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Unity Root Matrix Theory (URMT) is the study of a special type of integer matrix A , 
which arises from the application of a physical, invariance principle to an abstract 
'dynamical conservation equation' (DCE), likened to that of energy conservation. 
  

The Unity Root Matrix 
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The matrix elements are the dynamical variables RQP ,,  
 

RQP ,, ℤ, )0,0,0(),,( RQP  
 
and their conjugate forms RQP ,,  
 

RQP ,, ℤ, )0,0,0(),,( RQP  
 
The dynamical variables have unity root properties, e.g. )(mod1 xPP   and the 
product PP , for example, is akin to the squared modulus of a complex number, as in 

*2 ZZZ  . 
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1 Postulates of URMT 
 
Since the mathematics of URMT is thought to have strong links to Physics in 
Integers, here are some tentative postulates upon which the theory is founded. 
 

1. The Dynamical Conservation Equation (DCE) 
 
There exists a set of dynamical variables RQP ,, ℤ, )0,0,0(),,( RQP  and their 
conjugates RQP ,, ℤ, )0,0,0(),,( RQP , that satisfy the following dynamical 

conservation equation for some constant C ℤ. 
 

CRQPPQRRRQQPPC /)(2   
 

2.1 Invariance Principle 
 
There exists a set of coordinates zyx ,, ℤ, )0,0,0(),,( zyx  and their conjugates 

zyx ,, ℤ, )0,0,0(),,( zyx  such that the following invariance principle holds 
 
The dynamical equations and their solutions are invariant to a coordinate translation 

in the dynamical variables. 
 

2.2 Invariance Transformations 
 
The coordinate translation in the dynamical variables is defined as the following 
transformation, given in terms of the standard coordinates zyx ,, , for three, arbitrary 
integer variations  ,,  

xPP  , xPP   
yQQ  , yQQ   
zRR  , zRR   

 
3 Observables 

 
All observables in URMT are functions of sums, or functions of sums of products, of 

one or more variables, with their conjugate forms. 
 

Corollary: All observables are integers. 
 

4 Duality 
 
The formulation of URMT, in the coordinates zyx ,, , can be equally formulated in 
terms of their dual variable forms,  ,, ℤ, )0,0,0(),,(   and their conjugates 

 ,, . 
 



Unity Root Matrix Theory, Physics in Integers, Overview 
R J Miller ©Micro SciTech Ltd. 2011. 

Issue 1 09/07/2011 
Page 5 of 51 

Notes 
 
The postulates represent where a fully unified URMT is headed. They are tentative 
and drafted with both the current and future development of the theory in mind. 
 
Under ‘Pythagoras conditions’ (discussed later), URMT adheres to all of these 
postulates. 
 
When not under Pythagoras conditions, the current 3x3 matrix formulation of general 
URMT, without any conditions, also adheres to most aspects of all four postulates, but 
the coordinate conjugates zyx ,,  and their dual forms are not currently used. 
 
1. The Dynamical Conservation Equation 
 
It is not currently specified what the three families of variables RQP ,, , zyx ,, , and 

 ,,  represent but, being a physical theory, all equations must be dimensionally 
consistent. Suffice to note, for one possible interpretation, the families can be 
consistently attributed to acceleration, velocity and position, or force and momentum, 
hence the usage of the term energy (per unit mass), as follows. 
 
Defining the Kinetic term K  and Potential term V  as 
 

RRQQPPK  , 
C

RQPPQRV )( 
 , 

 
then the DCE is written in Kinetic and Potential form as 
 

VKC 2 , 
 
where the constant C  is an eigenvalue and invariably set to unity,  
 

1C . 
 

This is because the theory can be developed using a unity eigenvalue, and simply 
extended for a non-unity eigenvalue. Its presence in equations is retained to enable 
checks on dimensional consistency, i.e. homogeneity of equations (mostly of 
quadratic degree). 
 
2.1 The Invariance Principle 
 
This is effectively a form of translation or rotation invariance, i.e. you can translate or 
rotate the dynamical variables whilst preserving the DCE and its solution in the 
coordinates zyx ,, . Note that the ‘coordinates’ are not necessarily physically 
associated with position, they can, for now, be any physical quantity. 
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2.2 Invariance Transformations 
 
The coordinates zyx ,,  are common to both RQP ,,  and RQP ,,  excepting that 

RQP ,,  are raised by a factor of the coordinates and RQP ,,  lowered. 
 
The transformations are given in terms of the standard coordinates zyx ,, , not their 
conjugates zyx ,, . They could be related to the conjugates instead, but never mixed, 
even though the dynamical variables and their conjugates are mixed. This is related to 
the form of the eigenvector solutions, which arise later when applying the 
transformations to the DCE. 
 
The  ,,  ‘local’ variations are generally unique, non-zero integers, and can be 
applied separately, or in combination. 
 
As a general note, in URM3, conjugate and dual quantities are not used much and 
URMT remains with the twelve variables RQP ,, , RQP ,, , zyx ,,  and  ,, . 
However, all three families and their conjugates are appropriate in the more unified 
approach to URMT. 
 
3. Observables 
 
This postulate makes URMT Quantum Mechanics friendly and is related to the 
isomorphism between the dynamical variables, which are integer unity roots in 
number theory, and the complex roots of unity. 
 
The postulate is the URMT equivalent of saying that all observables are ‘real’, not 
complex quantities, and all equations comprise terms such as  PP   or PP , just like 

complex quantities whereby *)Re(2 ZZZ   or *ZZZ  . 
 
Conjugation is its own inverse, e.g. PP  , and similarly for the conjugate of a 
product, e.g. PPPPPP   since the dynamical variables are real (actually 
integers), which naturally commute. 
 
More complicated examples includes the expression for the Potential, 

)( RQPPQRV  , which is ‘real’ since RQP  is the conjugate of PQR  and hence 
the sum is real. 
 
For vectors, this postulate is a restatement that all observables and invariants are 
sums, or sums of products, of vectors and their conjugates, and all invariants are a 
tensorial contraction. 
 
The corollary does not rule out real or complex numbers as intermediaries in URMT. 
Their necessity is an open question. However, complex integers, the rational quantity 

2/1  and the irrational quantity 2  may be desirable in extensions to the current 
theory. This is currently open. In these unpublished extensions, the complex integers 
appear as complex, zero norm vectors, i.e. complex Pythagorean n-tuples such as 
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triples, quadruplets etc. The rational quantity 2/1  and irrational quantity 2  appear 
in the scaling of eigenvectors. 
 
4. Duality 
 
URMT, as formulated, gives equations that are symmetric upon interchange of the 
standard variables with their dual variable equivalents (  ~,~  xx ,  ~,~  yy , 

 ~,~  zz  and likewise for their conjugates), but give asymmetric solutions when 
actually solving these equations, i.e. the solution in the coordinates is unique and 
distinct from the simultaneous solution in the dual variables. This ensures there are 
three distinct solutions for the coordinates, dynamical variables and dual variables, 
each with their own unique conjugates. In essence, URMT is formulated from the 
invariance principle for which a dual equivalent applies; albeit both principles and 
their respective invariance transformations cannot be applied simultaneously. If they 
could, the standard and dual solutions would be identical and of insufficient 
complexity, i.e. of little use. 
 
Note that the dynamical variables and their conjugates are self-dual, i.e. PPPP

~~,~
  

etc. and duality is really a dual relationship between coordinates zyx ,,  and dual 
variables  ,,  (also known as divisibility or scale factors). 
 
