
Issue 1.0 12/12/2019

Page 1 of 15

Eigenvectors from Eigenvalues
Richard J Miller

http://www.urmt.org

A method to obtain the eigenvectors of a matrix with distinct eigenvalues by simple

factorisation of the Cayley-Hamilton polynomial.

This is a formal write-up of a post I first made to sci.math 28/09/2019, corrected 01/10/2019.

This method does not require solving any algebraic equation and neither is this a numeric,

iterative method. It is based upon the Cayley-Hamilton (CH) theorem and the associated CH

polynomial.

Originality is unknown, but some references would be gratefully received - see further.

Matlab code is provided at the end, or email the author - see the web-site

http://www.urmt.org for email.

This eigenvector method, originally known as the 'Residual Matrix Method' (RMM) in Unity

Root Matrix Theory (URMT), was first published by the author in 2010 in the free, online

PDF paper 'Pythagorean Triples as Eigenvectors and Related Invariants' available at:

http://www.urmt.org/pythag_eigenvectors_invariants.pdf

The motivation to post this Residual Matrix Method after ten or so years of it gathering dust

was provided by a recent post on the science web site 'phys.org':

https://phys.org/news/2019-09-theorists-rosetta-stone-neutrino-physics.html

where the authors gave a new identity (in the eigenvalues) from which the eigenvectors can

be found from an identity relation amongst the eigenvalues.

Their method was examined by Terence Tao et in his blog:

https://terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/

with an arXiv paper:

https://arXiv.org/abs/1908.03795

The Tao method also appears, like RMM, to require unique eigenvalues to avoid zero divisor

problems. However, the method is restricted to Hermitian matrices, due to their construction

from projection operators via the spectral theorem. Nevertheless, Hermitian limitations aside,

the method is similar in aim to the RMM. The Tao method does not actually use the matrix

itself, unlike RMM, and the identity is truly that among the eigenvalues only. However, it

also requires the additional eigenvalues of an    11  NN (sub-matrix 'M' in the blog and

Tao Paper), and I am not sure if the set of 1N eigenvalues of M relate easily, if at all, to

those already determined for the original matrix. It would not seem to be the case and this

makes the method computationally intensive.

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 2 of 15

Back to my RMM (detailed further below), originality was not claimed at the time of

publication (2010) given its seeming simplicity as regards the CH Theorem. Nevertheless, I

would appreciate any references to it since I have not seen it in standard linear algebra

textbooks, which either seem to go the standard equation solving route, or numerical

determination. Some similarities to numerical methods were cited in the above paper, but this

was vague at the time and remains vague now!

From a computational aspect, RMM does require N-1 matrix multiplications (without

optimisation) to form an 1N order matrix polynomial. Nevertheless, it is extremely simple

and it does give both the column and row eigenvectors, without any conditions on the

matrices such as symmetric or Hermitian.

Lastly, my original name for the method, i.e. 'Residual Matrix Method' is not the best! It was

so named because, using the method, the eigenvectors are derived from the matrix remaining

(termed the Residual Matrix) after the CH polynomial is factored by a single linear factor.

The Residual Matrix Method (RMM)

Defining

A = square, order N matrix with N unique eigenvalues,

I = NN  identity matrix

k = kth unique eigenvalue, Nk 1

iV = ith eigenvector for eigenvalue i

then the Cayley-Hamilton theorem basically says that A satisfies its own characteristic

equation, i.e.

 IA 1  IA 2  IA k   0 IA N

written more concisely as the continued product

  0
1




N

k

k IA 

Assumption: Uniqueness of Eigenvalues

All eigenvalues k , Nk 1 , are unique (or distinct) so that the CH polynomial is of full

order N, i.e. contains a matrix term N
A . If the eigenvalues are not all unique, i.e. one or more

repeated, then the CH polynomial is of lesser order and not considered further. Note that this

does not exclude zero eigenvalues, just repeated eigenvalues.

