q denote the magnon’s mo-
mentum (one p and one q)

ψ(p, q) = k(p, q)

∞∑
n<m,−∞

eipneiqm + S(p, q)eipmeiqn (69)

and corresponding eigenvalue
E = E(p) + E(q) (70)

There are the usual approximations here, but consider it an infinite, open-ended (not closed)
chain - see Beisert [4] for more details.

The sum, as before, runs from −∞ to +∞, and the n < m condition really means that the
particle position n lies to the left of position m. However, because both n,m can be positive
or negative, the sign in the exponential can mean that the magnons move to the left and
right.

More explicitly, the first term has p to the left of q, with p is moving to the right, q to the left.
In the second term, q is now to the left of p, still moving to the left, and p is thus to the right of
q, also still moving to the right. At some stage, they scatter as they pass, and this is reflected
(no pun) in the scattering factorS(p, q).

The energy eigenvalue is seen to be the sum of the individual, one-magnon solution energies
- the scattering has not affected the solution. In fact, the scattering factor S(p, q) is just a
complex phase shift of unit magnitude.

The solution is stable, there is no dispersion - the individual momenta p, q remain unchanged
after scattering - the momentum wave (hint KdV) is unaffected by the scattering, bar a QM
phase shift, and QM observables are invariant to a phase shift.

This is qualitatively as per a soliton solution to the KdV equation. Colliding solitons can merge,
change their form whilst under the influence of their position and time-dependent potential, but
travel through each other and emerge the same shape as they entered (the scattering potential
region). The potential term decays to zero as times and positions go to ±∞ as in the asymptotic
solution.

This retention of final form (post scattering) is a feature of linear superposition. For example,
electromagnetic waves in free space can be decomposed into the same Fourier components before
and after they electromagnetically interfere (scatter). But KdV is distinctly non-linear, so such
a stable, integrable solution to a non-linear problem was unexpected, but led to many further
developments in solving non-linear problems.
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4 Algebraic Bethe Ansatz

4.1 Eigenstates of the Spin chain

This section derives the eigenstates of the transfer matrix. Since the transfer matrix commutes
with the Hamiltonian, these states are basically the solutions to the integrable system known
as the Heisenberg XXX spin chain model. The Monodromy matrix in block form (40) is

Ta(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
and obeys the Yang-Baxter Equation (43),

Rab(λa − λb)Ta(λa)Tb(λb) = Tb(λb)Ta(λa)Rab(λa − λb) (71)

The R matrix, defined in 4x4 form (2), is reproduced below with its entries used to define
constants a, b, c as on the right

R(λ) =


λ+ i 0 0 0
0 λ i 0
0 i λ 0
0 0 0 λ+ i

 =


a 0 0 0
0 b c 0
0 c b 0
0 0 0 a


and hence a, b, c are formally defined as

a = λ+ i, b = λ, c = i (72)

Note that constant c is rather trivially defined as just the imaginary unit i. Also note that the
a and b constants are not related to the subscripts on the spectral parameters λa and λa (an
unfortunate clash of notation).

Although not shown here, see [3], by applying the block form of the monodromy matrix to
the YBE, the following key exchange relations (three of a possible sixteen) in A,B,C,D are
obtained

[B(λa)B(λb)] = 0 (73)

A(λa)B(λb) =
a(λb − λa)

b(λb − λa)
B(λb)A(λa)−

c

b(λb − λa)
B(λa)A(λb) (74)

D(λa)B(λb) =
a(λa − λb)

b(λa − λb)
B(λb)D(λa)−

c

b(λa − λb)
B(λa)D(λb)

Denoting the ground state wave-function by by Ωu for the all spin-up ground state (hence u
subscript), then Ωu is a simultaneous eigenstate of A and D for the N-site spin chain, i.e.

A(λ)Ωu = (λ+
i

2
)NΩu (75)

D(λ)Ωu = (λ− i

2
)NΩu

The eigenvalues are defined by the constants αN and δN , for an N-site chain, as per [3] nota-
tion

αN (λ) = (λ+
i

2
)N δN (λ) = (λ− i

2
)N (76)

and so the A and D eigenvector equations are now written more concisely as

A(λ)Ωu = αN (λ)Ωu (77)

D(λ)Ωu = δN (λ)Ωu (78)
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Operator C is a raising operator and hence annihilates the all-up spin, ground state Ωu

C(λ)Ωu = 0 (79)

Operator B is a lowering operator and acts as a creation operator to create down-spin states
by flipping up-spin states at individual sites in the spin chain. These states, containing one or
more down spins in a spin chain, are called Bethe states.