General 
 
The restriction to integers, right from the start, is not actually necessary and can be 
done at a later stage. However, since the end results are in integers, the postulates 
have been written assuming integers. 
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2 The Dynamical Equations 
 
By applying the local variations to the DCE, three dynamical equations and their 
solutions are obtained when equating the variational terms to zero. 
 
The three linear variational terms, give the dynamical equations. 
 

zQRyCx   
PzxRCy   

yPQxCz   
 
Defining the Unity Root Matrix symbolA  as 
 



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




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






0

0
0

PQ
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A , 

and coordinate Vector X  (also simply referred to as X  in [1]) 


















z
y
x

X , 

 
then the dynamical equations are written in matrix form as 
 

  XAX C . 
 
By equating the quadratic variational terms to zero, three of nine possible forms of 
solutions are obtained as follows, only two of which are truly independent, 
 

)()( PRCQyPQRCz   
)()( QRPCxQPCRz   
)()( RQCPxRPQCy  . 

 
An eigenvector solution is 





























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

PRCQ
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x

2

2 )(
X . 

 
Any awkward, zero denominators, e.g. when PPC 2 , above, can be removed by 
applying an invariance transformation without changing the coordinate vector solution 

X . 
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3 Integers, Co-primality and Dual Variables 
 
The dynamical equations, have nine possible forms of solution, only two of which are 
independent. Nevertheless, by asserting the following Co-primality Criteria (three 
criterion 1),gcd( yx , 1),gcd( zx , 1),gcd( zy , in one) 
 

1),,gcd( zyx , 
 
then, amongst the solutions, this implies that, for some integers  ,   and  , termed 
divisibility (or scale) factors, the following relations exist 
 

xPPC  )( 2  
yQQC  )( 2  
zRRC  )( 2  

 
Notice the defining equations are symmetric upon interchange of the dual variables   
with x ,   with y  and   with z . 
 
In fact,  ,   and   are variables dual to the coordinates zyx ,,  and vice-versa. 

 
x~ , y~ , z~ , 
~x , ~y , ~z , 

 
They form the co-vector (eigenrow-vector) X  
 

 X ,  ,, ℤ, )0,0,0(),,(   
 

X  is the dual-conjugate of X  (or X ) and a basis vector in the reciprocal space of 
vector X , satisfying the eigenrow-vector equation 
 

  XAX C  
 
However, X is not orthogonal to X . 
 
Note that X  and X  get used interchangeably in general URMT. However, X  is 
always used when talking about URMT under Pythagoras conditions, see further. 
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4 The Potential Equation 
 
Summing the defining relations for the divisibility factors  ,   and  , and using the 
DCE to substitute for the Kinetic term K  in terms of the Potential term V , gives 
 

CRQPPQRzyxC /)(2 2    
 
The inner product (contraction) of the coordinate vector X , and its dual-conjugate 

X , is one of the terms (or contraction of X  and conjugate X , in accord with 
Postulate 4) 


  XXXX zyx   

 
and, using the definition of the Potential CRQPPQRV /)(  , this gives the 
Potential equation in vector form as 
 

VC  
 22XX  

 
Reminder: The eigenvalue C  is invariably set to unity, 1C , since URMT, for a 
non-unity eigenvalue, can be obtained from the unity solution. Its presence is retained 
for dimensional consistency. 
 
This Potential term and its vanishing, or otherwise, is of fundamental importance in 
URMT. Note too that the determinant of the unity root matrix A  is the product of the 
Potential V  and the eigenvalue 
 

RQPPQRVC )det(A  
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5 Congruence Relations and Unity Roots 
 
Having made the transition to the integer domain, the dynamical equations are 
restated as six, linear congruences,  
 

)(mod xPzCy   
)(mod xyPCz   

 
)(mod yQxCz   
)(mod yzQCx   

 
)(mod zRyCx   
)(mod zxRCy   

 
This is not a unique restatement of the dynamical equations, but the quotients are 
found to be simply the dual variables (divisibility/scale factors)  ,, . 
 
These congruences are exponentiated to integer, order 2n , and the dynamical 
variables assigned the following unity root properties ('unity' when 1C , or 'power 
residues' nC  when 1C ) 
 

)mod( xCP nn   
)mod( yCQ nn   
)mod( zCR nn   

 
)mod( xCP nn   
)mod( yCQ nn   
)mod( zCR nn  . 

 
With these conditions, the congruences become 
 

)(mod xzy nn   
)(mod yxz nn   
)(mod zyx nn  . 

 
There is no general analytic solution giving unity roots for arbitrary exponent. 
However, unity roots can be obtained algorithmically and it is, in principal, possible 
to determine them for any exponent and modulus. 
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6 The Coordinate Equation 
 
For integer exponent 2n , some polynomial ),,( zyxk , subject to co-primality 
criteria 1),,gcd( zyx , integer coordinates zyx ,, , the following coordinate equation 
satisfies the nth order, congruence relations 
 

),,(.0 zyxkxyzzyx nnn  . 
 
The coordinate equation is a Diophantine equation with solutions that can be obtained 
algorithmically, and is thus amenable to study. A trivial solution, valid for all odd 
exponents, is yxz  . A cubic solution is )70,31,9(),,( zyx , 3n , see further. 
 
The coordinate equation is currently a diversionary aside in URMT, and current 
research is focussed on the quadratic case 2n  and, in particular, when polynomial 

0),,( zyxk  and the coordinate equation reduces to that of Pythagoras. 
 
For 2n , 0k , (A. Wiles 1995), the polynomial factor k  remains analytically 
unspecified. However, a priori knowledge is not particularly required as it is derived 
backward from knowing zyx ,,  and, indeed, k  is not explored further in this paper. In 
the aforementioned cubic example, )70,31,9(),,( zyx , then 16k . 
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7 Conjugate Relations 
 
By the properties of unity roots, the conjugates variables are related to their standard 
counterparts by the following congruences, termed 'conjugate relations' 
 

)(mod
1

x
C
PCP

n







  or )(mod2

1

x
C
PP n

n





  

)(mod
1

y
C
QCQ

n







  or )(mod2

1

y
C
QQ n

n





  

)(mod
1

z
C
RCR

n







  or )(mod2

1

z
C
RR n

n





  

 
If 2n  then )(mod xPP   etc, which is a very special case in URMT since it 
reduces the DCE to a Hyperbolic equation and, with the congruence removed (e.g. 

PP   etc.), to Pythagorean triples as two of the three eigenvectors. 
 
For a unity eigenvalue, 1C , )(mod1 xPP n , which is the commonly used form. 
 
For a unity eigenvalue, the conjugation of a dynamical variable is therefore one of 
raising it to the power 1n  and obtaining its residue, modulo a coordinate, excepting 
a specific choice of sign. 
 
For a non-unity eigenvalue, although not obvious from the above relations, there are 
no divisibility issues in dividing the dynamical variables by the eigenvalue C , using 
the methods given in [1], paper #6.. 
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8 Conservation Equations & Invariants 
 
Thus, so far, under general URMT there are three key equations (the third when using 
the unity root extensions to exponent n ) and, consequently, three Invariants 0, 2C  
and 22C  or 0, +1 and +2 when 1C . 
 

The Dynamical Conservation Equation (DCE) 
 

CRQPPQRRRQQPPC /)(2  , 
 
 

The Potential equation 
 

CRQPPQRzyxC /)(2 2   . 
 
 

The coordinate equation 
 

),,(.0 zyxkxyzzyx nnn  . 
 