For example, in the 3x3 matrix case, the CH polynomial is

 IA 1  IA 2   03  IA 

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 3 of 15

Explanation

Put very simply, by example, to get the first eigenvector
1V for the first eigenvalue 1 ,

multiply together all 1N matrix factors  IA 2 ,  IA 3  IA N , omitting the

factor  IA 1 for the eigenvalue 1 , to give a matrix 1E , and then the eigenvector
1V can

be taken from any non-zero column of 1E .

In more detail

To find the eigenvector
1V for the ith eigenvalue i , i.e.

iii VV A ,

where all eigenvalues are unique (or distinct), i.e.

ji   for ji  , Nji 1, 

First construct the 'residual matrix' iE from the 1N order polynomial formed from the

continued product of the 1N matrix factors  IA k where ik  , i.e.

  0
,1

 


N

ikk

ki IAE 

In other words, the residual matrix iE is just the CH polynomial excluding the factor

 IA i , and is of degree 1N with a highest term 1N
A .

Thus, by the CH Theorem

  0 ii EIA 

Expanded and rearranged (using trivially ii EIE ) gives

iii EAE 

Since iE is a matrix of N columns, this implies that each column must satisfy the eigenvector

equation for eigenvalue i , e.g. for column 1,)1(:,iE in Matlab notation, then

)1(:,)1(:, iii EAE 

Associating the eigenvector iV to the first column of iE (presuming it is not all zero), i.e.

)1(:,iiV E

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 4 of 15

then

iii VV A

and thus column one of iE satisfies the eigenvector equation for eigenvalue i , eigenvector

iV ; likewise for all other non-zero columns of iE .

Since eigenvectors are not unique to within a non-zero scale factor, each column is actually a

scalar multiple of the same eigenvector, but generally each scalar multiple is unique, albeit

not necessarily so, and it may also be zero; neither is a limitation.

For example, for a 33 matrix A with eigenvector
1V , eigenvalue

1 , then the 3x3 residual

matrix
1E will have three columns, for some constants cba ,, given by

 1111 cVbVaVE

Providing one of the constants a , b or c is not zero, then neither is the respective column

zero, and any non-zero column gives a valid eigenvector
1V of A .

In fact, by defining a row vector
1V as the three element vector

 cbaV 1

then
1E can be written as the outer product of column vector

1V by row vector
1V as in

1

11 VVE

Furthermore, row vector
1V is actually a row eigenvector of A for the same eigenvalue

1 ,

i.e.

1

1

1 VV A

In fact, the scalar multiples, i.e. cba ,, in the above example, can be extracted by dividing one

column by another non-zero column - see the Matlab code, vectors 'mV', at the end.

Notes

The eigenvalues have to all be unique because if one or more is repeated then the residual

matrix E is all zero (see the subject of 'minimum polynomial' in Linear Algebra). Otherwise,

since E is not all zero, at least one column is non-zero, i.e. one of cba ,, is not zero, in the

example above.

This method works for real or complex-valued matrices and/or eigenvalues.

If the matrix is symmetric/Hermitian then the row eigenvectors are the transpose/Hermitian

conjugate of the column eigenvectors.

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 5 of 15

A simple 2x2 Example

For a 2x2 matrix, with distinct eigenvalues
1 and 2 , the CH polynomial is

 IA 1   02  IA  , 21  

and the residual matrices 1E and 2E are simply the single factors

 IAE 21 

 IAE 12 

i.e. they are the same as the matrix A but with the alternate eigenvalue subtracted from the

main diagonal:

1E is formed by subtracting I2 from A

2E is formed by subtracting I1 from A

Thus, no matrix multiplication is required and the eigenvectors
1V and 2V are simply read off

from the columns of 1E , 2E

Eigenvector
1V is obtained from the first column of 1E as








 


)1,2(

)1,1(2
1

A

A 
V

or it can be obtained from the second column as













2
1

)2,2(

)2,1(

A

A
V

Likewise, eigenvector 2V can be obtained from the first column of 2E as








 


)1,2(

)1,1(1
2

A

A 
V

or it can be obtained from the second column as













1
2

)2,2(

)2,1(

A

A
V

In other words, you can read-off the eigenvectors from the matrix A after making a simple

subtraction.

