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Abstract 
 
This paper studies a special integer matrix and its eigenvectors showing that it has two 
distinct Pythagorean triples as eigenvectors and a third, related eigenvector, satisfying 
a similar, hyperbolic Diophantine equation. Every such matrix is defined to be similar 
with common eigenvalues 1 , 0 , 1  and it is consequently proven that every 
Pythagorean triple is thus fundamentally related to a matrix with these three 
eigenvalues. Vector, dot-product relations between the three eigenvectors and their 
conjugate forms produce six additional invariants relating to the matrix and its 
eigenvectors. The paper finishes by providing an analytic solution for all 
eigenvectors, matrices and equations and hence verifying all results. 
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(1) Introduction 
 
(1.0) Definition. A Pythagorean triple considered herein comprises any ordered 
triple ),,( cba , of integers cba ,,  that satisfy the Pythagoras equation 2220 cba  . 
This definition is to be interpreted in its loosest sense with the only condition being 
that )0,0,0(),,( cba . In other words, ,a  b  and c  are allowed to be positive or 
negative integers, and a  may be less than or greater than b ; a  can be zero in which 
case cb   or b  can be zero in which case ca  . Non-primitive triples are also 
included, i.e. those such that, for non-zero, integer factor k , if ),,( cba  is a 
Pythagorean triple then so too is ),,( kckbka . Otherwise, primitive solutions are co-
prime, i.e. 1),,gcd( cba . 
 
Association of Pythagorean triples with matrices is not new per se and the ability, via 
three linear transformations, to transform the basic triple (3,4,5) into all other 
Pythagorean triples was first published by Berggren [1]. Such linear transformations 
are represented as 3x3 matrices and this fact appears to been rediscovered in various 
guises thereafter, see Barning [2] which explicitly provides the 3x3 matrices. For a 
more modern, English language source, see [3]. However, the work presented herein 
appears unique and not directly related to these cited references or any other related 
work since it entails a matrix and its eigenvectors in what is, loosely, an identity 
mapping of the eigenvectors but where the matrix is not the identity. 
 
The eigenvectors are those of the following matrix, (symbol A ), which comprises  
‘dynamical’ integer variables RQP ,,  
 

(1.1)  
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A , RQP ,, ℤ, )0,0,0(),,( RQP . 

 
It is noted the matrix is not symmetric, skew-symmetric or invertible (it has zero 
determinant), all of which are common forms of matrix for study. Nevertheless, by 
imposition of a single constraint on its elements, the eigenvalues and eigenvectors of 
A  prove to be of interest in the study of Pythagoras’s theorem. 
 
Before proceeding to the details, the results presented in this paper actually stem from 
simplifications made to a more general theory, and as yet unpublished, on a special 
form of matrix of which A  (1.1) is a simplification. 
 
(2) Eigenvalues and Eigenvectors of A 
 
Defining the following vector X  in the integer variables zyx ,,  
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then the matrix eigenvalue equation for matrix A  (1.1), eigenvalue  , is 
 
(2.2)  XAX  , 
 
and the characteristic equation is 
 
(2.3)  0)det(  IA  . 
 
Expanding (2.3) in full gives 
 
(2.4)  0)( 2223  RQP . 
 
Imposing the following constraint in the variables RQP ,, , termed the 'dynamical 
conservation equation', 
 
(2.5)  2221 RQP  , 
 
then the characteristic equation (2.4) factors as follows 
 
(2.6)  0)1)(1(   , 
 
with three eigenvalues 
 
(2.7)  1 , 0 , 1 . 
 
To each of these eigenvalues correspond three eigenvectors, X , 0X  and X  
satisfying their defining transformations 
 
(2.8) 
(2.8a)     XAX ,  
(2.8b)  00 AX ,  
(2.8c)    XAX . 
 
Expanding equation (2.8a) for the X  eigenvector, using (1.1) for A , gives the three 
linear equations 
 
(2.9) 
(2.9a)  QzRyx   
(2.9b)  PzRxy   
(2.9c)  PyQxz  . 
 
Multiplying (2.9a) by x , (2.9b) by y  and (2.9c) by z , it is seen that zyx ,,  satisfy the 
Pythagoras Theorem 
 
(2.10)  2220 zyx  , 
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and so the eigenvector X , for eigenvalue 1 , is thus a  Pythagorean triple  
 

(2.11)  

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X , zyx ,, ℤ, )0,0,0(),,( zyx . 

 
Defining the eigenvector X  for the eigenvalue 1 , by the triple of integers 

 ,,  as follows, where the inverted sign on   is intentional, 
 

(2.12)  

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


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
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
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X ,  ,, ℤ, )0,0,0(),,(  , 

 
and expanding equation (2.8c) for the X  eigenvector, using (1.1) for A , gives the 
three linear equations 
 
(2.13) 
(2.13a)   QR   
(2.13b)   PR   
(2.13c)   PQ  . 
 
Just as in the 1  case, multiplying (2.13a) by  , (2.13b) by   and (2.13c) by  , 
it is seen that the eigenvector X  also satisfies the Pythagoras Theorem. 
 
(2.14)  2220   . 
 
Thus the eigenvector X  for the eigenvalue 1  is another Pythagorean triple, 
distinct from X  as its eigenvalue is also distinct. 
  
It is noted that the reasoning above can also give two Pythagorean triples if the 

1  equations (2.9) and 1  equations (2.13) use C  and C  instead, 
for some arbitrary, integer constant 1C . However, this is an unnecessary 
complication for the purposes of this paper and its conclusions, and it is found 
sufficient to work with the simplest, non-zero, integer eigenvalues 1 . 
  
For completeness, the eigenvector 0X  is defined here and justified later. However, 
simple algebraic manipulation of (2.8b) using A  (1.1) shows this to be correct, to 
within a scale factor, which is sufficient for an eigenvector solution. Note that 0X  is 
not a Pythagorean triple.  
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Thus, so far, every matrix A  (1.1) with elements RQP ,, , that satisfies constraint 
(2.5), has an eigenvector X  for eigenvalue 1  and an eigenvector X  for 
eigenvalue 1 , both of which are always Pythagorean triples. Given the trace of 
A  is zero then the sum of the eigenvalues is also zero and hence 0  is the third 
eigenvalue with related eigenvector 0X  (2.15).  
 
Having specified eigenvalues, the normal procedure would now be to obtain specific 
eigenvector solutions in terms of the elements RQP ,,  of A . This isn’t actually of 
prime importance here and is deferred to later when analytic solutions are obtained. 
However, solving the linear equations represented by (2.9), for the specific 
eigenvector X  (2.11), is an important and necessary step to formally defining 
integers  ,, , introduced in (2.12) for X . 
       
Algebraically solving equations (2.9) gives six direct expressions relating x , y  and 
z , only two of which are, of course, linearly independent by the nature of the 
eigenvalue problem. 
 
(2.16) 
(2.16a)  xPQRPy )()1( 2   
(2.16b)  yQRPQz )()1( 2   
(2.16c)  zRPQRx )()1( 2   
 
(2.16d)  xRPQPz )()1( 2   
(2.16e)  yPQRQx )()1( 2   
(2.16f)  zQRPRy )()1( 2   
 
Another three alternative relations can also be obtained by equating pairs of the above 
six. 
 