Note that the association of A,B,C,D as spin operators, Sz, S−, S+, Sz respectively, is given
in accordance with the form of Lax matrix L (6).

It is seen from the above A, D eigenvector equations that, since Ωu is a simultaneous eigenstate
of A and D, it is also an eigenstate of their sum A +D, and given that the transfer matrix is
the trace of the monodromy matrix (40) over the auxiliary space (a here), i.e.

t(λ) = tr(Ta(λ)) = A(λ) +D(λ) (80)

then Ωu is also an eigenstate of the transfer matrix (t(λ) (2.2.8) ), i.e.

t(λ)Ωu = (αN (λ) + δN (λ)) Ωu (81)

This is important since the transfer matrix commutes with the Hamiltonian, and therefore Ωu

is a Bethe state, albeit the ground state. However, as is the case in QM, once a ground state is
obtained, successive states can be generated using a creation operator. Since ground and higher
states of the transfer matrix are in involution, i.e. they all commute with each other and the
Hamiltonian, then obtaining all N of them for an an N-site spin chain gives the completely-
integrable solution to the HSC, which is the ultimate goal, i.e. using the ABA to obtain the
solution to the HSC.

To create a state of M flipped spins (M sites with spin down, all others spin up), the operator
B is applied M times to the ground state Ωu, with a unique spectral parameter λi, i = 1 . . .M
assumed for each application of B.

Each operation of B adds another flipped spin to a unique site, presumed also to have prior
been in the up state, i.e. no flipping of spins already flipped.

For example, the the single flipped spin state, denoted by |λ1⟩ (M = 1) is obtained by a single
application of B as in

|λ1⟩ = B(λ1)Ωu (82)

Note that the state vector |λ1⟩ does not show the state of all the other N − 1 lattice sites since
they are all ground state, up spins, and superfluous notation.

Similarly, the two-flipped spin state is given by

|λ1, λ2⟩ = B(λ1, λ2)Ωu (83)

and the general, M -flipped spin state is given by applying B to the ground state, M times, and
written as

|λ1, . . . , λM ⟩ = B(λ1) · · · (λM )Ωu (84)

The actual algebraic details of using operator B, in conjunction with the exchange relations
(74) to create new states, is given in [3], albeit the level of detail is overview-only for the general
case of a state with M flipped spins. As such, the algebra for the simplest case of one flipped
spin, M = 1, is given in detail next.

Because the algebra is quite involved, and notationally arduous, the process is given in very
small steps - patience might be required.
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4.2 One flipped-spin solution

Before commencing, the spectral parameters λa and λb are renamed as λ and λ1 respectively -
the latter denoting M = 1 for the one-down spin case

λa → λ

λb → λ1

Using these revised names, the exchange equations (74) become

A(λ)B(λ1) =
a(λ1 − λ)

b(λ1 − λ)
B(λ1)A(λ)−

c

b(λ1 − λ)
B(λ)A(λ1) (85)

D(λ)B(λ1) =
a(λ− λ1)

b(λ− λ1)
B(λ1)D(λ)− c

b(λ− λ1)
B(λ)D(λ1)

Reminder the a, b, c constants are

a = λ+ i, b = λ, c = i

and the following new constants are defined from them

a1 = a(λ1 − λ) = λ1 − λ+ i (86)

a2 = a(λ− λ1) = λ− λ1 + i

b1 = b(λ1 − λ) = λ1 − λ

Substituting these constants into the A and D exchange equations gives

A(λ)B(λ1) =
a1
b1
B(λ1)A(λ)−

c

b1
B(λ)A(λ1) (87)

D(λ)B(λ1) =
a2
−b1

B(λ1)D(λ)− c

−b1
B(λ)D(λ1)

and resolving the minus signs in D gives

D(λ)B(λ1) = −a2
b1
B(λ1)D(λ) +

c

b1
B(λ)D(λ1)

Multiplying throughout by b1 gives A and D in the forms required for the next stage.