Under Pythagoras conditions, there are a further three unique conservation equations. 
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9 Cubic Example, Unity Eigenvalue 
 
Eigenvector solution 

3n , 9x , 31y , 70z , 1C , 

















70
31
9

X . 

 
Dynamical variables RQP ,, and their conjugates RQP ,,  
 

2P , 6Q , 11R  
4P , 5Q , 19R . 

 
The kinetic term 247 RRQQPPK  
 
The Potential 248 RQPPQRV  
 
The Dynamical Conservation Equation 
 

2482471  VK  
 
The dynamical equations XAX   in matrix form, unity eigenvalue 1C  
  






















































70
31
9

046
2019
5110

70
31
9

 

 
The Potential equation 
 

)(2 RQPPQRzyx   ,  
 

248)70)(3()31)(1()9)(1(2  . 
 
The coordinate equation 
 
 ),,(.0 zyxkxyzzyx nnn   
 

),,(.70.31.9703190 333 zyxk , 16),,( zyxk  
 
The divisibility factors ,   and   
 
 xPP  )1( , 1  
 yQQ  )1( , 1  
 zRR  )1( , 3  
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The co-vector  X  
 

 311X  
 
The dual dynamical equations   XAX  in matrix form, unity eigenvalue 1C  
 

   311
046
2019
5110

311 




















. 

 
The Potential Equation in Vector Form 
 

V 
 2XX  

 

  2482250
70
31
9

311 















 

 
Unity Root Properties 
 
 )mod(1 xP n  , )9mod(123   
 )mod(1 yQ n  , )31mod(163   
 )mod(1 zR n  , )70mod(1113   
 )mod(1 xP n  , )9mod(143   

)mod(1 yQ n  , )31mod(153  . 
 )mod(1 zR n  , )70mod(1193  . 
 
Conjugate Relations 
 
 )(mod1 xPP n , )9(mod)2(4 2 . 
 )(mod1 yQQ n , )31(mod)6(5 2 . 
 )(mod1 zRR n , )70(mod)11(19 2 .
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10  Global Variations 
 
A special type of invariance transformation,   ,   , is termed a Global 
Pythagoras Variation, denoted by matrix symbol pΔ , where pΔAA   
 






















0

0
0

xy
xz
yz

P Δ , 

 
and the dynamical variables RQP ,,  and RQP ,,  transform as follows, 
 

xPP  , xPP   
yQQ  , yQQ   
zRR  , zRR  . 

 
All invariance transformations, including pΔ , leave X  unchanged by definition 
 

0XΔP  
 
Substituting into the dynamical conservation equation gives the following linear and 
quadratic variational terms 
 
 term 

)()()(
)()()(0

RRzQQyPPx
QPPQzPRRPyRQQRx




 

 
2 term 

)()()(0 222 PPyzQQxzRRxyzyx  . 
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11  The Pythagoras Conditions 
 
Looking at the 2 , quadratic variational term, under a global Pythagoras variation 

pΔ , 
 

)()()(0 222 PPyzQQxzRRxyzyx  , 
 
the Pythagoras equation naturally emerges, but nowhere has a quadratic exponent 
been asserted and it is valid for all exponents 2n   
 
Thus, under the following the Pythagoras Conditions 
 

PP  , QQ  , RR  , 
 

the Pythagoras equation is obtained 2220 zyx  . 
 
Note that there is no mention of a quadratic exponent in these conditions. 
 
The unity root matrix simplifies to 


















0
0

0

PQ
PR
QR

A . 

 
The Potential )( RQPPQRV   vanishes, 0V  
 
The DCE reduces to a single kinetic term RRQQPPK  , which is the 
Hyperbolic equation 

2222 RQPC  . 
 
The Conjugate Relations become identities - i.e. the above Pythagoras Conditions 
 
The Global Pythagoras Variation pΔ  preserves the zero Potential and Pythagoras 
Conditions. 
 
The eigenvalues become the symmetric set 
 

C , 0 , C . 
 
The dual variables  ,   and   also satisfy the Pythagoras equation 
 

0222   . 
 
The linear variational  term reduces to another, new conservation equation 
 

0 zRyQxP . 
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12  The Analytic Pythagoras Solution 
 
URMT, under Pythagoras conditions, is a completely solved problem with an analytic 
solution for all variables, parameterised by three, arbitrary integers k , l  and m . 

klx 2  
)( 22 kly   
)( 22 klz   

 
The divisibility factors and dynamical variables are obtained by solving a linear 
Diophantine equation in unknown integers s  and t , given k  and l . 
 

ltksC   
 
Two particular, integer solutions s  and t  , general solutions s  and t , parameterised 
by m  

mlss   
mktt   

 
)( ltksP   

)( ktlsQ   
)( ktlsR   

 
st2  

)( 22 st   
)( 22 st   

Eigenvlaue 1C  
 l  k   x   y   z  s  t   P   -Q   R            - 
-- -- --- --- --- -- -- ---- ---- ---- ---- ---- ---- 
 2  1   4   3   5  1  0   -1   -2   -2    0   -1   -1 
 3  2  12   5  13  2  1   -7   -4   -8   -4   -3   -5 
 4  1   8  15  17  1  0   -1   -4   -4    0   -1   -1 
 4  3  24   7  25  3  2  -17   -6  -18  -12   -5  -13 
 5  2  20  21  29  3  1  -11  -13  -17   -6   -8  -10 
 5  4  40   9  41  4  3  -31   -8  -32  -24   -7  -25 
 6  1  12  35  37  1  0   -1   -6   -6    0   -1   -1 
 6  5  60  11  61  5  4  -49  -10  -50  -40   -9  -41 
 7  2  28  45  53  4  1  -15  -26  -30   -8  -15  -17 
 7  4  56  33  65  2  1  -15  -10  -18   -4   -3   -5 
 7  6  84  13  85  6  5  -71  -12  -72  -60  -11  -61 
 8  1  16  63  65  1  0   -1   -8   -8    0   -1   -1 
 8  3  48  55  73  3  1  -17  -21  -27   -6   -8  -10 
 8  5  80  39  89  5  3  -49  -25  -55  -30  -16  -34 
 8  7 112  15 113  7  6  -97  -14  -98  -84  -13  -85 
 9  2  36  77  85  5  1  -19  -43  -47  -10  -24  -26 
 9  4  72  65  97  7  3  -55  -51  -75  -42  -40  -58 
 9  8 144  17 145  8  7 -127  -16 -128 -112  -15 -113 
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13  Pythagorean Eigenvectors 
 
The standard Eigenvectors X , 0X , X  are 
 


















z
y
x

X , 
















R
Q

P

0X ,























X . 

 
Conjugate eigenvectors 

 X  
 RQP 0X  
 zyx X . 

Eigenvector Equations 
 

  XAX C , C ,   XAX C  
00 AX , 0 , 00 AX  

  XAX C , C ,   XAX C  
 
Eigenvector dot product, invariants (the six conservation equations) 
 

0222  
 zyxXX  Pythagoras 

0222  
 XX  Pythagoras 

22220
0 CRQP XX  the DCE 

22Czyx  



 XXXX  the Potential Equation ( 0V ) 

00
0  

 zRyQxPXXXX  the Delta equation 
00

0  
 RQP XXXX  the Dual Delta equation 

 
Eigenvector cross products 
 


  XXXXX C^^ 00  


  XXXXX C^^ 00  

02^^ XXXXX C   
02^^ XXXXX C   


  XXXXX C00 ^^  


  XXXXX C00 ^^ . 