(2.16g)  )()( RPQyPQRz   
(2.16h)  )()( QRPxPQRz   
(2.16i)  )()( QRPxRPQy   
 
All these nine forms are used further below, in section 3, when evaluating each of the 
nine elements of another 'residual' matrix. 
 
It should be noted that any potential divide-by-zero or indefinite 0/0 terms in (2.16), 
arising due to particular values of the dynamical variables P , Q  and R , can actually 
be transformed away by altering them in such a way that the triple ),,( zyx  remains 
invariant. This is possible because the analytic solution, given in Appendix (A), 
shows them to be parameterised, see equations (A1.6c) for R , (A1.12c) for Q  and 
(A1.15e) for P . 
 



Page 6 of 33 
Pythagorean Triples as Eigenvectors and Related Invariants 

 Micro SciTech Ltd. 2010 

So far no specific condition that all variables be restricted to integers has actually 
been necessary, merely a presumption given the paper is about Pythagoras. However, 
an important restriction to integers is now made and serves to formally define the 
divisibility parameters  ,,  as first used in (2.12). 
 
(3) Co-primality Criteria and Divisibility Factors 
 
For arbitrary integers  ,, , termed ‘divisibility factors’, equations (2.16) imply, for 
co-prime, primitive, integer solutions zyx ,, , the following relations (3.1). 
  
(3.1) 
(3.1a)  )1( 2Px   
(3.1b)  )1( 2Qy   
(3.1c)  )1( 2Rz   
 
Since non-primitive triples are allowed, i.e. triples ),,( kzkykx  for non-zero, integer 
factor k , then any common factor k  can effectively be absorbed into  ,, , i.e. 
transferred from zyx ,,  to  ,,  such that the triple ),,(   now becomes non-
primitive, i.e. ),,(  kkk .  
 
The definitions (3.1) imply the following, additional co-primality relations for the 
remaining equations in (2.16), 
 
(3.1d)  )( PQRy   
(3.1e)  )( RPQz   
 
(3.1f)  )( PQRx   
(3.1g)  )( QRPz   
 
(3.1h)  )( RPQx   
(3.1i)  )( QRPy  . 
 
In total, nine variables have now been introduced },,,,,,,,{ RQPzyx , organised 
as three sets of triples. This completes the set of all unknowns and the paper now 
proceeds to obtain the eigenvectors X , 0X , X  and study the relations amongst 
them. 
 
(4) Generation of Solutions as Eigenvectors 
 
To solve for the eigenvectors X , 0X  and X  the standard method would be to solve 
equations (2.8) algebraically in terms of its elements, i.e. the dynamical variables 

QP,  and R . However, this misses a lot of new information that will effectively 
highlight relations between all eigenvectors and new, conjugate eigenvectors X , 0X  
and X , yet to be defined. The eigenvectors will, instead, be obtained by 
determination of a ‘residual’ matrix, denoted by E , 0E , E  for each 
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eigenvector X , 0X , X  respectively. As a consequence of calculating a residual 
matrix, conjugate eigenvectors X , 0X , X  are seen to arise naturally as scale 
factors of the eigenvectors. Note that the name ‘residual’ is unique to this paper as no 
name appears in the literature. However, the method to calculate the residual matrix is 
mentioned in a few texts, e.g. [4], and is also related to 'purification' or 'Richardson's 
purification process'. Generally it can be found in matrix-related books under the 
subject of numerical determination of eigenvalues and eigenvectors. 
 
The residual method derives from a simple property of matrices and their eigenvalues 
known as the Cayley-Hamilton theorem [4], which basically says that a matrix 
satisfies its own characteristic equation. 
 
By the Cayley-Hamilton theorem, the characteristic equation (2.6) can be re-written in 
terms of matrix A  (1.1) as follows, where I  is the identity matrix 
 
(4.1)  ))((0 IAIAA  . 
 
Defining the residual matrices E , 0E , E  for eigenvalues +1, 0, -1 as 
 
(4.2) 
(4.2a)  )( 2 AAE   
(4.2b)  )( 2

0 I AE  
(4.2c)  )( 2 AAE  , 
 
then (4.1) can be re-written in the following three equivalent forms (allowing for a 
legitimate reordering of terms) 
 
(4.3) 
(4.3a)  0)(  EIA  
(4.3b)  00 AE  
(4.3c)  0)(  EIA . 
 
It is now clear that E , 0E , E  are termed 'residual' since each matrix is the 
polynomial remaining after factorisation of (4.1) by the linear factor )( IA   for 

1,0,1  . 
 
Comparing the eigenvector equation 0)(  XIA   (2.8a), for the 1  
eigenvalue, with 0)(  EIA  (4.3a), then it is concluded that the residual matrix 

E  must comprise three column vectors X , each equivalent, to within a scale factor, 
of the eigenvector X . In fact, in the 1  case, the scale factors will be shown to 
be exactly the divisibility factors  ,  and   (3.1). 
 
The same reasoning applies to the other eigenvectors X , 0X  and residual 
matrices E , 0E . 
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Since any eigenvector is always arbitrary, to within a scale factor, the residual matrix 
provides three, equally valid eigenvector solutions, one in each column. All that is 
required to obtain the residual matrix is to evaluate its polynomial definition (4.2) 
 
All residual matrices have an 2A  term which, using A  (1.1), evaluates to 
 

(4.4)  

















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


22
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2

QPQRPR
QRPRPQ
PRPQQR

A . 

 
Using the dynamical conservation equation (2.5), the leading diagonal terms can then 
be re-written to give 
 

(4.5)  
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






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


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
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A . 

 
(5) Residual Matrix E  
 
Substituting for A  (1.1) and 2A  (4.5) into (4.2a) gives the residual matrix E  
 

(5.1)  

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












2

2

2

1
1

1

RPQRQPR
PQRQRPQ
QPRRPQP

E , 

 
and using the co-primality criteria (3.1) this becomes 
 

(5.2)  

















zzz
yyy
xxx





E . 

 
The residual matrix E  is seen to comprise three eigenvector columns with the 
common eigenvector X  and scale factors  ,, , consequently E  can also be 
written as 
 
(5.3)  ),,(   XXXE  . 
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(6) Residual Matrix 0E  
 
Substituting for 2A  (4.5) into (4.2b) gives the residual matrix 0E  as 
 

(6.1)  






















RRQRPR
QRQQQP

RPQPPP
)()()(0E . 

 
The residual matrix 0E  is confirmed as comprising three eigenvector columns, each 
with common eigenvector 0X , as per (2.15), and scale factors P , Q , and R . The 
residual matrix 0E  is re-written in terms of the eigenvector 0X  as 
 
(6.2)  ),,( 0000 XXXE RQP . 
 
Note that further in the paper, when defining eigenvector 0X  (8.2), the scale factors 

P , Q  and R  will be used in preference to P , Q  and R  in (6.2). This change 
is simply a re-scaling by -1 and thus perfectly legitimate for an eigenvector, which is 
only unique to within an arbitrary scale factor. 
 
(7) Residual Matrix E  
 
Substituting for A  (1.1) and 2A  (4.5) into (4.2c) gives the residual matrix E  
 

(7.1)  
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

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






2

2

2

1)(
)(1

1

RPQRQPR
PQRQRPQ
QPRRPQP

E , 

 
and using the co-primality criteria (3.1) this becomes 
 

(7.2)  






















))(()()(
)(
)(

zyx
zyx
zyx





E  

 
This residual matrix is seen to comprise three eigenvector columns with the common 
eigenvector X   (2.12) and scale factors x , y  and z . The residual matrix E  is 
therefore re-written as 
 
(7.3)  ),,(   XXXE zyx . 
 