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 6 of 15

So, for example, the following matrix











22

31
A

has the two distinct eigenvalues

11  and 42 

with CH polynomial

 IA    04  IA

After dividing this polynomial by factor  IA  for eigenvalue 11  , the residual matrix

1E for 1V is

































22

33

10

01
4

22

31
1E

The eigenvector 1V is therefore











2

3
1V or 












2

3
1V

where the second vector is thus 1 times the first and the row vector
1V is thus

 111 V .

For the eigenvector 2V , the residual matrix 2E is





























32

32

10

01
)1(

22

31
2E

so that











2

2
2V or 










3

3
2V ,

where the second vector is thus 3/2 times the first and the row vector 2V is thus [1 3/2].











2

3
12V

Matlab Code

function residual_matrix_method

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 7 of 15

% residual_matrix_method.m (RMM)

%

% Determination of the eigenvectors for an NxN matrix

% when the N eigenvalues are known. Only eigenvectors for

% unique eigenvalues are determined, but not those for

% repeated eigenvalues. It can give both the column and

% row eigenvectors.

%

% This uses a method known as the 'residual matrix method' (RMM)

% in Unity Root Matrix Theory (URMT)

%

% The author published this method (*) in 2010 in the

% free, online PDF paper

% 'Pythagorean Triples as Eigenvectors and Related Invariants'

% available at:

%

% http://www.urmt.org/pythag_eigenvectors_invariants.pdf

%

% See Section (4), page 6, Generation of Eigenvectors, which

% solves for three eigenvectors X+, X0 and X- from the

% known eigenvalues C,0,-C respectively for a 3x3 Unity

% Root Matrix A, as detailed in Sections (1) and (2).

%

% (*) Note that the author made no claim of originality

% at the time but neither could an exact reference be found,

% barring a similarity to the numerical Purification

% method, see the aforementioned paper for details.

%

% This method cannot determine the eigenvectors for repeated

% eigenvalues, but only those with unique eigenvalues.

%

% There are no restrictions that the matrix be symmetric

% or Hermitian which is only required for orthogonal

% eigenvectors (to unique eigenvalues).

%

% 28/09/2019 V1.0 R J Miller

%

% ***

clear; % clear workspace variables

%%

% Firstly, demonstrate the Residual Matrix Method for an

% order N, random Hermitian matrix.

N=4; % arbitrary order N matrix, N>=2

% Construct an arbitrary, real-valued random matrix

A = rand(N,N);

% Alternative constructions of A follow, uncomment to suit

% Construct an arbitrary, complex-valued random matrix

% A = rand(N,N) + 1i*rand(N,N);

% construct a random Hermitian matrix

% tmp = rand(N,N); % generate a temporary random matrix

% A = (tmp + tmp')/2; % real-valued symmetric

% tmpi = 1i*rand(N,N); % imaginary random matrix

% A = A + (tmpi + tmpi')/2; % Hemitian

% ***

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 8 of 15

% very simple 2x2 demonstrative case

% N=2;

% A = [1 3;2 2];

% % E1 = [-3 3;2 -2]

% % E2 = [2 3;2 3]

% % V1 = [3;-2] or [2;-2], L1 = -1

% % V2 = [2;2] or [3;3], L2 = 4

% ***

% Extra matrix tests - use orthogonal eigenvectors

% and spectral decomposition to create test matrices

% for which all the eigenvectors are known (specified)

% and their eigenvector to be determined using RMM.