 
The eigenvector triple product is also an invariant with a value of 32C , hence all 
three eigenvectors are linearly independent and form a basis. 
 

3
0

0 2^^ C 






 XXXXXXXXXX  
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14  The T Operator & Minkowski ‘2+1’ 
 
By defining the transformation matrix 'T  Operator' as 
 


















 

100
010
001

1TTT T , 

 
then, under Pythagoras conditions, the conjugate vectors are formed from their 
standard counterparts X , 0X  and X  as follows 
 

T)( 
  TXX  

T)( 0
0 TXX  . 

T)( 
  TXX  

 
Of course, the T  operator is simply the Minkowski metric tensor (in '2+1' Special 
Relativity), raising or lowering the indices of a tensor. In this case, converting the 
components of a vector in a standard space, to its components in the reciprocal space, 
i.e. 
 

ij
ij  T , 

j
iji


  XX   etc 

 
Note that the transpose operation, in the above, is part of the raising/lowering process 
when using matrix, vector notation, as opposed to purely tensorial notation. 
 
It is of note that the Minkowski metric is that of flat space; the concept of curvature in 
the URMT eigenvector space is introduced later when studying the eigenvectors X , 

0X  and X  as a highly oblique basis 
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15  Plotting the Eigenvectors 
 
The eigenvectors X , 0X  and X  are equivalent to ordered triples of the coordinates 

zyx ,, , dynamical variables RQP ,, , and divisibility factors  ,,  as in 
 
  ),,( zyxX ,  ),,(0 RQP X , ),,(  X , 
 
All three triples can be plotted as points p  p ℤ3, on the familiar three-axis, right-
handed, Cartesian set zyx ,,  with P,  plotted on the x  axis, Q,  plotted on the y  
axis, and R,  plotted on the z  axis. 
 
Plotting in this way, each eigenvector is a vector with its base at the origin and tip 
either on a cone or hyperboloid - these are discussed shortly. 
 
This is not the only way to plot the eigenvectors. As mentioned, three parameters k  l  
and m  characterise all three eigenvectors and we could, instead, draw three Cartesian 
axes k  l  and m  at which every point ( mlk ,, ), is a basis set of the three eigenvectors 
giving a 3D vector field. This concept is more useful when thinking of eigenvectors as 
an evolving, oblique triad, see later. 
. 
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16  Two Cones 
 
Since X  and X  are Pythagorean triples their geometry is that of a discrete cone - a 
separate cone for each eigenvector. Each cone also divides into two halves, upper and 
lower, defined as follows: 
 
The upper cone, symbol UC , comprises the set of all Pythagorean triples for which 

0, z . 
 
The lower cone, symbol LC , comprises the set of all Pythagorean triples for which 

0, z . 
 
The cone, symbol C , is the union of sets LC  and UC , UL CCC  . 
 
 Z, 

X+(x,y,z)C
 

CU=upper cone 

x, 
y, 

CL=lower cone 

X-(,,-)CL 

 
Figure 1 Upper and Lower Cones 

 
Given X  and X  are defined as follows, 
 


















z
y
x

X , 























X . 

 
then UCX  for 0z  and therefore LCX  for 0 , both conditions being met 
when using the analytic solutions )( 22 klz   and )( 22 st  , i.e. if X  is in UC  
then X  is simultaneously in LC . 
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17  A Hyperboloid 
 
Since the DCE is a hyperboloid, the geometry of 0X  is that of a discrete hyperboloid 
sheet, divided into an upper and lower half as follows. 
 
The Upper hyperboloid, symbol LH , is the set of all points ),,( RQPp   where 

0R . 
 
The lower hyperboloid, symbol LH , is the set of all points ),,( RQPp   where 

0R . 
 
The hyperboloid, symbol H , is the union of sets LH  and UH  
 

 UL HHH  . 
 
 R 

X0(P,-Q,-R)HU,-R>0 

HU=upper 
hyperboloid 

Q 
P HL=lower 

hyperboloid 

X0(P,-Q,R)HL,R<0 

 
Figure 2 The Hyperboloid 



Unity Root Matrix Theory, Physics in Integers, Overview 
R J Miller ©Micro SciTech Ltd. 2011. 

Issue 1 09/07/2011 
Page 25 of 51 

 

18  The Lattice 
 
Since all points p  on the cone and hyperboloid are ordered triples of integers, i.e. 
p ℤ3, the cone and hyperboloid quadric ‘surface’ is not a continuum but an infinite 

set of points, coincident with a continuous, quadric 2D surface in ℝ3. The set of 
points is collectively referred to as the lattice L . 
 
The lattice, is defined as the set of points L  formed from the union of all points in the 
cone C  and the hyperboloid H  
 

 HCL  . 
 
In other words, the lattice is a collective term for all discrete points occupied by X , 

0X  and X , their conjugates, X , 0X  and X  respectively. 



Unity Root Matrix Theory, Physics in Integers, Overview 
R J Miller ©Micro SciTech Ltd. 2011. 

Issue 1 09/07/2011 
Page 26 of 51 

 

19  No Singularities or Infinities 
 
Exclusion of the origin from the Lattice L . 
 
The origin is excluded from the lattice, i.e. sets C , H  for genuine algebraic reasons 
rather than just an arbitrary condition, and is explained as follows. 
 
As regards the cone C , it excludes the zero Pythagorean triple )0,0,0(  because, if z  
is zero in X , then the divisibility relation zRRC  )( 2  becomes 0)( 22  RC  
( RR   under Pythagoras conditions) and, since 02 C , this cannot hold true. Note 
that 0C  because it is a non-zero eigenvalue by definition - the theory already has a 
separate, zero eigenvalue. 
  
As regards H , it also excludes the origin as algebraically impossible since the 
eigenvector elements 0X  (and 0X ) satisfy the hyperbolic DCE, for which 

)0,0,0(),,( RQP  is not a valid solution. Basically, H  has a non-zero radius at the 
origin. 
 
Geometrically speaking, exclusion of the origin from L  means that the cones are 
without a tip and the hyperboloid always has a non-zero radius in the ‘ yx  ’ plane. 
 
Hence, C  and H  are referred to as having zero singularity. 
 
As a consequence, any path of X  or X  connecting the cones would skip the origin 
when going from LC  to UC  (evolving forward) and vice versa, UC  to LC  (evolving 
backward); likewise for a path on the hyperboloid H . 
 
No Infinities or zero divisors. 
 
Zero divisors are possible within URMT, e.g. in the X  eigenvector denominator 
when PPC 2 . But, since such denominators contain dynamical variables, the zero 
can be removed by transformation, without altering X . Albeit, 0X  and X  are 
transformed harmlessly. This transformation property is very useful for any awkward 
expressions, in particular the indeterminate form 0/0 , which can often arise. 
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20  Eigenvector Evolution 
 
Using the analytic solution, under Pythagoras conditions, then the eigenvector X  
and point ),,( zyx  is completely characterised by the arbitrary integers k , l . 
 
If k  and l  are fixed, then X  is considered static and represents a single point in the 
upper cone UC  for 0z  (convention). 
 
The 0X  and X  triples, ),,( RQP   and ),,(    respectively, are obtained by 
solving a linear Diophantine equation adding a third, arbitrary integer parameter m . 
 
IMPORTANT The parameter m  is the same as   in the global Pythagoras 
transformation pΔ  
 
Thus, for a static X , fixed integer parameters k  and l , the eigenvectors 0X  and X  
evolve with respect to X  according to parameter m . 
 