Note that since Pythagoras is an even, quadratic exponent, the minus sign in the z  
scale factor in (7.2) and the component   in X   (2.12) is immaterial since they 
both square to the same value as their positive counterparts; the product term z  is, of 
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course, also invariant to a simultaneous sign change in both z  and  , i.e. 
))(( zz   . 

 
This completes the evaluation of the residual matrices E , 0E , E  and consequent 
extraction of eigenvectors X , 0X , X  for all eigenvalues 1,0,1   respectively. 
 
(8) Conjugate Eigenvectors 
 
The following conjugate vectors X , 0X , X  are defined by the scale factors in the 
residual matrices E  (5.3), 0E  (6.2) and E  (7.3) respectively, as follows. Note the 
nomenclature is chosen so that the vector dot product relations, e.g. jij

i  ,0XX  
and jij

i  ,0XX , are of a familiar, orthogonal form. 
 
(8.1)   X  
(8.2)    RQP 0X  
(8.3)    zyx X  
 
The sign of 0X  (8.2) is also the reverse of the scale factor in 0E  (6.2), and done for 
reasons of sign consistency upon transformation between all standard and conjugate 
eigenvectors, albeit this is beyond the scope of this paper. However, given 0X  is an 
eigenvector, it is completely arbitrary to within a scale factor, -1 here, and so this sign 
reversal poses no loss of generality, noting that it makes the invariant given by (9.3), 
further below, a value of +1 instead of -1. 
 
(9) Vector Products 
 
With three standard eigenvectors and their conjugates fully defined, the following 
vector dot product relations between them are obtained, whereby the invariant integer 
value on the right is justified further below. 
 
(9.1)  0222  

 zyxXX  
(9.2)  0222  

 XX  
(9.3)  12220

0  RQPXX  
(9.4)  2 




 zyx XXXX  
(9.5)  00

0  
 zRyQxPXXXX  

(9.6)  00
0  

 RQP XXXX  
 
The first and second equations, (9.1) and (9.2), are the Pythagoras equation and hence 
zero. 
 
The third equation (9.3) is the dynamical conservation equation (2.5) and hence equal 
to +1. 
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The fourth equation (9.4) can be verified as equal to +2 by summation of the three 
divisibility relations (3.1a) to (3.1c) to get 
 
(9.7)  zyxRQP   )(3 222 . 
 
Using the dynamical conservation equation (2.5), the left hand term reduces to the 
value +2, hence (9.4). 
 
The fifth equation (9.5) can be verified algebraically by multiplying the equation in x  
(2.9a) by P , y  (2.9b) by Q  and z  (2.9c) by R  and summing appropriately 

)( zRyQxP   to see the sum is zero. 
 
Justification for the sixth equation (9.6) has to wait until the analytic solution for 

RQP ,,  and  ,,  is obtained, which follows shortly. 
 
For completeness, the following vector cross products are given 
 
(9.8)  0^^^ 00   XXXXXX  
  0^^^ 00   XXXXXX  
 
(9.9)  

  XXXXX ^^ 00  
  

  XXXXX ^^ 00  
 
(9.10)  02^^ XXXXX    
  02^^ XXXXX    
 
(9.11)  

  XXXXX 00 ^^  
  

  XXXXX 00 ^^ . 
 
Note that they are positive when the indices cycle in the order +1, 0, -1, and negative 
when in the order +1, -1, 0, and all vector product relations give identical results when 
the index is consistently raise/lowered throughout. 
 
Using the dot product relations (9.1) to (9.6), the vector triple product is seen to be  
 
(9.12)  2^^ 0

0  






 XXXXXXXXXX  

 
Conversely, the vector triple product is -2 if the indices cycle in the -1, 0, +1 order, 
i.e.  
 
(9.13)  2^^ 0

0  






 XXXXXXXXXX . 

 
The vector triple product is another invariant, albeit a consequence of the previously 
assigned invariants (9.1) to (9.6) and cross product relations (9.8) to (9.11). 
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Lastly, it is also noted the following dyadic products give the residual matrices 
 
(9.14)  

  XXE  
(9.15)  0

00 XXE   
(9.16)  

  XXE . 
 
Thus, all three familiar vector products, i.e. the dot, cross and dyadic products, give 
meaningful results. 
 
(10) An Analytic Pythagoras Solution 
 
Given that Pythagoras has a standard analytic solution for all triples it is, perhaps, not 
surprising that all variables and equations can be solved with similar, integer 
parameterisations. In total there are nine variables separated into three triples 

),,( RQP , ),,( zyx  and ),,(  . A complete solution is obtained when all nine 
unknowns },,,,,,,,{ RQPzyx  are determined that satisfy the eigenvector 
equations (2.8). 
 
For the sake of brevity, the algebraic details are supplied in Appendix (A), with 
example data supplied in Appendix (E), and only a summary of all key results is 
provided here. A complete summary of all key equations is given in Appendix (B) for 
quick reference. 
 
As expected, the Pythagorean triple ),,( zyx  is parameterised by two arbitrary 
integers, k  and l , subject to the following conditions which allow one, but not both, 
of x  or y  to be zero. There is also a coprimality constraint, 1),gcd( lk , applied so 
that the congruence (A1.3a), further below, has integer solutions. 
 
(A1.2)  lk, ℤ, )0,0(),( lk , 1),gcd( lk . 
 
The triple ),,( zyx  is then given by the familiar Pythagorean parameterisation 
 
(A1.14b) klx 2  
(A1.9d) )( 22 kly   
(A1.3d) )( 22 klz  . 
 
Note that the parameterisation arises through the process of actually solving the 
divisibility factor equations (3.1a) to (3.1c), and is not an a priori assumption. 
Furthermore, this particular parameterisation, with x  assigned even and y  assigned 
odd, is an arbitrary choice made in the process of obtaining a solution; the choice can 
equally be reversed to give odd x  and even y . This is an important point since it is 
essential to the argument, given later, that the analytic solution for x , y  and z  spans 
all Pythagorean triples as per definition (1.0), e.g. triple )5,3,4(  is, strictly speaking, 
distinct from )5,4,3( . See Appendix (D) for an extension of the analytic solution in 
Appendix (A) to all Pythagorean triples. 
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To solve for ),,( RQP  and ),,(  , two more integers s  and t  are introduced as 
solutions to the following linear Diophantine equation (A1.3a) in integers k  and l  
 
(A1.3a) ltks 1 , ts, ℤ. 
 
This equation is solved by standard methods [5], to obtain two particular, integer 
solutions s  and t  , and general solutions s  and t  parameterised by a third, arbitrary, 
integer parameter m  
 
(A1.4a) mlss   
(A1.4b) mktt  . 
 