% N=4; % four orthogonal eigenvectors

X1=[1;1;1;1]/2;

X2=[1;-1;1;-1]/2;

X3=[-1;-1;1;1]/2;

X4=[-1;1;1;-1]/2;

% spectral decomposition - four unique eigenvalues 1,2,3,4

% A = X1*X1' + 2*X2*X2' + 3*X3*X3' + 4*X4*X4';

% two repeated zero eigenvalues for X1 and X2, RMM can

% only determine the eigenvectors X3 and X4 for non-zero

% eigenvalues 3 and 4 only

% A = 3*X3*X3' + 4*X4*X4';

% single zero eigenvalue OK for RMM

% A = 2*X2*X2' + 3*X3*X3' + 4*X4*X4';

% two repeated eigenvalue, '3' - problems with minimal

% polynomial

% A = X1*X1' + 2*X2*X2' + 3*X3*X3' + 3*X4*X4';

% three repeated eigenvalues, '3' - problems with minimal

% polynomial

% A = X1*X1' + 3*X2*X2' + 3*X3*X3' + 3*X4*X4';

% the above test matrices A are real-valued and symmetric

% by construction using X1,X2,X3,X4

% ***

% Find eigenvectors and eigenvalues independently via

% Matlab - the eigenvalues are required as inputs to

% the Residual Matrix Method

[eigvecs,eigvals] = eigs(A);% Matlab eigenvectors,values

% The eigenvalues must be unique for this method and

% we should really check at this stage that the eigenvalues

% are all unique - but left unchecked here, assume

% uniqueness for now given A is a smallish random matrix

% or purposefully constructd for uniqueness (or

% non-uniqueness to test for errors

I = eye(N,N); % NxN identity matrix

% store of col eigenvectors determined by RMM

Vmstore = zeros(N,N);

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 9 of 15

% store of col eigenvalues determined by Matlab

Evastore = zeros(1,N);

mV = zeros(1,N); % mth row eigenvector of matrix A

% store of row eigenvectors determined by RMM

mVstore = zeros(N,N);

% Find eigenvector for mth eigenvalue, m=1..N

for mm=1:N

 % Initialise residual matrix for mth eigenvector

 Em = I;

 Lm = eigvals(mm,mm); % mth eigenvalue

 Evastore(mm) = Lm; % store eigenvalue for later

 % form residual matrix from N-1 factors of

 % Cayley-Hamilton matrix polynomial

 for nn=1:N

 % exclude mth eigenvalue from residual matrix,

 % hence there are only N-1 matrix factors in

 % the residual matrix

 if nn ~= mm

 Em=Em*(A - eigvals(nn,nn)*I);

 end

 end

 % Check to see if residual matrix polynomial is not zero

 % which occurs for repeated eigenvalues

 if is_zero(Em, 1e-5)

 tmpstr = sprintf(...

 'Repeated eigenvalues, zero residual matrix m=%d',mm);

 warning(tmpstr);

 continue; % skip rest of loop - gives a zero eigenvector

 end

 % Each column of Em is a multiple of Vm, i.e.

 % each column of Em is an eigenvector Vm of A

 % scaled by a constant Ym where the Ym are generally

 % unique for each column, but no necessarily so,

 % and may be zero hence giving an all-zero in Em

 % hence an invalid, all zero eigenvector.

 % However, there will always be

 % at least one, non-zero column (*) and so the mth

 % eigenvector can always be found.

 % (*) The Ym actually form a row eigenvector

 % and neither are they zero.

