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Eigenvectors from Eigenvalues 
Richard J Miller 

http://www.urmt.org 

 

A method to obtain the eigenvectors of a matrix with distinct eigenvalues by simple 

factorisation of the Cayley-Hamilton polynomial. 

 

This is a formal write-up of a post I first made to sci.math 28/09/2019, corrected 01/10/2019. 

 

This method does not require solving any algebraic equation and neither is this a numeric, 

iterative method. It is based upon the Cayley-Hamilton (CH) theorem and the associated CH 

polynomial. 

 

Originality is unknown, but some references would be gratefully received - see further. 

 

Matlab code is provided at the end, or email the author - see the web-site 

http://www.urmt.org for email. 

 

This eigenvector method, originally known as the 'Residual Matrix Method' (RMM) in Unity 

Root Matrix Theory (URMT), was first published by the author in 2010 in the free, online 

PDF paper 'Pythagorean Triples as Eigenvectors and Related Invariants' available at: 

 

http://www.urmt.org/pythag_eigenvectors_invariants.pdf 

 

The motivation to post this Residual Matrix Method after ten or so years of it gathering dust 

was provided by a recent post on the science web site 'phys.org': 

 

https://phys.org/news/2019-09-theorists-rosetta-stone-neutrino-physics.html 

 

where the authors gave a new identity (in the eigenvalues) from which the eigenvectors can 

be found from an identity relation amongst the eigenvalues. 

 

Their method was examined by Terence Tao et in his blog: 

 

https://terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/ 

 

with an arXiv paper: 

 

https://arXiv.org/abs/1908.03795 

 

The Tao method also appears, like RMM, to require unique eigenvalues to avoid zero divisor 

problems. However, the method is restricted to Hermitian matrices, due to their construction 

from projection operators via the spectral theorem. Nevertheless, Hermitian limitations aside, 

the method is similar in aim to the RMM. The Tao method does not actually use the matrix 

itself, unlike RMM, and the identity is truly that among the eigenvalues only. However, it 

also requires the additional eigenvalues of an    11  NN  (sub-matrix 'M' in the blog and 

Tao Paper), and I am not sure if the set of 1N  eigenvalues of M relate easily, if at all, to 

those already determined for the original matrix. It would not seem to be the case and this 

makes the method computationally intensive. 
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Back to my RMM (detailed further below), originality was not claimed at the time of 

publication (2010) given its seeming simplicity as regards the CH Theorem. Nevertheless, I 

would appreciate any references to it since I have not seen it in standard linear algebra 

textbooks, which either seem to go the standard equation solving route, or numerical 

determination. Some similarities to numerical methods were cited in the above paper, but this 

was vague at the time and remains vague now! 

 

From a computational aspect, RMM does require N-1 matrix multiplications (without 

optimisation) to form an 1N  order matrix polynomial. Nevertheless, it is extremely simple 

and it does give both the column and row eigenvectors, without any conditions on the 

matrices such as symmetric or Hermitian. 

 

Lastly, my original name for the method, i.e. 'Residual Matrix Method' is not the best! It was 

so named because, using the method, the eigenvectors are derived from the matrix remaining 

(termed the Residual Matrix) after the CH polynomial is factored by a single linear factor. 

 

The Residual Matrix Method (RMM) 
 

Defining 

 

A  = square, order N matrix with N unique eigenvalues, 

 

I  = NN   identity matrix 

 

k  = kth unique eigenvalue, Nk 1  

 

iV  = ith eigenvector for eigenvalue i  

 

then the Cayley-Hamilton theorem basically says that A satisfies its own characteristic 

equation, i.e. 

 

 IA 1  IA 2  IA k   0 IA N  

 

written more concisely as the continued product 

 

  0
1




N

k

k IA   

 

Assumption: Uniqueness of Eigenvalues 
 

All eigenvalues k , Nk 1 , are unique (or distinct) so that the CH polynomial is of full 

order N, i.e. contains a matrix term N
A . If the eigenvalues are not all unique, i.e. one or more 

repeated, then the CH polynomial is of lesser order and not considered further. Note that this 

does not exclude zero eigenvalues, just repeated eigenvalues. 