Thus, given a particular solution s  and t  , there are now effectively three arbitrary 
parameters k , l  and m . Integer m  can be set to zero such that ss  , tt   in 
(A1.4a) and (A1.4b). The 0m  case is also referred to as a primitive solution. 
However, to retain full generality, and using integer parameters k , l  and m  and 
general solution s  and t , then ),,( RQP  and ),,(   are obtained from the following 
relations 
 
(A1.15c) )( ltksP   
(A1.9b) )( ktlsQ   
(A1.3b) )( ktlsR   
 
(A1.16a) st2  
(A1.9c) )( 22 st   
(A1.3c) )( 22 st  . 
 
Looking at the above solutions for  ,  and  , it is seen they also constitute a 
Pythagorean triple with the standard parameterisation excepting the sign of  . 
However, given integer s  can be negative without affecting   or  , this is 
immaterial. 
 
Note that one of   or   can legitimately be zero. If  0  then    and, 

conversely, if 0  then   . Invariant (9.4) shows they cannot all be zero and 
so neither can   and   both simultaneously be zero. However the single case when 

0  is a special case, briefly described as follows. Setting 1k  in (A1.14b) gives 
lx 2 , )1( 2  ly  and )1( 2  lz , i.e. those Pythagorean triples where x  and z  

differ by 2. The simplest example is when 2l  and the )5,3,4( triple is obtained, see 
Appendix (C). With 1k  the solution to the Diophantine equation ltks 1  
(A1.3a) is lts  1 . A solution is obtained when 0t  and so 1s , which gives 

0  (A1.16a), 1  (A1.9c) and 1  (A1.3c) and thus the scale factor triple 
),,(   is )1,1,0(  . 

 
For the same value of k  and l , and therefore the same primitive triple ),,( zyx , a 
different value for s  and t  can be chosen by varying parameter m  in (A1.4) and 
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thereby obtain a different triple ),,(  . Setting 1m , with particular solutions 
0t  and 1s , then (A1.4) gives 3s  and 1t  (using lts  1 ), and the 

),,(   triple is )10,8,6(  , i.e. twice the primitive )5,4,3(  triple, disregarding 
sign. Setting 2m  gives the primitive triple )29,21,20(),,(  , and 4m  
gives )97,65,72(   etc. Suffice to note, an odd value for m  always returns a non-
primitive triple with common factor 2. 
 
Returning to the analytic solution, the equation (9.6) can now be verified as zero by 
direct substitution for  ,,  and RQP ,,  (see above), and expanding in full, then all 
the terms are seen to cancel as follows 
 
(A1.30b) 0))(())(())(2( 2222  tksltstkslstltksst . 
 
With 3 arbitrary parameters k , l , m , and six equations, this almost completes the 
parametric solution to the nine unknowns ),,( RQP , ),,( zyx  and ),,(  . 
Nevertheless, the analytic solution for x  (A1.14b), y  (A1.9d) and z  (A1.3d) is 
known not to give all Pythagorean triples, according to the definition (1.0). To all 
intents and purposes, the analytic solution is usually satisfactory to derive all 
primitive triples. However, to include every possible solution, three extra cases 
require consideration. The first case is where the solution generates a triple ),,( zyx  
and cannot thus generate the triple ),,( zxy . The second case is the inability to 
generate all non-primitive triples. Lastly, the third case is the inability to generate a 
negative value for z. The arguments to show that it is possible to extend the 
eigenvector solutions to include all Pythagorean triples are given in Appendix (D). 
 
(11) Discussion 
 
The expressions for x , y  and z  are all functions of k  and l  only whilst the 
expressions for  ,   and   are all functions of s  and t  only and parameterised by 
arbitrary parameter m . The expressions for the dynamical variables P , Q  and R  are 
mixed functions of all four parameters l , k , s  and t  and can therefore be thought of 
as the link between the two sets of triples ),,( zyx and ),,(  . 
 
The triple ),,( zyx  is uniquely defined by parameters l and k  but triples ),,( RQP  
and ),,(   are effectively both parameterised by integer m , due to their 
dependence on s  and t . Given m  is arbitrary, then it is concluded every primitive 
Pythagorean triple ),,( zyx is associated with an infinite set of Pythagorean triples 

),,(   and an infinite set of dynamical variables ),,( RQP .  
 
The analytic solution for ),,( zyx , although essentially derived from first principles 
herein, is just the standard, textbook Pythagorean parameterisation and gives all 
primitive Pythagorean triples. Arguments in Appendix (D) extend the solution to 
include all Pythagorean triples and therefore the eigenvector X  (2.11), of matrix A  
(1.1), spans all Pythagorean triples according to definition (1.0). Hence the eigenvalue 

1  can be associated with every Pythagorean triple. 
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Once the X  eigenvector is determined, as parameterised by integers k  and l , the 
analytic solution then gives the eigenvector X  (2.12) in terms of integer parameters 
s  and t  which, themselves, are dependent upon a Diophantine equation (A1.3a) in k  
and l . Thus, with the X  eigenvector obtained first, the X  eigenvector may not, and 
does not, span all Pythagorean triples even though its standard Pythagorean 
parameterisation in s  and t  may make it superficially appear to be the case. This is a 
consequence of s  and t  constrained to satisfy the Diophantine equation (A1.3a). 
Nevertheless, the process of obtaining an analytic solution could be reversed by first 
obtaining the X  eigenvector. The parameterisation in terms of s  and t  would then 
be free to take arbitrary values and the integer parameters k  and l  would now be 
those constrained by the Diophantine equation (A1.3a). Hence, by reversing the 
arguments above for X  to first consider X  instead, the eigenvalue 1  can also 
be associated with every Pythagorean triple. In summary, either the set of all X  or 
the set of all X  spans the primitive Pythagorean triples but not both simultaneously. 
Choosing one unique solution for X  effectively generates an infinite subset of 
Pythagorean triples X  and vice-versa. 
 
Finally, given the trace of the matrix is the sum of the eigenvalues, the only other 
eigenvalue has to be 0  with related eigenvector 0X  (2.15). This  0X  eigenvector 
has an analytic solution for all its elements ),,( RQP  such that they satisfy the 
dynamical conservation equation (2.5). 
 
(12) Conclusions 
 
It has been shown in section (2) that any matrix of the form A  (1.1), with elements 
P , Q  and R , subject to the constraint (2.5), has three eigenvalues 1,0,1   and 
three associated eigenvectors X , 0X  and X  two of which, X  and X , are 
Pythagorean triples. A complete, analytic solution has been derived, see Appendix 
(A), giving integer solutions for all matrix elements P , Q  and R  of A , satisfying 
constraint (2.5), and also providing integer solutions for all eigenvectors X , 0X  
and X . The analytic solution gives eigenvectors X  that span all primitive 
Pythagorean triples. Additional arguments in Appendix (D) extend these eigenvectors 
to cover every Pythagorean triple. As a consequence, every Pythagorean triple can be 
associated with the eigenvector X  of matrix A , for eigenvalue 1 , and all such 
matrices A  are similar with the same three eigenvalues 1,0,1  . This proves the 
original assertion that every Pythagorean triple is related to a matrix with these three 
eigenvalues. 
 
With three eigenvectors there are a maximum of six possible, unique, vector dot 
product relations between them, (9.1) to (9.6), and it is shown that all six such 
products produce a further six integer invariants in addition to the three eigenvalues. 
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Appendices 
 
Appendix (A) 
The Analytic Solution 
 
Obtaining a solution in all nine variables },,,,,,,,{ RQPzyx  starts by solving the 
defining equation (3.1c) for the divisibility factor  , reproduced below 
 
(3.1c)  )1( 2Rz  . 
 