Denoting the initial (primitive) 0m  eigenvector solution by a prime, then the 
general eigenvector solutions, in terms of m , can be written as 
 

  XXXm  (static - no m  dependence) 

00 XXX  mm  

  XXXX 0
2 2mmm . 

 
Since 0mX  and mX  are parameterised by m , the eigenvectors trace out an evolving 
path (trajectory) through the lattice, on the hyperboloid H  (for 0mX ) and cone C  (for 

mX ) for each static point X  in the cone, i.e. each point on the X  cone has another 
cone associated with it for mX , and a hyperboloid for 0mX . 
 
Both 0X  and X  become anti-parallel to X  in the large m  limit, with X  lying on 
the mirror image cone to X , and 0X  becoming ever closer, but never touching, the 
same mirror image cone in C . 
 

 XX mm0 ,   XX 2mm , 0m  
 
Since the sets C  and H  are disjoint, i.e. HC  , the paths of X  ( CX ) and 

0X  ( H0X ) never intersect, i.e. they never contain a common point. 
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21  Free-fall and Null Geodesics 
 
Looking at the mX  evolution equation 
 

  XXXX 0
2 2mmm , 

 
then, for large m , it is seen that each increment mX , in mX  approximates a simple, 
scalar multiple m2  of X  

  XX mm 2 , 0m . 
 
Since each X  is a Pythgorean triple with zero norm, the evolving path of mX  ever 
closer approximates a null geodesic as m  grows larger. 
 
If the m  parameter is associated with time, then we can consistently use 'Force, 
Potential' terminology and state that the position vector mX  traces a trajectory 
through the lattice, with an inverse square law curvature path (with respect to time, 
i.e. 2/1 m ), 
 
The cone in which mX  resides is a zero-Potential surface (Pythagoras conditions 

0V ) of constant energy ( 2C  by the DCE), there is no Kinetic/Potential energy 
interchange and, thus, no force acting upon it. Therefore mX  effectively moves in 
free-fall. 
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22  Angular Evolution and Flatness 
 
Although the eigenvectors X , 0X  ( 0mX ) and X  (  mX ) are linearly 
independent, they are far from orthonormal, i.e. they are oblique and each of non-unit 
length. 
 
Defining the flatness parameter   as the ratio of the eigenvalue C  to the dynamical 
variable R , for 0R  
 

RC / , 0R . 
 
and denoting the angle between X  and 0X  by 0 , the angle between X  and X  
by  , and the angle between 0X  and X  by 0 , 

 

X0(P,-Q,R) 

X -(,,- ) 

X+(x,y,z) +- 
+0 0 - 

+0+0-=180deg 

note +0+0-+0 -? 360deg 

 
 
then 0 ,   and 0  are obtained by the standard inner product relations, e.g. 

000cos XXXX   , where )()( asignaSg   
 

  2/12
0 )2(2)(cos   zRSg  

)1(1cos 2   

  2/12
0 )2(2)(cos   RSg . 

 
The flatness is inversely proportional to dynamical variable R , for fixed eigenvalue 
C  (energy 2C ). 
 
Since R  is parameterised by the evolution parameter m , as in mzRR  , then, 

 mzRC  /  and, for large m , and to first order in m/1 , this approximates to 
 

mz
C 1






  , 1m . 

 
Whatever finite value for C  and z  (static) is chosen, a value for m , and 
consequently R , can always be found such that CR   and 1  by (8.13), 
hence, 

0lim  m . 
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Thus, the flatness parameter   becomes ever smaller as the evolution progresses, i.e. 
as the evolutionary parameter m  grows ever larger. 
 
The smaller  , the flatter the eigenvector basis, with perfect flatness given by 0 , 
 
The choice of the name ‘flatness’ is evident in that cos  converges to –1 and 

0cos   also converges to -1 (for 0z , 0R ), and so   and 0  converge to 180 
deg as   becomes ever smaller, i.e. the axes flatten out. 
 
The flatness is inversely proportional to the evolutionary parameter m . A larger m  
means a flatter basis, i.e. the longer m  evolves, the flatter the basis and lattice*. 
 
* Note, strictly speaking, it is the eigenvector basis that flattens, but since this 
property is virtually independent of any static starting vector X  (for sufficiently 
large m ), it applies to every trajectory originating from every X , and so it is also the 
lattice which is referred to as flattening with increasing m . 
 
The flatness parameter   is proportional to the finite eigenvalue C  (or 2  
proportional to energy 2C ). Hence, the larger the eigenvalue (energy), the longer it 
takes to achieve same flatness. 
 
Example Angle Data 

)5,3,4(
X

 

0mX  
( 1C ) 

mX   18000     

m  P  Q  R        
  0  0  

0 -1 -2 -2 0 -1 -1 143.130 160.529 19.471 
1 -5 -5 -7 -6 -8 -10 168.522 174.232 5.768 
2 -9 -8 -12 -20 -21 -29 173.267 176.628 3.372 
8 -33 -26 -42 -272 -225 -353 178.071 179.035 0.965 
32 -129 -98 -162 -4160 -3201 -5249 179.500 179.750 0.250 
 
Example Flatness Data 
evolution 
parameter 

flatness 
parameter 
  

  approx-
imated from 

  

% error 
 

m  RC / , 
( 1C ) 2

ˆ 






  


 ˆ

100  

0 -0.5000 -0.4550 9.00 
1 -0.1429 -0.1417 0.84 
2 -0.0833 -0.0831 0.29 
8 -0.023810 -0.023804 0.024 
32 -0.00617284 -0.00617274 0.0016 
 
 



Unity Root Matrix Theory, Physics in Integers, Overview 
R J Miller ©Micro SciTech Ltd. 2011. 

Issue 1 09/07/2011 
Page 31 of 51 

 

23  Curvature 
 
Curvature, symbol  , is defined as the rate of change of angle   with respect to the 
evolution parameter m , i.e., 
 

m / . 
 
Changes in angle,  , on each evolutionary tick, m , are given by the discrete 
difference   )1()( mm  , with 1m , the curvature is thus given by 
 


  )1()( mmm





 . 

 
Using )1(1cos 2   and  mzRC  / , and approximating for large m  
(small  ), gives the curvature as follows 
 

2

12
mz

C








 , 1m . 

 
The curvature for  , with respect to m , is an inverse square law. 
 
The same relation, barring a factor, applies to angles 0  and 0  respectively.  
 
Therefore all three angles  , 0  and 0  have an inverse square law curvature 
relation with respect to m , for large m . 
 
Evolutionary parameter m  can be time, length (e.g. arc length) or other? 
 
The expression for   is a ‘large m ’ approximation, becoming better as m  increases. 
 
The curvature is proportional to the eigenvalue C , which is effectively a free 
parameter for tuning. 
 
Example Curvature Data 
evolution 
parameter 

  
(deg)  

angle   
(rad)  

curvature   (9.2)  ̂  approximated, 
for 1C , 5z  

% error 

m      )1()( mm   
2

12ˆ
mz

C








  

 ˆ
100  

0 143.130 2.498092 - - - 
1 168.522 2.941258 0.443166 0.2828427 36.0 
2 173.267 3.024081 0.0828232 0.0707107 15.0 
8 178.071 3.107929 0.00454656 0.00441942 2.8 
32 179.500 3.132863 0.00027800 0.00027621 0.64 
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24  Physical Scale 
 
If URMT is a theory of Physics, then it operates at the Planck level, and its smallest 
unit, i.e. one, is considered to be the equivalent Planck unit, be it length, time or, 
perhaps, mass. 
 
A scale can be obtained by looking at the smallest possible interval of evolution, i.e. 