 

For example, in the 3x3 matrix case, the CH polynomial is 

 

 IA 1  IA 2   03  IA   
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Explanation 
 

Put very simply, by example, to get the first eigenvector 
1V  for the first eigenvalue 1 , 

multiply together all 1N  matrix factors  IA 2 ,  IA 3  IA N , omitting the 

factor  IA 1  for the eigenvalue 1 , to give a matrix 1E , and then the eigenvector 
1V  can 

be taken from any non-zero column of 1E . 

 

In more detail 

 

To find the eigenvector 
1V  for the ith eigenvalue i , i.e. 

 

iii VV A , 

 

where all eigenvalues are unique (or distinct), i.e. 

 

ji    for ji  , Nji 1,   

 

First construct the 'residual matrix' iE  from the 1N  order polynomial formed from the 

continued product of the 1N  matrix factors  IA k  where ik  , i.e. 

 

  0
,1

 


N

ikk

ki IAE   

 

In other words, the residual matrix iE  is just the CH polynomial excluding the factor 

 IA i , and is of degree 1N  with a highest term 1N
A . 

 

Thus, by the CH Theorem 

 

  0 ii EIA   

 

Expanded and rearranged (using trivially ii EIE  ) gives 

 

iii EAE   

 

Since iE  is a matrix of N columns, this implies that each column must satisfy the eigenvector 

equation for eigenvalue i , e.g. for column 1, )1(:,iE  in Matlab notation, then 

 

)1(:,)1(:, iii EAE   

 

Associating the eigenvector iV  to the first column of iE  (presuming it is not all zero), i.e. 

 

)1(:,iiV E  
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then 

 

iii VV A  

 

and thus column one of iE  satisfies the eigenvector equation for eigenvalue i , eigenvector 

iV ; likewise for all other non-zero columns of iE . 

 

Since eigenvectors are not unique to within a non-zero scale factor, each column is actually a 

scalar multiple of the same eigenvector, but generally each scalar multiple is unique, albeit 

not necessarily so, and it may also be zero; neither is a limitation. 

 

For example, for a 33  matrix A  with eigenvector 
1V , eigenvalue 

1 , then the 3x3 residual 

matrix 
1E  will have three columns, for some constants cba ,,  given by 

 

 1111 cVbVaVE  

 

Providing one of the constants a , b  or c  is not zero, then neither is the respective column 

zero, and any non-zero column gives a valid eigenvector 
1V  of A . 

 

In fact, by defining a row vector 
1V  as the three element vector 

 

 cbaV 1  

 

then 
1E  can be written as the outer product  of column vector 

1V  by row vector 
1V  as in 

 
1

11 VVE  

 

Furthermore, row vector 
1V  is actually a row eigenvector of A  for the same eigenvalue 

1 , 

i.e. 

 
1

1

1 VV A  

 

In fact, the scalar multiples, i.e. cba ,,  in the above example, can be extracted by dividing one 

column by another non-zero column - see the Matlab code, vectors 'mV', at the end. 

 

Notes 
 

The eigenvalues have to all be unique because if one or more is repeated then the residual 

matrix E is all zero (see the subject of 'minimum polynomial' in Linear Algebra). Otherwise, 

since E is not all zero, at least one column is non-zero, i.e. one of cba ,,  is not zero, in the 

example above. 

 

This method works for real or complex-valued matrices and/or eigenvalues. 

 

If the matrix is symmetric/Hermitian then the row eigenvectors are the transpose/Hermitian 

conjugate of the column eigenvectors. 
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A simple 2x2 Example 
 

For a 2x2 matrix, with distinct eigenvalues 
1  and 2 , the CH polynomial is 

 

 IA 1   02  IA  , 21    

 

and the residual matrices 1E  and 2E  are simply the single factors 

 

 IAE 21   

 

 IAE 12   

 

i.e. they are the same as the matrix A but with the alternate eigenvalue subtracted from the 

main diagonal: 

 

1E  is formed by subtracting I2  from A 

 

2E  is formed by subtracting I1  from A 

 

Thus, no matrix multiplication is required and the eigenvectors 
1V  and 2V  are simply read off 

from the columns of 1E , 2E  

 

Eigenvector 
1V  is obtained from the first column of 1E  as 

 








 


)1,2(

)1,1( 2
1

A

A 
V  

 

or it can be obtained from the second column as 

 