Consider the following algebraic identity with which (3.1c) will be compared 
 
(A1.1)  222222 )()())(( ktlsltksklst  . 
 
The quantities k  and l  are chosen as arbitrary, integer parameters subject to the 
following conditions, whilst s  and t  are integer values to be determined 
 
(A1.2)  lk, ℤ, )0,0(),( lk , 1),gcd( lk . 
 
These conditions allow one, but not both, of x  or y  to be zero. Neither is there any 
constraint on lk 1  such that xy  . The coprimality constraint 1),gcd( lk  is 
applied so that the congruence (A1.3a), further below, has integer solutions. 
 
Each of the bracketed terms in the identity (A1.1) is assigned to integers R ,  and z  
as in (3.1c) to give the following relations 
 
(A1.3) 
(A1.3a) ltks 1 , ts, ℤ. 
(A1.3b) )( ktlsR   
(A1.3c) )( 22 st   
(A1.3d) )( 22 klz  . 
 
By (A1.3d), choosing k  and l  immediately fixes the value for z . 
 
The assignment of )( ktls   to R , as opposed to )( ktls   in (A1.3b), is explained 
further below when the dynamical variable Q  is evaluated. 
 
Note that the assignment of   and z  in (A1.3c) and (A1.3d) could be swapped such 
that zts  )( 22  and  )( 22 lk . In fact, the choice made is such that the 
coordinate solution ),,( zyx that emerges is purposefully chosen to represent the 

1  eigenvector X  and ),,(    to represent the eigenvector X  for the 
1  eigenvalue. 
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With k  and l  chosen, and consequently z  defined by (A1.3d), the equation (A1.3a) 
can be solved as a linear Diophantine equation in unknown integers s  and t . Using 
the solutions for s  and t , then R  and   can be determined from (A1.3b) and 
(A1.3c). See a standard number theory text, e.g. [5], for solving the congruence 
(A1.3a). 
 
Denoting s  and t   as particular solutions to the Diophantine equation (A1.3a) then, 
for arbitrary integer m , the general solution is given by 
 
(A1.4) 
(A1.4a) mlss   
(A1.4b) mktt  . 
 
Substituting for s  and t  into (A1.3c) derives the general solution for  
 
(A1.5)  )()(2 22222 lkmtkslmts  . 
 
The general solution for R  can be obtained by substituting for s  and t  into (A1.3b) 
 
(A1.6a) )()( 22 klmtkslR  . 
 
Denoting a particular solution for R  by 'R , where 
 
(A1.6b) )(' tkslR  , 
 
and using (A1.3d) to substitute for )( 22 kl  in terms of z  in (A1.6a), the most 
general solution for R  becomes 
 
(A1.6c) mzRR  . 
 
Denoting a particular solution for   as   , then (A1.3c) becomes 
 
(A1.7a)  22 ts  . 
 
Using this and (A1.3d) for z , (A1.6b) for 'R , then the general solution for   (A1.5) 
can be re-expressed as 
 
(A1.7b) zmRm 22   . 
 
To summarise, by choice of integers k , l , and m , the dynamical variable R , 
divisibility factor   and coordinate z  can all be determined by solving a single, 
linear Diophantine equation (A1.3a). That even one Diophantine equation is required 
is due to the fact that every eigenvector solution X  is actually associated with a 
corresponding infinite set (equivalence class) of dynamical variables, here all linked 
by integer parameter m . The last equation (A1.6c) shows that R  is arbitrary to within 
a multiple m  of z . Likewise, every eigenvector solution X  is also associated with a 
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corresponding infinite set of divisibility factors  ,, ; here the value of   (A1.7b) 
is arbitrary according to the choice of parameter m . 
 
By using a very similar identity to (A1.1) below, one of the other two dynamical 
variables, Q  or P , can also be determined in a similar manner. 
 
(A1.8)  222222 )()())(( ktlsltksklst   
 
The question is, which of the two, Q  or P , can it be related to? 
 
Suppose (A1.8) relates to Q , then each bracketed term in (A1.8) is assigned to 
integers Q ,   and y as follows, whereby integers k  and l  are as above, 
 
(A1.9) 
(A1.9a) )(1 ltks   
(A1.9b) )( ktlsQ   
(A1.9c) )( 22 st   
(A1.9d) )( 22 kly  . 
 
The identity (A1.8) then becomes 
 
(3.1b)  21 Qy  . 
 
However, if (A1.8) was related to P  instead of Q  then (A1.8) would look like 
 
(3.1a)  21 Px  , 
 
and P  would be assigned to the same quantity as Q , namely, 
 
(A1.10) )( ktlsP  . 
 
In principle, (A1.8) could be used to determine either P  or Q . As might be 
suspected, it is largely irrelevant except, once a choice is made, the other dynamical 
variable cannot be derived from the same equation. This choice may also result in the 
coordinate y  value being smaller than the x  coordinate value, but this is also largely 
immaterial barring convention. With this in mind, (A1.8) will be solved for Q ,   and 
y  using relations (A1.9), and so the coordinate y  is instantly fixed by k  and l  in 
(A1.9d). 
 
The general solution to the Diophantine equation (A1.9a) has already been evaluated 
in (A1.4).  However, does the arbitrary integer m  in (A1.4) have to have the same 
value? In fact, for consistency in transformations (beyond the scope of this paper), it 
actually has to be m ; the particular solution remains the same two integers s and t   
(A1.4). 
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Substituting for s  and t  from (A1.4) into (A1.9c) derives  
 
(A1.11) )()(2 22222 klmtkslmst  . 
 
To derive Q , substitute for s  and t  (A1.4) into (A1.9b). 
 
(A1.12a) )()( 22 klmtkslQ  . 
 
Denoting a particular solution for Q  by 'Q , where 
 
(A1.12b) )(' tkslQ  , 
 
and using (A1.9d) to substitute for )( 22 kl  in terms of y , the general solution for Q 
(A1.12a) can be re-written 
 
(A1.12c) myQQ  . 
 
This equation shows that Q  is arbitrary to within an integer multiple integer m  of y . 
 
Denoting a particular solution for   as    
 
(A1.13a)  22 st  , 
 
and using (A1.9d) for y , and (A1.12b) for 'Q , the general solution for  (A1.11) is 
re-expressed as 
 
(A1.13b) ymQm 22   . 
 
Lastly, variables P ,   and x  have to be obtained. 
 
With y  given by (A1.9d) and z  by (A1.3d), x  can be obtained directly using the 
Pythagoras equation (2.10) 
 
(A1.14a)  222222222 )()( klklyzx  . 
 
Taking the positive root for x, this simplifies to 
 
(A1.14b) klx 2 . 
 
It is noted that the parameter solutions for x  (A1.14b), y  (A1.9d) and z  (A1.3d), are 
the familiar parameterisations often used when expressing the solutions to Pythagoras 
(2.10). 
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With x  now determined, justification for the sign allocation of a minus to R  in 
(A1.3b) can be given using equation QzRyx   (2.9a) for x . Substituting for Q  
(A1.9b), R  (A1.3b), y  (A1.9d) and z  (A1.3d), then (2.9a) becomes 
 
(A1.14c) ))(())(( 2222 klktlsklktlsx  , 
 
Expanding the brackets, and using (A1.9a) for )( ltks  , this simplifies to klx 2 , 
which is as expected according to (A1.14b). If R  were not given the sign choice in 
(A1.3b), then the expression for x  actually evaluates to 33 22 tkslx   which 
contradicts (A1.14b). 
 