1m . At the smallest, Planck scale of physical reality, a value of 1m  represents a 
length of 35106.1  m or a time of 44104.5  s. So, at the one metre length, m  is 

3510  and, for a time of 1s, m  is 4310 . Thus, there is no issue with approximating 
the continuous by the discrete with these sizes of numbers. 
 
The smallest 'almost trivial' solution for a Pythagorean triple, X  or X  in URMT, is 

)1,1,0( , which has a magnitude of 2  and is thus considered the Planck level, i.e. if it 
represented distance it would be around 3510 m. 
 
When making physical comparisons on the flatness   and curvature   of the vector 
space, the question arises, how large does ‘large m ’ have to be? The short answer is 
not very large, but it is dependent on the value chosen for the conserved quantity 
given by eigenvalue C . 
 

2

12
mz

C








 ,  

mz
C 1






  , 1m . 

 
As seen in the above equations, the flatness   is proportional to C  and inversely 
proportional to m , for constant z . The curvature is also proportional to C  and 
inversely proportional to the square of m .  
 
Although C  may be large (but finite) the z  component in eigenvector X  can be 
made as large as desired by suitable choice of k  and/or l  in the analytic solution for 

X , to nullify the effect of a large C . Given X  is static then, once chosen, the 
evolution proceeds as per a small C . 
 
Considering m  as units of Planck time, then a value 10m  represents s4210 , and 
so the flatness at s4210  is 10% of its initial value at s4310 , with the curvature a mere 
1% of its initial value. 
 
Whatever the scaling of m , it is clear that a large m  does not have to be very large 
before the flatness and curvature reduce to zero, far less than 1 second. 
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Translating this discussion on scale to a cosmological analogy then, given that m  
need not be very large at all, i.e. )10( 1Om  , on an evolutionary scale of 

)10( 43Om  , the flattening is all but over in the very early, inflationary stages (first 
10 ticks). Certainly, by 4310  ticks (1s), flatness reigns supreme. With a flattening 
period (a function of the clock ticks m ) tamed by choice of a large starting energy 

2C , then it is clear that the larger the starting energy (for a fixed z , see above), the 
longer the evolutionary period to attain flatness. 
 
Associating eigenvalue C  with speed, and 2C  as energy per unit mass (kinetic 
energy/mass), then the Planck unit of C  is simply the speed of light, little c , i.e. 

smcC /103 8 . Given the age of the universe is approximately 13 billion years, 
which equates to about 1710  seconds, then the evolution parameter is, in units of 

Planck time, 6210m . Using the definition of the flatness parameter 
mz

C 1






  , 

for large m , then with 21  msz  as in the ‘almost trivial’ solution, and with 
smC /103 8 , the flatness is around 5410  (dimensionless), i.e. flat to within 1 

part in 5410 .  
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25  Non-zero, Zero-point Energy.  
 
The quantity 2C  in the DCE can be associated with energy (strictly speaking, energy 
per unit mass), and is split into a Kinetic term K  and Potential term V  as 
as a consequence. 

RRQQPPK   
 

C
RQPPQRV )( 

 . 

 
VKC 2 . 

 
Since the DCE equates to the square of a non-zero eigenvalue, it is never zero and its 
smallest value, 12 C , is akin to a ‘zero-point’ energy. 
 
The zero-point energy for a single oscillator, is given by 0E ℏ 2/  for oscillator 
frequency  . 
 
Using the Planck frequency (the reciprocal of the Planck time), this gives the energy 
value for 12 C  as GeVE 1910  ( J9102 ). 
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26  Integer Invariants 
 
The three eigenvalues 0,C  are, by definition, invariants of the theory under 
Pythagoras conditions. 
 
The eigenvector space generates six other scalar invariants via the vector, inner 
product relations between the three eigenvectors and their conjugate forms. Of course, 
three of these are zero by the orthogonal properties between eigenvector columns and 
rows. 
 
The full suite of inner products is a set of six equations 
 

0222  
 zyxXX , Pythagoras equation 

0222  
 XX , Pythagoras equation 

22220
0 CRQP XX , Dynamical conservation equation 

22Czyx  



 XXXX , Potential equation 

00
0  

 zRyQxPXXXX , Delta equation 
00

0  
 RQP XXXX , Dual delta equation 

 
The volume element gives another, derived invariant 32C  
 
 3

0 2^ C  XXX . 
 
The important point about these values is that, for any evolved set of eigenvectors 

},,{ 0  mm XXX  and their conjugates, they are truly invariant in the lattice L . They 
are the same value along every trajectory of 0mX  and mX , for each and every 
associated X . 
 
The invariants cover the integer set }2,2,,,0,{ 322 CCCCC  and it is noticed that, for 
unity C , this set covers the most basic integers }2,1,0,1{ . Even when 1C , their 
ratios also include the simple set of integers },2,1,,0{ 2

1  . 
 
Furthermore, given the earlier considerations on Physical scale, the integers values 
involved in the eigenvectors can easily be )10( 40O  and much higher, but the 
eigenvectors will always be linked by the smallest of integer invariants 1,0   etc. 
 
With such small invariants spanning the entire lattice, independent of all parameters, 
most importantly the evolutionary parameter m , it is tempting to associate them with 
well-known, conserved physical properties such as charge, spin et al. 
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27  Eigenvectors as Derivatives 
 
The evolution equations of the eigenvectors are as follows, where the superscript 
prime denotes the initial, 0m  value 
 

  XXXm  (static, i.e. no m  dependence) 

00 XXX  mm  

  XXXX 0
2 2mmm . 

 

The standard calculus derivative 
dm
d  is used as a good, large m  approximation for 

discrete differences, i.e. 
 

mdm
d




 , 0m , 1m , 

 
Differentiating the evolution equations for 0mX  and mX  with respect to evolutionary 
parameter m , the eigenvector derivatives are 

 

0

dm
dX

 

 

 XX
dm

d m0  

 

02 m
m

dm
d XX

 , 
  XX

22

2

dm
d m  

 
It is seen that X  is constant, with zero derivative 
 
The first derivative of 0mX  wrt m  is simply the constant vector  X  and 
 
The first derivative of mX  wrt m  is just twice the vector 0mX , and therefore the 
second derivative of mX  wrt m  is just twice the constant vector  X . 
 
Thus, the eigenvectors span zero, first and second order derivatives, to within a 
constant factor 2 . This constant can be scaled-out as eigenvectors are arbitrary to 
within a scale factor. 
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28  Physical Association of Eigenvectors 
 
From the previous, Calculus section, the lattice basis vectors X , 0mX  and mX  are 
seen to naturally represent constant, first and second order integrals of X  with 
respect to evolutionary parameter m . 
 
So, for example, if parameter m  is associated with time, then mX  is position, 0mX  is 
velocity and X  constant acceleration. 
 

X , zyx ,,  acceleration 

0mX , RQP ,, , C  velocity 

mX ,  ,,  position. 
 
Since 0mX  (velocity) is an eigenvector comprising dynamical variables RQP ,, , this 
is entirely consistent with associating dynamical variables as velocity. 
 
Of course, the parameter could also be length, mass or other combination of mass, 
length and time. In fact, it is suspected the same theory may have a different physical 
interpretation, dependent upon the units associated with m . 
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29  Newtonian Physics 
 
Associating the evolving eigenvectors as follows, to an acceleration vector a , 
velocity vector v  and position vector x , and treating the parameter m  as time t , 
 

2/aX   
2/0 vX m  

xX m  
tm  , 

 
then the evolution equations simply translate to Newtonian Physics  
 

av


dt
d  

 
vav  t  

 

xvax  tt 2

2
 

 
Thus, if twice the Pythagorean triple X  represents a constant acceleration ( a ), 
then twice 0mX  represents a velocity v , and mX  (unscaled) represents the position 
x , which is also a Pythagorean triple. 0mX  itself, satisfies the Hyperbolic DCE. 
 