2
1

)2,2(

)2,1(

A

A
V  

 

Likewise, eigenvector 2V  can be obtained from the first column of 2E  as 

 








 


)1,2(

)1,1( 1
2

A

A 
V  

 

or it can be obtained from the second column as 

 













1
2

)2,2(

)2,1(

A

A
V  

 

In other words, you can read-off the eigenvectors from the matrix A after making a simple 

subtraction. 
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So, for example, the following matrix 

 











22

31
A  

  

has the two distinct eigenvalues 

 

11   and 42   

 

with CH polynomial 

 

 IA    04  IA  

 

After dividing this polynomial by factor  IA   for eigenvalue 11  , the residual matrix 

1E  for  1V  is 

 

































22

33

10

01
4

22

31
1E  

 

The eigenvector 1V  is therefore 

 











2

3
1V  or 












2

3
1V  

 

where the second vector is thus 1   times the first and the row vector 
1V  is thus 

 

 111 V . 

 

For the eigenvector 2V  , the residual matrix 2E  is 

 





























32

32

10

01
)1(

22

31
2E  

 

so that 

 











2

2
2V  or 










3

3
2V , 

 

where the second vector is thus 3/2 times the first and the row vector 2V  is thus [1 3/2]. 

 











2

3
12V  

 

Matlab Code  
 
function residual_matrix_method 
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% residual_matrix_method.m (RMM) 

% 

% Determination of the eigenvectors for an NxN matrix 

% when the N eigenvalues are known. Only eigenvectors for 

% unique eigenvalues are determined, but not those for 

% repeated eigenvalues. It can give both the column and 

% row eigenvectors. 

% 

% This uses a method known as the 'residual matrix method' (RMM) 

% in Unity Root Matrix Theory (URMT) 

% 

% The author published this method (*) in 2010 in the 

% free, online PDF paper 

%  'Pythagorean Triples as Eigenvectors and Related Invariants' 

% available at: 

% 

%  http://www.urmt.org/pythag_eigenvectors_invariants.pdf 

% 

% See Section (4), page 6, Generation of Eigenvectors, which 

% solves for three eigenvectors X+, X0 and X- from the 

% known eigenvalues C,0,-C respectively for a 3x3 Unity 

% Root Matrix A, as detailed in Sections (1) and (2). 

% 

% (*) Note that the author made no claim of originality 

% at the time but neither could an exact reference be found, 

% barring a similarity to the numerical Purification 

% method, see the aforementioned paper for details. 

% 

% This method cannot determine the eigenvectors for repeated 

% eigenvalues, but only those with unique eigenvalues. 

% 

% There are no restrictions that the matrix be symmetric 

% or Hermitian which is only required for orthogonal 

% eigenvectors (to unique eigenvalues). 

% 

% 28/09/2019 V1.0 R J Miller 

% 

% ***************************************************** 

clear; % clear workspace variables 

%% 

 

% Firstly, demonstrate the Residual Matrix Method for an 

% order N, random Hermitian matrix. 

N=4; % arbitrary order N matrix, N>=2 

 

% Construct an arbitrary, real-valued random matrix 

A = rand(N,N); 

 

% Alternative constructions of A follow, uncomment to suit 

 

% Construct an arbitrary, complex-valued random matrix 

% A = rand(N,N) + 1i*rand(N,N); 

 

% construct a random Hermitian matrix 

% tmp = rand(N,N); % generate a temporary random matrix 

% A = (tmp + tmp')/2; % real-valued symmetric 

% tmpi = 1i*rand(N,N); % imaginary random matrix 

% A = A + (tmpi + tmpi')/2; % Hemitian 

 

 

% *********************************************** 
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% very simple 2x2 demonstrative case 

% N=2; 

% A = [1 3;2 2]; 

 

% % E1 = [-3 3;2 -2] 

% % E2 = [2 3;2 3] 

 

% % V1 = [3;-2] or [2;-2], L1 = -1 

% % V2 = [2;2] or [3;3], L2 = 4 

 

% *********************************************** 

% Extra matrix tests - use orthogonal eigenvectors 

% and spectral decomposition to create test matrices 

% for which all the eigenvectors are known (specified) 

% and their eigenvector to be determined using RMM. 