Having obtained x , the equation xPRzyQ 0  (9.5) is used to obtain P . 
Substituting for x  (A1.14b), y  (A1.9d), z  (A1.3d), Q  (A1.12a) and R  (A1.6a) into 
(9.2), and rearranging to give P  
 
(A1.15a)
 2222222222 )()())(())((2 klmklmtkslkltkslklklP  , 
 
which tidies to 
 
(A1.15b) klmtlskP 2)(  . 
 
Substituting for s  and t   from (A1.4), this is also written in general terms as 
 
(A1.15c) )( ltksP  . 
 
Denoting a particular solution for P  by 'P  where 
 
(A1.15d) )(' tlskP  , 
 
and using (A1.14b) to substitute for lk2 in terms of x , the most general solution 
becomes 
 
(A1.15e) mxPP  . 
 
This equation shows that P  is arbitrary to within integer multiples m  of x . 
 
To obtain  , an expression for 2P  is first obtained by substitution for Q  (A1.9b) 
and R (A1.3b) into the dynamical conservation equation, 2221 RQP   (2.5), to 
give 
 
(A1.15f) klstP 412  . 
 
This makes for a simple evaluation of   by substitution for 2P  from (A1.15f) into 

)1( 2Px   (3.1a), to give, using klx 2  (A1.14b), 
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(A1.16a) st2 . 
 
Substituting for s  and t  from (A1.4), the general solution for   is 
 
(A1.16b)  lkmtlskmts 22)(22  . 
 
Denoting a particular solution for   as    then 
 
(A1.16c)  ts  2 , 
 
and using (A1.15d) for 'P , and (A1.14b) for x , the general solution for   (A1.16b) 
can be re-written as 
 
(A1.16d)  xmPm 22  . 
 
This completes the analytic solution for all nine variables },,,,,,,,{ RQPzyx  and 
thus solutions to the dynamical conservation equation (2.5) and the two Pythagoras 
equations (2.10) and (2.14). Example data is provided in Appendix (E). 
 
Lastly, it is noted this analytic solution does not give all Pythagorean triples and 
Appendix (D) is devoted to extending the arguments to cover every possible 
Pythagorean triple in accordance with definition (1.0). 
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Appendix (B) 
Key Equation summary 
 
Matrix A  in 'dynamical', integer variables RQP ,,  
 

(1.1)  

















0
0

0

PQ
PR
QR

A , RQP ,, ℤ, )0,0,0(),,( RQP . 

 
Dynamical conservation equation 
 
(2.5)  2221 RQP  . 
 
Pythagoras equation for ),,( zyx  and ),,(   
 
(2.10)  2220 zyx   
(2.14)  2220   . 
 
Divisibility factors defining equations 
 
(3.1a)  )1( 2Px   
(3.1b)  )1( 2Qy   
(3.1c)  )1( 2Rz  . 
 
Analytic solution for all },,,,,,,,{ RQPzyx  
 
Arbitrary integers k  and l  subject to the conditions 
 
(A1.2)  lk, ℤ, )0,0(),( lk , 1),gcd( lk . 
 
Parametric solution for zyx ,,  
 
(A1.14b) klx 2  
(A1.9d)  )( 22 kly   
(A1.3d)  )( 22 klz  . 
 
Linear Diophantine Equation in integers s  and t  
 
(A1.3a) ltks 1 , ts, ℤ. 
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Particular, integer solution s  and t  , and general solutions s  and t  parameterised by 
arbitrary, integer m  
 
(A1.4a)  mlss   
(A1.4b) mktt  . 
 
Dynamical variables ),,( RQP  
 
(A1.15c)  )( ltksP  , 
(A1.9b)  )( ktlsQ   
(A1.3b)  )( ktlsR  . 
 
Divisibility factors ),,(   
 
(A1.16a)  st2  
(A1.9c)  )( 22 st   
(A1.3c)  )( 22 st  . 
 
Eigenvalues 
 
(2.7)  1 , 0 , 1 . 
 
Standard Eigenvectors 
 

 (2.11)  

















z
y
x

X , (2.15) 
















R
Q

P

0X , (2.12)























X . 

 
Conjugate eigenvectors 
 
(8.1)   X  
(8.2)    RQP 0X  
(8.3)    zyx X . 
 
Eigenvector Equations 
 
(2.8a)     XAX , 1  
(2.8b)  00 AX , 0  
(2.8c)    XAX , 1 . 
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Residual matrices 
 
(5.3)  ),,(   XXXE   
(6.2)  ),,( 0000 XXXE RQP  
(7.3)  ),,(   XXXE zyx . 
 
Residual matrices as dyadic products 
 
(9.14)  

  XXE  
(9.15)  0

00 XXE   
(9.16)  

  XXE . 
 
Eigenvector dot product, invariants 
 
(9.1)  0222  

 zyxXX  
(9.2)  0222  

 XX  
(9.3)  12220

0  RQPXX  
(9.4)  2 




 zyx XXXX  
(9.5)  00

0  
 zRyQxPXXXX  

(9.6)  00
0  

 RQP XXXX  
 
Eigenvector cross products 
 
(9.8)  0^^^ 00   XXXXXX  
  0^^^ 00   XXXXXX  
 
(9.9)  

  XXXXX ^^ 00  
  

  XXXXX ^^ 00  
 
(9.10)  02^^ XXXXX    
  02^^ XXXXX    
 
(9.11)  

  XXXXX 00 ^^  
  

  XXXXX 00 ^^ . 
 
The eigenvector triple product is also an invariant with a value of 2  
 
(9.12)  2^^ 0

0  






 XXXXXXXXXX  



Page 26 of 33 
Pythagorean Triples as Eigenvectors and Related Invariants 

 Micro SciTech Ltd. 2010 

 
Appendix (C) 
Example. Pythagorean Triple (4,3,5) 
 
Choose integers k  and l  subject to (A1.2) 
 
(C1.1)  2l , 1k . 
 
The triple ),,( zyx  is then given by the familiar Pythagoras parameterisations klx 2  
(A1.14b), )( 22 kly   (A1.9d), and )( 22 klz   (A1.3d) 
 
(C1.2)  4x , 3y , 5z . 
 
Solve the linear Diophantine equation ltks 1  (A1.3a), to give a general solution 
for s , t  in terms of an arbitrary integer parameter m  
 
(C1.3)  ms 21 , mt  . 
 
The triple ),,( RQP  can then be obtained from )( ltksP   (A1.15c), )( ktlsQ   
(A1.9b), and )( ktlsR   (A1.3b), also parameterised by m  
 
(C1.4)  mP 41  
(C1.5)  mQ 32   
(C1.6)  mR 52  . 
 
The divisibility factor triple ),,(   is obtained from st2  (A1.16a), 

)( 22 st   (A1.9c), and )( 22 st   (A1.3c), parameterised by m  
 
(C1.7)  )24( 2 mm   
(C1.8)  )143( 2  mm  
(C1.9)  )145( 2  mm . 
 
For the primitive solution 0m  and so s  and t  in (C1.3) become 
 
(C1.10) 1s , 0t . 
 