b1A(λ)B(λ1) = a1B(λ1)A(λ)− cB(λ)A(λ1)

b1D(λ)B(λ1) = −a2B(λ1)D(λ) + cB(λ)D(λ1)

Apply the A equation to the ground state

b1A(λ)B(λ1)Ωu = a1B(λ1)A(λ)Ωu − cB(λ)A(λ1)Ωu

and using the eigenvectors equations for Ωu (75), then

b1A(λ)|λ1⟩ = a1B(λ1)αN (λ)Ωu − cB(λ)αN (λ1)Ωu

Rearranging constant terms

b1A(λ)|λ1⟩ = a1αN (λ)B(λ1)Ωu − cαN (λ1)B(λ)Ωu

and reapplying the eigenvector equation for B (82) gives

b1A(λ)|λ1⟩ = a1αN (λ)|λ1⟩ − cαN (λ1)B(λ)Ωu
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Note that the term on the rhs involving B(λ)Ωu is left undefined - it will later be set to zero as
a condition.

Now do the same as above for the D equation

b1D(λ)B(λ1)Ωu = −a2B(λ1)D(λ)Ωu + cB(λ)D(λ1)Ωu

b1D(λ)|λ1⟩ = −a2B(λ1)δN (λ)Ωu + cB(λ)δN (λ1)Ωu

b1D(λ)|λ1⟩ = −a2δN (λ)B(λ1)Ωu + cδN (λ1)B(λ)Ωu

b1D(λ)|λ1⟩ = −a2δN (λ)|λ1⟩+ cδN (λ1)B(λ)Ωu

The final forms of the A and D equations are thus

b1A(λ)|λ1⟩ = a1αN (λ)|λ1⟩ − cαN (λ1)B(λ)Ωu (88)

b1D(λ)|λ1⟩ = −a2δN (λ)|λ1⟩+ cδN (λ1)B(λ)Ωu (89)

Adding the two equations

b1(A(λ) +D(λ))|λ1⟩ = (a1αN (λ)− a2δN (λ))|λ1⟩+ c(δN (λ1)− αN (λ1))B(λ)Ωu

and re-writing the lhs using the fact that A + D is simply the transfer matrix t(λ) (80),
gives

b1(t(λ))|λ1⟩ = (a1αN (λ)− a2δN (λ))|λ1⟩+ c(δN (λ1)− αN (λ1))B(λ)Ωu (90)

Defining constants λt and d as

λt(λ) =
1

b1
(a1αN (λ)− a2δN (λ)) (91)

d = δN (λ1)− αN (λ1)) (92)

then this equation in the transfer matrix becomes

t(λ))|λ1⟩ = λt|λ1⟩+ cdB(λ)Ωu (93)

The action of B on the ground state, as given by the term B(λ)Ωu, is not defined, but if the
entire term was zero then it is easily seen that the state |λ1⟩ is, indeed, an eigenvector of the
transfer matrix, i.e. a Bethe state, and thus the eigenvector solution for a single flipped spin
HSC. Of course, this is subject to the B term disappearing. Given B(λ)Ωu ̸= 0, i.e. B does not
annihilate the ground state (which it doesn’t since it is a creation operator) then, for the term
to disappear, the constant d must be zero (c is the non-zero imaginary unit i). This then puts
a constraint on λ1

d = 0 ⇒ δN (λ1) = αN (λ1)

Expanding out the constants αN and δN for parameter λ1 shows λ1 must be a root of an Nth
order polynomial (for an N -site chain), i.e.

(λ1 −
i

2
)N = (λ1 +

i

2
)N (94)

Comparing with Faddeev [3], there is some reassurance this is the correct answer given the
full condition for an M-spin (Faddeev uses l in place of M here), N-site chain is the following
rather-involved form (

λj + i/2

λj − i/2

)N

=

M∏
k ̸=j

λj − λk + i

λj − λk − i
, M > 1
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The aforementioned reassurance derives from the fact that the lhs of this condition matches
(94) if the rhs is unity. The rhs is a continued product, but note it is only strictly valid for
two-flipped spins (M ≥ 2) since the product has the condition k ̸= j, and because M = 1 and
j = 1, there are no terms in the product, in which case it is taken to be unity.(

λj + i/2

λj − i/2

)N

= 1, M = 1

This condition is a polynomial in λ1 of highest degree N − 1, because the λNi terms cancels. In
principle, then, there N − 1 solutions for λ1. The values for the simplest two-site and three-site
cases, N = 2 and N = 3 respectively, are