 % The Ym can be found by the enties in one column by

 % anoher. For example, providing both the first and mth

 % column of Em, i.e. Em(:,1) and Em(:,m) are both not

 % zero then Em(:,1)./Em(:,m) is a constant vector

 % where every element is the same non-zero constant 'Ym'

 % as in Em(:,1)./Em(:,m) = Ym*ones(N,1).

 for kk=1:N

 % Vm = mth eigenvector from kth column of residual matrix

 Vm = Em(:,kk);

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 10 of 15

 % Check eigenvector equation

 % This check will fail if Vm is all zero (plausibly

 % possible) or the eigenvalue is repeated (and the

 % residual matrix is then zero) - this latter case

 % is an error, flagged as warning further above

 tmp = A*Vm - Lm*Vm; % check == 0

 if ~is_zero(tmp, 1e-5)

 warning('A Eigenvector error %d',mm);

 end

 % if non-zero magnitude eigenvector, to within tolerance,

 % then store unit vector form for printing at end

 tmp = sqrt(Vm'*Vm); % eigenvector magnitude

 if tmp > 1e-5

 Vmstore(:,mm) = Vm/tmp;

 end;

 end;

 % At this point the mth column eigenvector has

 % been determined and can now be used with the residual

 % matrix to find the row eigenvectors.

 % The row eigenvectors are known as 'conjugate' or

 % 'reciprocal' eigenvectors in URMT - see the paper,

 % Section (3) 'Divisibilty factors' for the

 % vector components alpha,beta,gamma.

 % The residual matrix Em is an outer product of the

 % column eigenevector 'Vm' with its row eigenvector 'mV' to

 % form the matrix projection operator Vm*mV.

 % This below code uses this fact to determine the row eigenvector

 % from the normalised column eigenvector and

 for jj=1:N

 for kk=1:N

 % find first non-zero component of col eigenvector jj

 if abs(Vmstore(kk,mm)) > 1e-5

 % Note that Vmstore(:,mm) is the mth normalised col

 % eigenvector, and Vmstore(kk,mm) is thus the kth component.

 % Em(kk,jj) is the product of Vm(kk)*mV(jj) where

 % Vmstore(kk,mm) ~ Vm to within normalisation

 mV(jj) = Em(kk,jj)./Vmstore(kk,mm);

 break; % quit loop now, only needs one non-zero component

 end; % if

 end; % kk

 end; % jj

 % normalise row eigenvector to unity

 tmp = sqrt(mV*mV'); % magnitude of row vector

 if tmp > 1e-5

 mVstore(mm,:) = mV/tmp;

 end

 % Check row eigenvector equations

 % This check will fail if mV is zero (plausibly

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 11 of 15

 % possible) or the eigenvalue is repeated and the

 % residual matrix is then zero - this latter case

 % is an error, flagged as warning further above

 tmp = mV*A - Lm*mV; % check == 0

 if ~is_zero(tmp, 1e-5)

 warning('Row eigenvector error %d',mm);

 end

end; % mth eigenvector

% ***

% print column eigenvectors determined via RMM,

fout = 1;

for mm=1:N

 tmpstr = sprintf('L%d=%0.3f + %0.3fi\nVm(%d)=',...

 mm,real(Evastore(mm)),imag(Evastore(mm)),mm);

 print_nx1vector_cmplx(Vmstore(:,mm), tmpstr, fout, N)

 % final check on eigenvectors.

 Vm = Vmstore(:,mm);

 Lm = Evastore(mm);

 if is_zero(Vm, 1e-5)

 warning('Eigenvector %d is zero, eigenvalue %0.3f'...

 ,mm,Lm); % repeated eigenvalue

 end

 tmp = A*Vm - Lm*Vm; % check == 0

% if ~is_zero(tmp, 1e-5)

% warning('B Eigenvector error %d',mm);

% end

end;

% for refrence, print out the eigenvectors determined via Matlab

fprintf('Matlab determined eigenvectors:\n');

for mm=1:N

 tmpstr = sprintf('L%d=%0.3f + %0.3fi\nVm(%d)=',...

 mm,real(eigvals(mm,mm)),imag(eigvals(mm,mm)),mm);

 print_nx1vector_cmplx(eigvecs(:,mm), tmpstr, fout, N)

end;

% Symmetric or Hermitian matrices only

% The row eigenvectors are orthogonal to the col

% eigenvectors for different eigenvalues.