 

% N=4; % four orthogonal eigenvectors 

X1=[1;1;1;1]/2; 

X2=[1;-1;1;-1]/2; 

X3=[-1;-1;1;1]/2; 

X4=[-1;1;1;-1]/2; 

 

% spectral decomposition - four unique eigenvalues 1,2,3,4 

% A = X1*X1' + 2*X2*X2' + 3*X3*X3' + 4*X4*X4'; 

 

% two repeated zero eigenvalues for X1 and X2, RMM can  

% only determine the eigenvectors X3 and X4 for non-zero  

% eigenvalues 3 and 4 only 

% A = 3*X3*X3' + 4*X4*X4'; 

 

% single zero eigenvalue OK for RMM 

% A = 2*X2*X2' + 3*X3*X3' + 4*X4*X4'; 

 

% two repeated eigenvalue, '3' - problems with minimal 

% polynomial 

% A = X1*X1' + 2*X2*X2' + 3*X3*X3' + 3*X4*X4'; 

 

% three repeated eigenvalues, '3' - problems with minimal 

% polynomial 

% A = X1*X1' + 3*X2*X2' + 3*X3*X3' + 3*X4*X4'; 

 

% the above test matrices A are real-valued and symmetric 

% by construction using X1,X2,X3,X4 

 

% *********************************************** 

% Find eigenvectors and eigenvalues independently via 

% Matlab - the eigenvalues are required as inputs to 

% the Residual Matrix Method 

[eigvecs,eigvals] = eigs(A);% Matlab eigenvectors,values 

 

% The eigenvalues must be unique for this method and 

% we should really check at this stage that the eigenvalues 

% are all unique - but left unchecked here, assume  

% uniqueness for now given A is a smallish random matrix 

% or purposefully constructd for uniqueness (or  

% non-uniqueness to test for errors 

 

I = eye(N,N); % NxN identity matrix 

 

% store of col eigenvectors determined by RMM 

Vmstore = zeros(N,N); 
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% store of col eigenvalues determined by Matlab 

Evastore = zeros(1,N); 

 

mV = zeros(1,N); % mth row eigenvector of matrix A 

 

% store of row eigenvectors determined by RMM 

mVstore = zeros(N,N); 

 

% Find eigenvector for mth eigenvalue, m=1..N 

for mm=1:N 

    

    % Initialise residual matrix for mth eigenvector 

    Em = I; 

 

    Lm = eigvals(mm,mm); % mth eigenvalue 

 

    Evastore(mm) = Lm; % store eigenvalue for later 

       

    % form residual matrix from N-1 factors of 

    % Cayley-Hamilton matrix polynomial 

    for nn=1:N 

        % exclude mth eigenvalue from residual matrix,  

        % hence there are only N-1 matrix factors in  

        % the residual matrix 

        if nn  ~= mm 

            Em=Em*(A - eigvals(nn,nn)*I); 

        end 

    end 

    

    % Check to see if residual matrix polynomial is not zero 

    % which occurs for repeated eigenvalues 

    if is_zero(Em, 1e-5) 

        tmpstr = sprintf(... 

        'Repeated eigenvalues, zero residual matrix m=%d',mm); 

        warning(tmpstr); 

        continue; % skip rest of loop - gives a zero eigenvector 

    end 

    

    % Each column of Em is a multiple of Vm, i.e. 

    % each column of Em is an eigenvector Vm of A 

    % scaled by a constant Ym where the Ym are generally 

    % unique for each column, but no necessarily so, 

    % and may be zero hence giving an all-zero in Em 

    % hence an invalid, all zero eigenvector. 

    % However, there will always be 

    % at least one, non-zero column (*) and so the mth 

    % eigenvector can always be found. 

    % (*) The Ym actually form a row eigenvector 

    % and neither are they zero. 