M = 1, N = 2, λ1 = 0 repeated

M = 1, N = 3, λ1 = ± 1

2
√
3

Using the earlier definitions of the constants a1, b1, c1 (86), reproduced below

a1 = λ1 − λ+ i, a2 = λ− λ1 + i, b1 = λ1 − λ

For M = 1, N = 2, λ1 = 0

a1 = −λ+ i, a2 = λ+ i, b1 = −λ

then the Bethe state eigenvalue (91) is

λt(λ) =
1

−λ
((−λ+ i)αN (λ)− (λ+ i)δN (λ))

Furthermore, using the definitions of αN (λ) and δN (λ) (76), also reproduced below

αN (λ) = (λ+
i

2
)N , δN (λ) = (λ− i

2
)N

then the Bethe state eigenvalue (91) can be simplified to the following quadratic polynomial for
N = 2

λt(λ) = 2λ2 +
3

2
, M = 1, N = 2

This is reassuringly real-valued, as required for physical observables in QM, and a natural
prperty of Hermitian operators.

Note, as mentioned above, there are N − 1 values of λ1 obtained by solving the polynomial
condition (94). This will accordingly give N−1 eigenvalues (and corresponding eigenvectors) of
the transfer matrix for λt(λ). An N’th eigenstate can be obtained from the Spin [3], [5].

This completes the ABA solution of the Heisenberg Spin Chain and, indeed, Part I of this
document.
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5 Summary and Conclusions

A solution for the one-dimensional Heisenberg Spin Chain (HSC) [1] has been detailed, obtained
by the method known as the Algebraic Bethe Ansatz (ABA) due to Faddeev [3]. Whilst this
method is physically less intuitive than the Coordinate Bethe Ansatz (CBA), devised by Bethe
[6] nearly half a century earlier, it is based upon a relatively modern, general method of finding
commuting operators that also commute with the Hamiltonian, and thereby generate constants
of motion. Specifically, these commuting operators are known as transfer matrices, derived
from the trace of the monodromy matrix, itself derived from the product of Lax operators -
all these operators having analogues in the solution of other non-linear, classical and quantum
systems. For this N-site HSC, a complete solution has been obtained by showing the ABA gives
N − 1 such commuting transfer matrices - the additional spin operator makes up the set of N
commuting operators that all commute with the Hamiltonian. In other words, the quantum
equivalent of the classical requirement to obtain N first integrals of motion of a dynamical
system is achieved and the HSC solved, i.e. it is a quantum integrable system.

Whilst the HSC model is one of spins at spatially separated lattice sites, when transformed
to the Fourier domain the system is seen to be equivalent to particles of a given momentum,
known as magnons. With this particle interpretation comes a more physical interpretation of
the equations in terms of particle scattering. Most importantly, the multiple particle scattering
can be factored into two-particle scattering processes, which is actually the key to the HSC
integrability given it permits numerous simplifications via operator commutation properties
that wouldn’t ordinarily arise under a complex multi-particle interaction.

The magnon particle interpretation and associated scattering properties then nicely relate to
what is the intended Part II of this document. This second part will detail the solution to
the classical, non-linear Korteweg de Vries (KdV) equation, that has algebraic analogues to
the ABA. In addition, from a physical perspective, the KdV equation is famed for its soliton
solutions, that also have a particle interpretation with related scattering properties as per
magnons and numerous other quasi-particles that are appearing in many branches of physics,
not least condensed matter physics and field theory.

29



6 References

References

[1] W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys. 49 (1928), 619-636]

[2] A Doikou, S Evangelisti, G Fevereti, N Karaiskos, Introduction to Quantum Integra-
bility, arXiv:0912.3350v3 [math-ph] 28 Sep 2010

[3] L. D. Faddeev, How Algebraic Bethe Ansatz works for Integrable Models, arXiv:hep-
th/9605187v1 26 May 1996, 9605.187

[4] Niklas BeisertIntegrability in QFT and AdS/CFT, Lecture Notes, ABGP Doctoral
school, 2014, http://edu.itp.phys.ethz.ch/hs14/14HSInt/IntAdSCFT14Notes.pdf

[5] Rafael I Nepomechi, A Spin Chain Primer, arXiv:hep-th/9810032v1 5 Oct 1998,
9810.032

[6] H Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfuntionen Atomkette, Z.
Phys. 71 (1931), 205-226.]