Substituting 0m  into (C1.4) to (C1.9), the following values for the dynamical 
variables and scale factors are obtained 
 
(C1.11a) 1P , 2Q , 2R  
(C1.11b) 0 , 1 , 1 . 
 
It is seen that the triple ),,(   is almost trivial in so far as 0  and hence 

  . As discussed earlier in section (10), this situation can be remedied, if so 
desired, by varying free parameter m  - using even values only to obtain primitive 
triples. For example, substituting 2m  into (C1.4) to (C1.9), gives the primitive 
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triple )29,21,20(),,(   with dynamical variables )12,8,9(),,( RQP . 
However, continuing with )1,1,0(),,(  , then with all variables assigned, 
(C1.2), (C1.11a) and (C1.11b), the eigenvectors are 
 

(C1.12)  

















5
3
4

X , 





















2
2
1

0X , 



















1
1

0
X , 

 
(C1.13)  110 X ,  2210 X ,  534 X . 
 
Using the values for RQP ,,  (C1.11a), the matrices A  (1.1) and 2A  are 

(C1.14) 





















012
102
220

A , 





















542
432
220

2A . 

 
Using A  and 2A , the residual matrices E , 0E , E  are calculated from (4.2) as 
 

(C1.15a) 






















550
330
440

E , 

 
(C1.15b) )1,.1,0(   XXXE , 
 

(C1.16a) 



















534
534

000
E , 

 
(C1.16b) )5,3,4(   XXXE , 
 

(C1.17a) 





















442
442
221

0E , 

 
(C1.17b) )2,2,1( 0000 XXXE  . 
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Appendix (D) 
An extension to all Pythagorean triples 
 
The analytic solution for ),,( zyx , as given by klx 2  (A1.14b), )( 22 kly   
(A1.9d) and )( 22 klz   (A1.3d), and subject to the condition )0,0(),( lk  and 

1),gcd( lk , (A1.2), is known not to give all Pythagorean triples according to 
definition (1.0). Specifically, there are three missing cases: 
 
Case 1) if it generates the triple ),,( zyx  then it will not generate the triple ),,( zxy ;  
 
Case 2) it does not span the complete set of non-primitive triples, i.e. it does not give 
all triples ),,( CzCyCx  for arbitrary, non-zero, integer constant C , where ),,( zyx  is a 
primitive Pythagorean triple; 
 
Case 3) it cannot give a negative value for z , regardless of the values of k  and l . 
 
(D1) Case 1. This first case has already been mentioned in section (10) and is trivially 
resolved by swapping the solution for y  (A1.9d) with x  (A1.14b) when making the 
decision whether to solve for dynamical variable P  or Q  first, after obtaining R , see 
Appendix (A), equation (A1.8) onward. It is also necessary to swap the solutions for 
Q  with P  and   with   at the same time such that the association of x  with 

),( P , and y  with ),( Q , is preserved and all equations can be used, as defined, 
without any need to swap terms. 
 
(D2) Case 2. Because the analytic solution gives all primitive triples ),,( zyx , and 
since each triple forms an eigenvector X  (2.11) for eigenvalue 1 , eigenvector 
equation (2.8a), then X , and consequently ),,( zyx , is arbitrary to within a scale 
factor. So, for non-zero, integer constant C , the vector XC  is also a valid solution to 
(2.8a) for eigenvalue 1 . Consequently, every non-primitive, Pythagorean triple 

),,( CzCyCx  can also be associated with the matrix A , eigenvalue 1 . 
 
The same argument also applies to the other Pythagorean triple ),,(  , eigenvector 

X  (2.12), eigenvalue 1 , eigenvector equation (2.8c). However, as already 
mentioned in section (10), the triple ),,(   itself may already be non-primitive. 
 
As far as this paper is concerned, the argument above for X  is sufficient for the 
conclusion reached in section (12). However, it should be noted that the scaling of 
eigenvectors, e.g. XC  and XC , does affect the non-zero invariants, e.g. (9.3) and 
(9.4). The subject is generally beyond the scope of this paper but, for advance 
information only, a consistent scaling can actually be applied to all three eigenvectors 

XC , 0XC , XC  and their conjugates XC , 0XC  and XC , with a consequential re-
scaling of the invariants. This does mean that invariant quantities only remain 
invariant for all eigenvectors in the solution space for a fixed value of C , and change 
if the value of C  is changed. Nevertheless, given the solution space is infinite for 
each value of C , the invariant quantities are not without significance. 
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For an example of eigenvector scaling, the two non-zero invariants, given by (9.3) and 
(9.4), become  
 
(D2.1)  22222220

0 CRCQCPCCC  XX  
(D2.2)  22))(())(())(( CCzCCyCCxCCC  

 XX . 
 
The vector triple products scale by 3C  since they involve a product of three vectors. 
For example, (9.12) becomes 
 
(D2.4)  30 2^ CCCC   XXX . 
 
The topic of scaling is more advanced, and rescaling invariants is not the only issue. 
A second issue arises when examining equations (2.9), (2.16) and (3.1). These no 
longer hold true if a direct substitution of the linearly scaled variables is made for the 
original, un-scaled variables. For example, divisibility factor   is defined by (3.1a) as 

)1( 2Px  , and replacing all variables by their scaled equivalents gives 
 
(D2.5)  ))(1())(( 2CPCxC  . 
 
Since the primitive (un-scaled) variables  , x  and P  satisfy the defining equation 
for  , i.e. )1( 2Px   (3.1a), then (D2.5), in its scaled form above, cannot also be 
satisfied in the general case when 1C . In fact, this is remedied by replacing the  

+1 term in (D2.5) by 2C  to give the following  
 
(D2.6)  ))(())(( 22 CPCCxC  . 
 
It is seen that a factor of 2C  can now be divided throughout (D2.6) to give and the 
original, un-scaled definition. 
 
This problem, and the need to modify invariants, is directly connected with non-unity 
eigenvalues, C , 1C . But, as stated, this topic is beyond the scope of this 
paper and the information provided here is merely to clarify any seemingly 
unresolved issues. 
 
 (D3) Case 3. Whilst a negative value for k  or l  (not both) can be used to obtain a 
negative value of x , and making lk   can be used to make a negative value of y  
by (A1.9d), it is not possible to get a negative value of z  by changing either k  or l  
since )( 22 klz   (A1.3d). However, the aforementioned case 2 rescues the situation 
since the scaling constant C  can be made negative, e.g. 1C , to simultaneously 
reverse the sign of all elements ),,( zyx  of X . Note that since 1C , this will not 
alter any invariants. If it is also desired, the sign and/or relative magnitude of arbitrary 
integers k  or l  can then be separately modified to achieve any desired sign 
combination of the elements x  and y , whilst keeping z  negative. It is therefore 
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concluded every sign combination of the elements of the eigenvector X  can be 
obtained by suitable choice of k , l  and C . 
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Appendix (E) 
Example Data 
 
The following table gives the complete, analytic solution for all variables, for values 
of lk,  (A1.2) from 2l  to 20l  and 1k  to lk  , for each value of k , where 

lk  , 1),gcd( lk  and, additionally, )2(mod1 kl , i.e. only an odd k , even l  
combination or vice versa. 
 