% Thus, to within sign,

% the matrix product of the row eigenvectors with the col

% row vectors is the identity, i.e.

% tmp = abs(mVstore*Vmstore) - I;

% if ~is_zero(tmp, 1e-5)

% error('row eigenvectors not orthogonal to col eigenvectors');

% end

% return; % skip the rest for now

%%

% Now demonstrate the Residual Matrix Method as in the original

% paper, 'Pythagorean Triples as Eigenvectors', Appendix (C),

% see header above.

%

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 12 of 15

% This is for a 3x3 integer 'Hermitian-like' Unity Root Matrix

% with eigenvalues 1,0,-1 and two eigenvectors that are

% Pythagorean Triples (eigenvalues +/-1), and a third Hyperbolic

% Eigenvector

A = [0 -2 2;2 0 -1;2 -1 0]; % Unity Root Matrix - Pythagorean form

[eigvecs,eigvals] = eigs(A); % eigenvalues C = {-1,0,1}

% Matlab-computed eigenvectors 'eigvecs' not required further

% as they will be calculated.

I = eye(3,3);

% Calculate residual matrix Ep for eigenvalue C=1

Ep = (A - 0*I)*(A - -1*I); % written in full to show eigenvalues

% Ep = A*(A + I); % written as one might normally

C = 1; % eigenvalue = 1

Xp = Ep(:,1); % column 1 eigenvector

% check eigenvector for unity eigenvalue

if ~is_zero(A*Xp - C*Xp, 1e-5)

 warning('A*Xp - C*Xp eigenvector error %d',1);

end

Xp = Ep(:,2); % column 2 eigenvector

% check eigenvector for unity eigenvalue

if ~is_zero(A*Xp - C*Xp, 1e-5)

 warning('A*Xp - C*Xp eigenvector error %d',1);

end

Xp = Ep(:,3); % column 3 eigenvector

% check eigenvector for unity eigenvalue

if ~is_zero(A*Xp - C*Xp, 1e-5)

 warning('A*Xp - C*Xp eigenvector error %d',1);

end

% Calculate residual matrix E0 for eigenvalue C=0

E0 = (A - 1*I)*(A - -1*I); % written in full to show eigenvalues

% E0 = (A - I)*(A + I); % written as one might normally

C = 0; % eigenvalue = 0

X0 = E0(:,1); % column 1 eigenvector for

% check eigenvector X0

if ~is_zero(A*X0 - C*X0, 1e-5)

 warning('A*X0 - C*X0 eigenvector error %d',0);

end

X0 = E0(:,2); % column 2 eigenvector for eigenvalue C=0

% check eigenvector X0

if ~is_zero(A*X0 - C*X0, 1e-5)

 warning('A*X0 - C*X0 eigenvector error %d',0);

end

X0 = E0(:,3); % column 3 eigenvector for eigenvalue C=0

% check eigenvector X0

if ~is_zero(A*X0 - C*X0, 1e-5)

 warning('A*X0 - C*X0 eigenvector error %d',0);

end

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 13 of 15

% Calculate residual matrix Em for eigenvalue C=-1

Em = (A - 1*I)*(A - 0*I); % written in full to show eigenvalues

% Em = (A + I)*A; % written as one might normally

C = -1; % eigenvalue = -1

Xm = Em(:,1); % column 1 eigenvector for

% check eigenvector Xm

if ~is_zero(A*Xm - C*Xm, 1e-5)

 warning('A*Xm - C*Xm eigenvector error %d',-1);

end

Xm = Em(:,2); % column 2 eigenvector for eigenvalue C=0

% check eigenvector Xm

if ~is_zero(A*Xm - C*Xm, 1e-5)

 warning('A*Xm - C*Xm eigenvector error %d',-1);

end

Xm = Em(:,3); % column 3 eigenvector for eigenvalue C=0

% check eigenvector Xm

if ~is_zero(A*Xm - C*Xm, 1e-5)

 warning('A*Xm - C*Xm eigenvector error %d',-1);

end

% The eigenvectors Xp,X0,Vm are not 'normalised to the DCE' in URMT

parlance

% Calculate reciprocal (row) eigenvectors using URMT 'conjugate relations'