    % The Ym can be found by the enties in one column by 

    % anoher. For example, providing both the first and mth 

    % column of Em, i.e. Em(:,1) and Em(:,m) are both not 

    % zero then Em(:,1)./Em(:,m) is a constant vector 

    % where every element is the same non-zero constant 'Ym' 

    % as in Em(:,1)./Em(:,m) = Ym*ones(N,1). 

    for kk=1:N 

        

        % Vm = mth eigenvector from kth column of residual matrix 

        Vm = Em(:,kk); 
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        % Check eigenvector equation 

        % This check will fail if Vm is all zero (plausibly 

        % possible) or the eigenvalue is repeated (and the 

        % residual matrix is then zero) - this latter case 

        % is an error, flagged as warning further above 

        tmp = A*Vm - Lm*Vm; % check == 0 

        if ~is_zero( tmp, 1e-5 ) 

            warning('A Eigenvector error %d',mm); 

        end 

        

        % if non-zero magnitude eigenvector, to within tolerance, 

        % then store unit vector form for printing at end 

        tmp = sqrt(Vm'*Vm); % eigenvector magnitude 

        if tmp > 1e-5 

            Vmstore(:,mm) = Vm/tmp; 

        end; 

    

    end; 

    

    % At this point the mth column eigenvector has 

    % been determined and can now be used with the residual 

    % matrix to find the row eigenvectors. 

 

    % The row eigenvectors are known as 'conjugate' or 

    % 'reciprocal' eigenvectors in URMT - see the paper, 

    % Section (3) 'Divisibilty factors' for the 

    % vector components alpha,beta,gamma. 

    % The residual matrix Em is an outer product of the 

    % column eigenevector 'Vm' with its row eigenvector 'mV' to 

    % form the matrix projection operator Vm*mV. 

    % This below code uses this fact to determine the row eigenvector 

    % from the normalised column eigenvector and 

 

    for jj=1:N 

        for kk=1:N 

             

            % find first non-zero component of col eigenvector jj 

            if abs(Vmstore(kk,mm)) > 1e-5 

                 

            % Note that Vmstore(:,mm) is the mth normalised col 

            % eigenvector, and Vmstore(kk,mm) is thus the kth component. 

            % Em(kk,jj) is the product of Vm(kk)*mV(jj) where 

            % Vmstore(kk,mm) ~ Vm to within normalisation 

                 

                mV(jj) = Em(kk,jj)./Vmstore(kk,mm); 

                 

                break; % quit loop now, only needs one non-zero component 

                 

            end; % if 

             

        end; % kk 

    end; % jj 

    

    % normalise row eigenvector to unity 

    tmp = sqrt(mV*mV'); % magnitude of row vector 

    if tmp > 1e-5 

        mVstore(mm,:) = mV/tmp; 

    end 

    

    % Check row eigenvector equations 

    % This check will fail if mV is zero (plausibly 
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    % possible) or the eigenvalue is repeated and the 

    % residual matrix is then zero - this latter case 

    % is an error, flagged as warning further above 

    tmp = mV*A - Lm*mV; % check == 0 

 

    if ~is_zero( tmp, 1e-5 ) 

        warning('Row eigenvector error %d',mm); 

    end 

 

end; % mth eigenvector 

 

% ***************************************************** 

% print column eigenvectors determined via RMM, 

fout = 1; 

for mm=1:N 

  

    tmpstr = sprintf('L%d=%0.3f + %0.3fi\nVm(%d)=',... 

        mm,real(Evastore(mm)),imag(Evastore(mm)),mm); 

    print_nx1vector_cmplx( Vmstore(:,mm), tmpstr, fout, N ) 

    

    % final check on eigenvectors. 

     Vm = Vmstore(:,mm); 

     Lm = Evastore(mm); 

     if is_zero( Vm, 1e-5 ) 

         warning('Eigenvector %d is zero, eigenvalue %0.3f'... 

             ,mm,Lm); % repeated eigenvalue 

     end 

     tmp = A*Vm - Lm*Vm; % check == 0 

 

%      if ~is_zero( tmp, 1e-5 ) 

%          warning('B Eigenvector error %d',mm); 

%      end 

 

end; 

 

% for refrence, print out the eigenvectors determined via Matlab 

fprintf('Matlab determined eigenvectors:\n'); 

for mm=1:N 

    tmpstr = sprintf('L%d=%0.3f + %0.3fi\nVm(%d)=',... 

        mm,real(eigvals(mm,mm)),imag(eigvals(mm,mm)),mm); 

    print_nx1vector_cmplx( eigvecs(:,mm), tmpstr, fout, N ) 

end; 

 

% Symmetric or Hermitian matrices only 

% The row eigenvectors are orthogonal to the col 

% eigenvectors for different eigenvalues. 