Of course, scaling X  by -1 (legal for eigenvectors) can make it represent a 'positive' 
acceleration a , so the sign is immaterial. 
 
For example if the acceleration is g , e.g. for an object thrown upward in the earth's 
constant gravitational field, then the familiar, high-school equations are obtained. 
 

gv


dt
d  

 
vgv  t  

 

xvgx  tt 2

2
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30  Duality 
 
It has been mentioned prior that the divisibility factors (or scale) factors  ,   and   
are dual to the coordinates zyx ,,  and that all equations in URMT, under Pythagoras 
conditions, are symmetric upon interchange of the dual variables   with x ,   with 
y  and   with z . You can formulate URMT in zyx ,,  or in  ,, , albeit not 
simultaneously. 
 
Most importantly though, not only do the dual variables  ,,  form the co-vector 

X  in the reciprocal space, they also form the eigenvector mX  in the standard basis, 

alongside X  and 0mX . So mX  is the dual eigenvector of X , i.e.   XX ~
m  and 

vice-versa,   mXX ~ . 
 
At the same time, mX  evolves with respect to X  according to parameter m  and, for 
large m  

  XX 2mm , 0m  
 
Thus, the vector mX  tends to look like X , scaled by 2m  and, barring scale, the two 
worlds mX  and X  look the same. 
 
Thus, by studying the world of mX , then simply rescaling by 2m , gives the world of 

X  and vice versa. 
 
In terms of the null-cone sets LC  and UC  then, since LCX  when UCX , this 
represents a duality between the small and large-scale geometry of the sets expressed 
as UL CC ~

  and LU CC ~
 . 
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m
m 1,  Duality and 0mX  

 
The middle ground (macroscopic world) is considered to be that of the eigenvector 

0mX , residing in the disjoint, hyperbolic set H . 
 
With this interpretation, relative to 0mX , the microscopic region is X  and the large 
scale region that of mX  so, for large m , 
 

X ,  micro 

 XX mm0 , macro 

  XX 2mm , large 
Dividing throughout by m  

X
m
1  

 XX 0m  

  XX mm  
 
When viewed with respect to 0mX , for large m  
 

X  tends to X
m
1   

mX  tends to Xm , 
 

0mX  sees an 
m

m 1,  duality between the microscopic and the very large. 

 

The 
m

m 1,  duality is considered analogous to mirror manifold symmetry in modern 

mathematical physics. 
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31  Winding Number 
 
The parameter m  is analogous with a winding number since it controls the quotient in 
a moduli relation (congruence).  
 
For example, the dynamical variable P  and its initial quantity (or particular solution) 
P , satisfy the following congruence property 
 

)(mod xPP  , 
 
by virtue of its definition as invariance transformation, in accord with the invariance 
principle. 

 
Expanding this congruence gives 
 

mxPP  . 
 
Thus, the evolutionary parameter m  is effectively a quotient of the coordinate and 
equivalent to a winding number since P  changes in amounts of mx . 
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32  Symmetry Breaking 
 
Under Pythagoras conditions, the Potential term in the URM is zero and, 
consequently, the three eigenvalues are also symmetric, centred on a zero eigenvalue, 
i.e. 0,C  with the two eigenvectors, X  and X , both Pythagorean triples. 
 
However, applying a local invariance transformation, for three, arbitrary integer 

 ,,  values, destroys this eigenvalue symmetry and the zero potential, leaving a 
non-zero Potential, non-symmetric eigenvalues, and only one Pythagorean 
eigenvector X  invariant, by definition. Contrast this with a global Pythagoras 
variation pΔ , which preserves the zero Potential. 
 
For real eigenvalues, under a local transformation, the Potential must be negative and 
hence, by the DCE, the Kinetic energy increases at the expense of the potential energy 
decreasing. In other words, the zero Potential state represents the highest energy, most 
symmetric state of URMT and its solutions, and any change to the potential breaks 
this symmetry. 
 
With a non-zero Potential, the eigenvector X  is no longer a Pythagorean triple and, 
geometrically speaking, the second cone LC  (lower by convention), which is 
effectively a mirror image of the X  cone UC , is replaced by a more general lattice 
structure, the symmetry in the geometry is therefore also broken. 
 
Given the Potential goes from zero and invariant, to non-zero and non-invariant, 
under such a local transformation, there is a kinetic/Potential energy interchange, and 
thus a force induced. So, URMT introduces an extra force by a symmetry 
breaking mechanism. 
 
The zero potential energy state is considered analogous to the ubiquitous physical 
analogy of a ball sitting on the top of a circularly symmetric hat. The system has 
perfect circular symmetry but is unstable and, as soon as the ball falls, it picks out a 
preferred direction and the symmetry is broken. Naturally, since it falls, it acquires 
more and more kinetic energy as the potential energy decreases. Performing a global 
Pythagoras transformation, under Pythagoras conditions, is equivalent to rotating the 
hat, which remains symmetric with the ball sitting on top at zero Potential; apply a 
local transformation and the Pythagoras conditions are destroyed, the eigenvalue and 
eigenvector, lattice symmetry is lost, and so too the zero Potential. 
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33  Symmetric Equations, Asymmetric Solutions 
 
The equations of URMT, under Pythagoras conditions, are symmetric upon 
interchange of zyx ,,  with  ,, . One formulation is the dual of the other, and 
working in one will give the other and vice-versa. 
 
However, the solution space is very different, especially at the Planck level, i.e. for a 
small evolutionally parameter m , the solutions for zyx ,,  and  ,, , as represented 
by eigenvectors X  and mX , are very different excepting both are distinct, 
Pythagorean triples. 
 
Nevertheless, as m  grows ever larger, the vector mX  converges to look like X , 
scaled by 2m , i.e. 

  XX 2mm , for large m . 
 
For example, the simplest, non-trivial )5,3,4(  solution is, for 0m , 
 


















5
3
4

X , 



















1
1

0
X  

and, for 64m , 
 


















5
3
4

X , 







































5
3
4

4.64
20737
12545
16512

2X , to within 1% 

 
It is of note that no matter how large  ,,  grow with m , the Potential equation, 
linking the two triples zyx ,,  and  ,, , remains invariant with a value 22C  since, 
under Pythagoras conditions, the Potential is zero and invariant ( 0V ), i.e. 
 

22Czyx  



 XXXX  

 
and, using the above numbers, 
 

2)5)(20737()3)(12545()4)(16512(   ( 1C ) 
 
Note that 20737 ,   appears in X , but   appears in X . 
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34  Unifying Concepts 
 
The unified approach currently pertains to URMT when under Pythagoras conditions, 
which relates ALL three families of standard variables zyx ,, , RQP ,, ,  ,, , with 
their conjugates zyx ,, , RQP ,, ,  ,,  
 

xx  , yy  ,  zz  , 
PP  , QQ  , RR  , CC   

  ,   ,   , 
 
and also their dual forms zyx ~,~,~ , RQP ~,~,~ ,  ~,~,~ , 

 
x~ , y~ , z~ , 

PP 
~ , QQ 

~ , RR 
~ , CC 

~ . 
x~ , y~ , z~ , 

 
There are also dual-conjugate forms, not shown here, but they can be deduced from 
the above. 
 