[7] L. D. Faddeev: Algebraic Aspects of the Bethe Ansatz, arXiv:hep-th/9605187v1 26
May 1996, 9404.013 4 April 1994

[8] Jules Lamers, A pedagogical introduction to quantum integrability with a view towards
theoretical high-energy physics, arXiv:1501.06805v2 [math-ph] 3 Jun 2015v1 26 May
1996, 9605.187

[9] Goldstein, Classical Mechanics, third ed., 1999, Pearson Education, 5 Aug 2013,
ISBN: 9781292026558

[10] Marius de Leeuw, Chiara Paletta, Anton Pribytok, Ana L. Retore and Paul Ryan,
Yang-Baxter and the Boost: splitting the difference, arXiv:2010.1123v2 [math-ph] 20
Nov 2020

[11] Diego Bombardelli Lectures on S-matrices and Integrability, arXiv:1606.02949v2
[hep-th] 31 Aug 2016

30



7 Appendices

7.1 Pauli Matrices and Spin Operators

7.1.1 Pauli Matrices

At the heart of the algebra is the standard SU(2) Pauli spin matrix representation (below) for
spin aligned (‘up’) or anti-aligned (‘down’) along the z-axis, as per common convention - some
texts use the x-axis instead.

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
That the z-axis is chosen can be seen by the fact that σz is diagonalised with the +1 (up) and
−1 down eigenvalues.

Each Pauli matrix squares to the identity

σ2x = σ2y = σ2z = I

The matrices satisfy the SU(2) algebra, as given by the commutation relations

[σi, σj ] = 2iϵijkσk (95)

A vector of 2x2 Pauli matrices σ̄ is defined as

σ̄ = (σx, σy, σz) (96)

and its square (inner product with itself - see below) is thus, using the above, just a multiple
of the identity matrix

σ̄2 = σ̄ · σ̄ = σ2x + σ2y + σ2z = 3I (97)

Note that many texts treat the square of a vector (here a ‘vector’ of matrices) as the inner
product of the vector with itself as in σ̄i

2 = σ̄i · σ̄i, with an implied summation over i so that
the following four forms all have the same meaning, i.e.

σ̄2 = σ̄σ̄ = σ̄ · σ̄ (98)

7.1.2 Spin Operators

The Sx, Sy, Sz spin operators are defined as the following ℏ/2 scaled forms of the Pauli matrices,
where the re-scaling is to give the spin eigenvalues as ±ℏ/2:

Sx =
ℏ
2
σx Sy =

ℏ
2
σy Sz =

ℏ
2
σz

The matrices satisfy the following, standard SU(2) commutation relations, where x = 1, y =
2, z = 3 for i, j, k in range 1 to 3:

[Si, Sj ] = iℏϵijkSk (99)

The spin raising S+ and lowering S− operators are defined as

S+ = Sx + iSy S− = Sx − iSy S+ = S∗
+

which expand in full as the following 2x2 matrices:

S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
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These matrices also satisfy the standard SU(2) commutation relations

[Sz, S+] = ℏS+ [Sz, S−] = −ℏSz [S+, S−] = 2ℏSz (100)

The total spin vector S̄, just like σ̄ further above, is defined as

S̄ = (Sx, Sy, Sz)

and, since the spin matrices are just scaled versions of the Pauli matrices, the squared spin is
as per σ̄2 but with scale-factor 3ℏ/4 as in

S̄2 =
3

4
ℏ2I

A useful relation between Sz and the raising and lowering operators, S+ and S− respectively,
is

S̄2 = S2
z +

1

2
(S+S− + S−S+)

The spinors u ∈ C2 ( up) and d ∈ C2 (down) are defined as

u =

(
1
0

)
d =

(
0
1

)
These are, not surprisingly, the spin-up and spin-down eigenvectors of the spin z-component
matrix Sz, i.e.

Szu = (ℏ/2)u Szd = (−ℏ/2)d (101)

with the standard raising and lowering relations

S+u = 0 S+d = u S−u = d S−d = 0

These 2x2 matrix forms and two-element spinors are now used as the building block for the
simple tensor product forms.