% Thus, to within sign, 

% the matrix product of the row eigenvectors with the col 

% row vectors is the identity, i.e. 

% tmp = abs(mVstore*Vmstore) - I; 

% if ~is_zero( tmp, 1e-5 ) 

%     error('row eigenvectors not orthogonal to col eigenvectors'); 

% end 

 

% return; % skip the rest for now 

 

%% 

% Now demonstrate the Residual Matrix Method as in the original 

% paper, 'Pythagorean Triples as Eigenvectors', Appendix (C), 

% see header above. 

% 
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% This is for a 3x3 integer 'Hermitian-like' Unity Root Matrix 

% with eigenvalues 1,0,-1 and two eigenvectors that are 

% Pythagorean Triples (eigenvalues +/-1), and a third Hyperbolic 

% Eigenvector 

 

A = [0 -2 2;2 0 -1;2 -1 0]; % Unity Root Matrix - Pythagorean form 

[eigvecs,eigvals] = eigs(A); % eigenvalues C = {-1,0,1} 

 

% Matlab-computed eigenvectors 'eigvecs' not required further  

% as they will be calculated. 

I = eye(3,3); 

 

% Calculate residual matrix Ep for eigenvalue C=1 

Ep = (A - 0*I)*(A - -1*I); % written in full to show eigenvalues 

 

% Ep = A*(A + I); % written as one might normally 

C = 1; % eigenvalue = 1 

 

Xp = Ep(:,1); % column 1 eigenvector 

 

% check eigenvector for unity eigenvalue 

if ~is_zero( A*Xp - C*Xp, 1e-5 ) 

    warning('A*Xp - C*Xp eigenvector error %d',1); 

end 

 

Xp = Ep(:,2); % column 2 eigenvector 

% check eigenvector for unity eigenvalue 

if ~is_zero( A*Xp - C*Xp, 1e-5 ) 

    warning('A*Xp - C*Xp eigenvector error %d',1); 

end 

 

Xp = Ep(:,3); % column 3 eigenvector 

% check eigenvector for unity eigenvalue 

if ~is_zero( A*Xp - C*Xp, 1e-5 ) 

    warning('A*Xp - C*Xp eigenvector error %d',1); 

end 

 

% Calculate residual matrix E0 for eigenvalue C=0 

E0 = (A - 1*I)*(A - -1*I); % written in full to show eigenvalues 

% E0 = (A - I)*(A + I); % written as one might normally 

 

C = 0; % eigenvalue = 0 

 

X0 = E0(:,1); % column 1 eigenvector for 

% check eigenvector X0 

if ~is_zero( A*X0 - C*X0, 1e-5 ) 

    warning('A*X0 - C*X0 eigenvector error %d',0); 

end 

 

X0 = E0(:,2); % column 2 eigenvector for eigenvalue C=0 

% check eigenvector X0 

if ~is_zero( A*X0 - C*X0, 1e-5 ) 

    warning('A*X0 - C*X0 eigenvector error %d',0); 

end 

 

X0 = E0(:,3); % column 3 eigenvector for eigenvalue C=0 

% check eigenvector X0 

if ~is_zero( A*X0 - C*X0, 1e-5 ) 

    warning('A*X0 - C*X0 eigenvector error %d',0); 

end 
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% Calculate residual matrix Em for eigenvalue C=-1 

Em = (A - 1*I)*(A - 0*I); % written in full to show eigenvalues 

% Em = (A + I)*A; % written as one might normally 

 

C = -1; % eigenvalue = -1 

 

Xm = Em(:,1); % column 1 eigenvector for 

% check eigenvector Xm 

if ~is_zero( A*Xm - C*Xm, 1e-5 ) 

    warning('A*Xm - C*Xm eigenvector error %d',-1); 

end 

 

Xm = Em(:,2); % column 2 eigenvector for eigenvalue C=0 

% check eigenvector Xm 

if ~is_zero( A*Xm - C*Xm, 1e-5 ) 

    warning('A*Xm - C*Xm eigenvector error %d',-1); 

end 

 