The unified approach treats both the URM3 A  and the global, Pythagoras variational 
matrix PΔ , as variational matrices and adds a third, new matrix to give three 
variational ' A ' matrices A , 0A  and A , one for each of the three families of 
variables.  
 


















0
0

0

0

PQ
PR
QR

A , 






















0
0

0

xy
xz
yz

A , 





















0
0

0





A , 

 
These standard matrix forms also have conjugate and dual forms, related as follows, 
where conjugation means both transposition and conjugation of their elements 
 

  AA ,  00 AA  ,    AA , 

  AA~ ,  00
~ AA  ,    AA~ . 

 
The three standard Pythagorean eigenvectors X , 0X  and X , also have conjugate 
and dual forms related as follows 
 


  XX ,  0

0 XX  , 
  XX , 

  XX~ ,  00
~ XX     XX~ . 

 
With these conjugate and dual forms, under the unified approach, the conservation 
equations can be written in a neater, form 
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For example, the DCE 
 

000  CCRRQQPPXX  
 
The Pythagoras Equation 
 

0  zzyyxxXX  
 
The Dual Pythagoras Equation 
 

0~~~~~~~~
  zzyyxxXX  

 
The Potential Equation 

0  CCXX  
 
Given the simplicity of the relationships between standard, conjugate and dual forms, 
this may seem unnecessary, but it illustrates the symmetry in URMT, when under 
Pythagoras conditions, and puts it on a familiar footing with notation used in 
mathematical physics. It is also makes URMT neater and more concise - as for all 
good notation. 
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35  Hermitian Operators 
 
All three A  matrices are Hermitian in that they are equal to their transpose conjugate, 
i.e. 

  AAA 
T  

 
This is because all conjugate variables are their own inverse, e.g. PP   etc. 
 
Taking the original URM as an example, then 
 


















0
0

0

PQ
PR
QR

TA , transposition 

 


















0

0
0

PQ
PR
QR

TA , conjugation of the matrix elements 

 
and using PP  , QQ  , RR  , then 
 

AA 

















0

0
0

PQ
PR
QR

T  

 
All eigenvectors and matrices in URMT, under Pythagoras conditions, are Hermitian. 
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36  Annihilation Equations 
 
The form of the A  matrices is specifically chosen such that they satisfy the following, 
equations, known as annihilation equations, since they annihilate their related 
eigenvectors 

0XA  
000 XA  
0XA . 

In index notation 
0ii XA ,  ,0,i . 

 
The annihilation property 0XA  is simply the original variational expression 

0XΔP , restated in the unified notation. 
 
The expression 000 XA  is the existing definition of the eigenvector 0X  for 
eigenvalue 0 . 
 
The expression 0XA  is new and considered the dual partner to 0XA , i.e. 

0~~
XA  since   AA ~ ,   XX ~ . 
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37  Operator Calculus 
 
Comparing the A  (formerly PΔ ) eigenvector transformations (not derived here) 
with the eigenvector derivative relations 
 

0XA , 0

dm
dX

, 

 

  XXA C0 ,  XX
dm
d 0  * (see below), 

 

02 XXA C , 02 mdm
d XX

 , 

 
it is seen that the A  matrix is equivalent to the derivative operator 
 

 A
dm
dC . 

 
* Note here that the m  subscript has been dropped from the evolving eigenvectors 

0mX  and mX  so that they are just written 0X  and X , and assumed functions of m . 
 
Likewise, by looking at the A  transformations and comparing with the integral form 
of the derivative relations, it is seen that the A  matrix is equivalent to the integral 
operator 
 

 dmC2A . 
 
Lastly, looking at the 0A  transformations 
 

  XXA C0 , 
000 XA , 

  XXA C0 . 
 
these are seen to be just a constant (proportional) multiplier, i.e. the eigenvalue. 
 
Thus, the A  matrices act as derivative, proportional, and integral operators on the 
eigenvectors 

A  = derivative operator 
 

0A  = constant multiplier 
 

A  = integral operator 



Unity Root Matrix Theory, Physics in Integers, Overview 
R J Miller ©Micro SciTech Ltd. 2011. 

Issue 1 09/07/2011 
Page 49 of 51 

 

38  Invariance Transformations & Generators 
 
Defining a global skew transformation sΔ  as follows 
 






















0

0
0

xy
xz
yz

sΔ , where 0XΔ s  since X  is invariant by definition 

 
then the unity root matrix 0A  transforms as follows, where m  is the evolution 
parameter 
 

smΔAA  00 ,  where   XXAXΔA Cm s
00 )( . 

 
Defining three generator matrices xJ , yJ  and zJ  by 
 



















010
100

000

xJ , 





















001
000
100

yJ , 




















000
001
010

zJ , 

 
then the skew variational matrix sΔ  can be decomposed in terms of these three 
generator matrices as 
 

zyx
s zyx JJJΔ  . 

 
The set xJ , yJ  and zJ  is closed under commutation as in 
 

  zyx JJJ  , 
 

  xzy JJJ  , 
 

  yxz JJJ  . 
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39  Invariance Transformations as Rotations 
 
The rotation matrices for an active, right-handed rotation of a vector about each of the 
Cartesian x )( , y ( ), z ( ) axes are as follows, with their small angle 
approximations on the right, are 
 























cossin0
sincos0

001
)(xR , 




















10
10

001
)(


xR , 1 , 

 















 







cos0sin
010

sin0cos
)(yR , 















 


10
010

01
)(




yR , 1 , 

 


















100
0cossin
0sincos

)( 


zR , 

















100
01
01

)( 


zR , 1 . 

 
In this small angle form, the rotations matrices can be re-written in terms of the 
identity and generator matrices xJ , yJ  and zJ  as follows 
 

xx JIR  )( , 
 

yy JIR  )( , 
 

zz JIR  )( . 
 
Comparing with the generator matrices xJ , yJ  and zJ it is seen that the global skew 
transformation sΔ  is identical to an infinitesimal rotation with the following 
correspondence between the coordinates and angles, with a caveat to follow, 
 
 x  
 y   

z  
 
The caveat is that the angles are small, hence the x , y , z  elements of eigenvector 

X  must also be small. From discussions on 'Physical Scale', indeed, the smallest, 
non-trivial Pythagorean triple )5,3,4(  (or )5,4,3( ) is, on a Planck scale, tiny. 
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40  Two Boosts and a Rotation 
 
Whilst the global skew transformation sΔ  can be compared with three pure rotations, 
the global Pythagoras variation PΔ  has a slightly different sign structure, which 
changes the interpretation of the variation, in generator terms. 
 






















0

0
0

xy
xz
yz

PΔ , c.f. 





















0

0
0

xy
xz
yz

sΔ  

 
The three generator matrices xK , yK  and zJ  are defined as follows 
 



















010
100

000

xK , 





















001
000
100

yK , 




















000
001
010

zJ . 

 
The global Pythagoras variational matrix PΔ  is decomposed in terms of these three 
generator matrices as 
 

zyx
P zyx JKKΔ   

 
The generators xK  and yK  are similar to boosts in ‘2+1’ Special Relativity, and the 
generator zJ  is the rotation matrix generator for a rotation   about z . 
 
The set xK , yK  and zJ  is closed under commutation as in 

 
  zyx JKK   
  xzy KJK   
  yxz KKJ   

 
Notably, the commutator  

zyxKK of the two generators xK , yK  generating a 

rotation (‘precession’) zJ . 