7.2 Two-particle SU(2) Multiplets

7.2.1 Permutation Matrix

The eigenvectors of the permutation matrix P are the same as the two-site R matrix, Lax
matrix L and Hamiltonian H, since these latter three are just a linear combination of P and
the identity matrix. However, given they all comprise different linear multiples of the identity,
the eigenvalues are only the same to within an additive constant. Most importantly, as noted
in the main text, Section (2.2.3), the two-site permutation matrix Pij can be written in terms
of the Pauli spin matrices as follows:

Pij =
1

2
(σ̄iσ̄j + I⊗

N
)

Consequently, the eigenvectors of Pij are those of SU(2) spin multiplets (a triplet and a singlet)
for a two-site spin system N=2.

Being Hermitian, P has real-valued eigenvalues comprising the three-degenerate values +1 (the
symmetric SU(2) triplet state - next), and a single −1 eigenvalue (the anti-symmetric singlet
state).

eigenvalues of P = {1, 1, 1,−1}
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Using the tensor product of spinors u and v, the four normalised eigenvectors of P, denoted by
u1, u2 , u3 and d1, are

u1 = u⊗ u u, v ∈ C2 eigenvalue 1 (102)

u2 =
1√
2
(u⊗ d+ d⊗ u) eigenvalue 1

u3 = d⊗ d eigenvalue 1

d1 =
1√
2
(u⊗ d− d⊗ u) eigenvalue -1

u1, u2, u3, d1 ∈ C2 ⊗ C2

The eigenvectors u1, u2 , u2 and d1 thus satisfy the following eigenvector equations:

Pu1 = u1 Pu2 = u2 Pu3 = u3

Pd1 = −d1

The first three eigenvector equations represent the degenerate triplet state for eigenvalue +1,
and the last d1 is the single, singlet state, for eigenvalue −1. Note that the −1 singlet eigenvalue
is obviously not the standard QM value of zero (see next section), but is −1 here due to the
addition of the identity matrix term in the permutation matrix definition above.

The eigenvectors are expanded in full component form as

u1 =


1
0
0
0

 u2 =
1√
2


0
1
1
0

 u3 =


0
0
0
1

 d1 =
1√
2


0
−1
1
0


These four eigenvectors are both normalised and orthogonal, and therefore form an orthonomal
basis for the 4× 4 representation of SU(2).

7.2.2 Spin matrix - z-axis

By defining a two-site (sites 1 and 2), z-axis spin operator Sz
12 as the following C2 ⊗ C2 tensor

product:
Sz
12 = (Sz ⊗ I + I ⊗ Sz)

and defining the eigenvectors, upper case U in terms of the above, lower case u variants as

U+ = u1 U0 = u2 U− = u3 D0 = d1

then the eigenvectors U+, U0 , U− and D0 satisfy the following eigenvector equations:

Sz
12U+ = ℏU+ (103)

Sz
12U0 = 0

Sz
12U− = −ℏU−

Sz
12D0 = 0

As an example of obtaining the above, the eigenvector action of Sz
12 on U+ is detailed follow-

ing.

Using the above definitions

U+ = u1 = u⊗ u, Sz
12 = (Sz ⊗ I + I ⊗ Sz)
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then
Sz
12U+ = (Sz ⊗ I + I ⊗ Sz)u⊗ u

Multiplying out the bracket gives

Sz
12U+ = Szu⊗ u+ u⊗ Szu

and using Szu = (ℏ/2)u (101), then the above Sz
12 action on u1 is verified, i.e.

Sz
12U+ = ℏu⊗ u = ℏU+

From the above four eigenvector relations (103), it is seen that the eigenvectors are now so-
named U+, U0 , U− and D− because, the subscript matches their eigenvalue to the tensor
product spin matrix Sz. For reference, the 4× 4 spin operator Sz is expanded in full as

Sz = ℏ


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


The above eigenvector relations can be confirmed using this matrix and the eigenvectors, as
also expanded in full further above.

In quantum mechanics, the triplet spin states represent the two-particle state for total spin
eigenvalue S = 1 with ‘magnetic’ spin quantum number ms = 1, 0,−1. These have a symmetric
spin wave-function, as can be seen by swapping the u and d spinors in the above eigenvector
definitions for u+, u0 , u−. The singlet state is the anti-symmetric spin wave-function with spin
state S = 0 and consequently ms = 0 also.
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