Xm = Em(:,3); % column 3 eigenvector for eigenvalue C=0 

% check eigenvector Xm 

if ~is_zero( A*Xm - C*Xm, 1e-5 ) 

    warning('A*Xm - C*Xm eigenvector error %d',-1); 

end 

 

% The eigenvectors Xp,X0,Vm are not 'normalised to the DCE' in URMT 

parlance 

% Calculate reciprocal (row) eigenvectors using URMT 'conjugate relations' 

 

T = [1 0 0;0 1 0;0 0 -1]; % Pythagorean T operator 

 

X0 = X0/2; % convert to integer 

Xm = Xm/-5; % convert to integer 

 

pX = transpose(T*Xm); 

mX = transpose(T*Xp); 

oX = transpose(T*X0); 

 

% check reciprocal (row) eigenvectors 

% eigenvalue C=+1 

if ~is_zero( pX*A - pX, 1e-5 ) 

    warning('pX*A - pX row eigenvector error %d',1); 

end 

 

if ~is_zero( oX*A, 1e-5 ) 

    warning('oX*A row eigenvector error %d',0); 

end 

 

% eigenvalue C=-1 

if ~is_zero( mX*A + mX, 1e-5 ) 

    warning('mX*A + mX row eigenvector error %d',-1); 

end 

 

% invariant eigenvector inner product 

if ~is_zero( pX*Xp - 2*C^2, 1e-5 ) 

    warning('pX*Xp inner product error %d',2); 

end 

 

% invariant zro eigenvector inner product - the DCE 

if ~is_zero( oX*X0 - C^2, 1e-5 ) 

    warning('oX*X0 inner product error %d',1); 

end 
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% invariant eigenvector inner product 

if ~is_zero( mX*Xm - 2*C^2, 1e-5 ) 

    warning('mX*Xm inner product error %d',2); 

end 

 

% print the URM3 eigenvectors 

N = 3; 

print_nx1vector_cmplx( Xp, 'Xp=', fout, N ) 

print_nx1vector_cmplx( X0, 'X0=', fout, N ) 

print_nx1vector_cmplx( Xm, 'Xm=', fout, N ) 

 

return; 

 

end 

 

%% 

% utility functions - not central to the method 

function print_nx1vector_cmplx( V, start_msg, fout, nn ) 

 

error_tol = 1e-3; 

 

% determine if any element is imaginary 

imagf = any( (abs( imag(V(:)) ) > error_tol) > 0 ); 

fprintf(fout,'%s\n',start_msg); 

if imagf > 0 

    for ii=1:nn 

        if abs( real( V(ii) ) ) > error_tol 

            dp = abs( imag(V(ii)) - floor(imag(V(ii))) ); 

            if dp > error_tol 

                fprintf(fout,'   %7.3f ',real(V(ii)) ); 

            else 

                fprintf(fout,'   %7.3f ',real(V(ii)) ); 

            end 

        else 

            fprintf(fout,'       0 '); 

        end 

        if abs( imag( V(ii) ) ) > error_tol 

            oneunit = abs( abs(imag(V(ii))) - 1 ); 

            if oneunit < error_tol 

                if imag(V(ii)) > 0 

                    fprintf(fout,'+      i,' ); 

                else 

                    fprintf(fout,'+     -i,' ); 

                end 

            else 

                dp = abs( imag(V(ii)) - floor(imag(V(ii))) ); 

                if dp > error_tol 

                    fprintf(fout,'+ %5.1fi,',imag(V(ii)) ); 

                else 

                    fprintf(fout,'+ %5.0fi,',imag(V(ii)) ); 

                end 

            end 

        else 

            fprintf(fout,'        ,'); 

        end 

        fprintf(fout,'\n'); 

        

    end% ii 

 

else 
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    % real-only, no imag component 

    for ii=1:nn 

        dp = abs( real(V(ii)) - floor(real(V(ii))) ); 

        if dp > error_tol 

            fprintf(fout,'   %7.3f ',real(V(ii)) ); 

        else 

            fprintf(fout,'   %7.3f ',real(V(ii)) ); 

        end 

        fprintf(fout,'\n'); 

    end% ii 

end 

 

end 

 

function rtn = is_zero(Xin, error_tol) 

    rtn = 0; 

    if norm(Xin) < error_tol 

        rtn = -1; 

    end 

end 