T = [1 0 0;0 1 0;0 0 -1]; % Pythagorean T operator

X0 = X0/2; % convert to integer

Xm = Xm/-5; % convert to integer

pX = transpose(T*Xm);

mX = transpose(T*Xp);

oX = transpose(T*X0);

% check reciprocal (row) eigenvectors

% eigenvalue C=+1

if ~is_zero(pX*A - pX, 1e-5)

 warning('pX*A - pX row eigenvector error %d',1);

end

if ~is_zero(oX*A, 1e-5)

 warning('oX*A row eigenvector error %d',0);

end

% eigenvalue C=-1

if ~is_zero(mX*A + mX, 1e-5)

 warning('mX*A + mX row eigenvector error %d',-1);

end

% invariant eigenvector inner product

if ~is_zero(pX*Xp - 2*C^2, 1e-5)

 warning('pX*Xp inner product error %d',2);

end

% invariant zro eigenvector inner product - the DCE

if ~is_zero(oX*X0 - C^2, 1e-5)

 warning('oX*X0 inner product error %d',1);

end

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 14 of 15

% invariant eigenvector inner product

if ~is_zero(mX*Xm - 2*C^2, 1e-5)

 warning('mX*Xm inner product error %d',2);

end

% print the URM3 eigenvectors

N = 3;

print_nx1vector_cmplx(Xp, 'Xp=', fout, N)

print_nx1vector_cmplx(X0, 'X0=', fout, N)

print_nx1vector_cmplx(Xm, 'Xm=', fout, N)

return;

end

%%

% utility functions - not central to the method

function print_nx1vector_cmplx(V, start_msg, fout, nn)

error_tol = 1e-3;

% determine if any element is imaginary

imagf = any((abs(imag(V(:))) > error_tol) > 0);

fprintf(fout,'%s\n',start_msg);

if imagf > 0

 for ii=1:nn

 if abs(real(V(ii))) > error_tol

 dp = abs(imag(V(ii)) - floor(imag(V(ii))));

 if dp > error_tol

 fprintf(fout,' %7.3f ',real(V(ii)));

 else

 fprintf(fout,' %7.3f ',real(V(ii)));

 end

 else

 fprintf(fout,' 0 ');

 end

 if abs(imag(V(ii))) > error_tol

 oneunit = abs(abs(imag(V(ii))) - 1);

 if oneunit < error_tol

 if imag(V(ii)) > 0

 fprintf(fout,'+ i,');

 else

 fprintf(fout,'+ -i,');

 end

 else

 dp = abs(imag(V(ii)) - floor(imag(V(ii))));

 if dp > error_tol

 fprintf(fout,'+ %5.1fi,',imag(V(ii)));

 else

 fprintf(fout,'+ %5.0fi,',imag(V(ii)));

 end

 end

 else

 fprintf(fout,' ,');

 end

 fprintf(fout,'\n');

 end% ii

else

Eigenvectors from Eigenvalues

Richard J Miller

http://www.urmt.org

Issue 1.0 12/12/2019

Page 15 of 15

 % real-only, no imag component

 for ii=1:nn

 dp = abs(real(V(ii)) - floor(real(V(ii))));

 if dp > error_tol

 fprintf(fout,' %7.3f ',real(V(ii)));

 else

 fprintf(fout,' %7.3f ',real(V(ii)));

 end

 fprintf(fout,'\n');

 end% ii

end

end

function rtn = is_zero(Xin, error_tol)

 rtn = 0;

 if norm(Xin) < error_tol

 rtn = -1;

 end

end