The list is sorted by l  value, then k  value, which does not give the conventional 
listing of smallest value of x , in a Pythagorean triple ),,( zyx , first. The x  value is 
always even, as per the solution (A1.14b) and the y  value (A1.9d) always odd. The 
list covers all the Pythagorean triples 40..1x , plus others. But due to the way it is 
computer generated on k  and l , the triple )841,840,41( is the first not to appear, albeit 
there are higher triples present such as )125,117,44( . 
 
All variables are calculated according to the analytic solution in Appendix (A) with 
the appropriate equations reproduced below. 
 
(A1.14b) klx 2  
(A1.9d) )( 22 kly   
(A1.3d) )( 22 klz   
 
(A1.3a) ltks 1  
 
(A1.15c) )( ltksP   
(A1.9b) )( ktlsQ   
(A1.3b) )( ktlsR   
 
(A1.16a) st2  
(A1.9c) )( 22 st   
(A1.3c) )( 22 st  . 
 
 l   k   x    y    z   s   t   P    Q   R               
-- -- --- --- --- -- -- ---- ---- ---- ---- ---- ---- 
 2  1   4   3   5  1  0   -1   -2   -2    0   -1   -1 
 3  2  12   5  13  2  1   -7   -4   -8   -4   -3   -5 
 4  1   8  15  17  1  0   -1   -4   -4    0   -1   -1 
 4  3  24   7  25  3  2  -17   -6  -18  -12   -5  -13 
 5  2  20  21  29  3  1  -11  -13  -17   -6   -8  -10 
 5  4  40   9  41  4  3  -31   -8  -32  -24   -7  -25 
 6  1  12  35  37  1  0   -1   -6   -6    0   -1   -1 
 6  5  60  11  61  5  4  -49  -10  -50  -40   -9  -41 
 7  2  28  45  53  4  1  -15  -26  -30   -8  -15  -17 
 7  4  56  33  65  2  1  -15  -10  -18   -4   -3   -5 
 7  6  84  13  85  6  5  -71  -12  -72  -60  -11  -61 
 8  1  16  63  65  1  0   -1   -8   -8    0   -1   -1 
 8  3  48  55  73  3  1  -17  -21  -27   -6   -8  -10 
 8  5  80  39  89  5  3  -49  -25  -55  -30  -16  -34 
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 8  7 112  15 113  7  6  -97  -14  -98  -84  -13  -85 
 9  2  36  77  85  5  1  -19  -43  -47  -10  -24  -26 
 9  4  72  65  97  7  3  -55  -51  -75  -42  -40  -58 
 9  8 144  17 145  8  7 -127  -16 -128 -112  -15 -113 
10  1  20  99 101  1  0   -1  -10  -10    0   -1   -1 
10  3  60  91 109  7  2  -41  -64  -76  -28  -45  -53 
10  7 140  51 149  3  2  -41  -16  -44  -12   -5  -13 
10  9 180  19 181  9  8 -161  -18 -162 -144  -17 -145 
11  2  44 117 125  6  1  -23  -64  -68  -12  -35  -37 
11  4  88 105 137  3  1  -23  -29  -37   -6   -8  -10 
11  6 132  85 157  2  1  -23  -16  -28   -4   -3   -5 
11  8 176  57 185  7  5 -111  -37 -117  -70  -24  -74 
11 10 220  21 221 10  9 -199  -20 -200 -180  -19 -181 
12  1  24 143 145  1  0   -1  -12  -12    0   -1   -1 
12  5 120 119 169  5  2  -49  -50  -70  -20  -21  -29 
12  7 168  95 193  7  4  -97  -56 -112  -56  -33  -65 
12 11 264  23 265 11 10 -241  -22 -242 -220  -21 -221 
13  2  52 165 173  7  1  -27  -89  -93  -14  -48  -50 
13  4 104 153 185 10  3  -79 -118 -142  -60  -91 -109 
13  6 156 133 205 11  5 -131 -113 -173 -110  -96 -146 
13  8 208 105 233  5  3  -79  -41  -89  -30  -16  -34 
13 10 260  69 269  4  3  -79  -22  -82  -24   -7  -25 
13 12 312  25 313 12 11 -287  -24 -288 -264  -23 -265 
14  1  28 195 197  1  0   -1  -14  -14    0   -1   -1 
14  3  84 187 205  5  1  -29  -67  -73  -10  -24  -26 
14  5 140 171 221  3  1  -29  -37  -47   -6   -8  -10 
14  9 252 115 277 11  7 -197  -91 -217 -154  -72 -170 
14 11 308  75 317  9  7 -197  -49 -203 -126  -32 -130 
14 13 364  27 365 13 12 -337  -26 -338 -312  -25 -313 
15  2  60 221 229  8  1  -31 -118 -122  -16  -63  -65 
15  4 120 209 241  4  1  -31  -56  -64   -8  -15  -17 
15  8 240 161 289  2  1  -31  -22  -38   -4   -3   -5 
15 14 420  29 421 14 13 -391  -28 -392 -364  -27 -365 
16  1  32 255 257  1  0   -1  -16  -16    0   -1   -1 
16  3  96 247 265 11  2  -65 -170 -182  -44 -117 -125 
16  5 160 231 281 13  4 -129 -188 -228 -104 -153 -185 
16  7 224 207 305  7  3  -97  -91 -133  -42  -40  -58 
16  9 288 175 337  9  5 -161  -99 -189  -90  -56 -106 
16 11 352 135 377  3  2  -65  -26  -70  -12   -5  -13 
16 13 416  87 425  5  4 -129  -28 -132  -40   -9  -41 
16 15 480  31 481 15 14 -449  -30 -450 -420  -29 -421 
17  2  68 285 293  9  1  -35 -151 -155  -18  -80  -82 
17  4 136 273 305 13  3 -103 -209 -233  -78 -160 -178 
17  6 204 253 325  3  1  -35  -45  -57   -6   -8  -10 
17  8 272 225 353 15  7 -239 -199 -311 -210 -176 -274 
17 10 340 189 389 12  7 -239 -134 -274 -168  -95 -193 
17 12 408 145 433 10  7 -239  -86 -254 -140  -51 -149 
17 14 476  93 485 11  9 -307  -61 -313 -198  -40 -202 
17 16 544  33 545 16 15 -511  -32 -512 -480  -31 -481 
18  1  36 323 325  1  0   -1  -18  -18    0   -1   -1 
18  5 180 299 349 11  3 -109 -183 -213  -66 -112 -130 
18  7 252 275 373 13  5 -181 -199 -269 -130 -144 -194 
18 11 396 203 445  5  3 -109  -57 -123  -30  -16  -34 
18 13 468 155 493  7  5 -181  -61 -191  -70  -24  -74 
18 17 612  35 613 17 16 -577  -34 -578 -544  -33 -545 
19  2  76 357 365 10  1  -39 -188 -192  -20  -99 -101 
19  4 152 345 377  5  1  -39  -91  -99  -10  -24  -26 
19  6 228 325 397 16  5 -191 -274 -334 -160 -231 -281 
19  8 304 297 425 12  5 -191 -188 -268 -120 -119 -169 
19 10 380 261 461  2  1  -39  -28  -48   -4   -3   -5 
19 12 456 217 505  8  5 -191  -92 -212  -80  -39  -89 
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19 14 532 165 557 15 11 -419 -131 -439 -330 -104 -346 
19 16 608 105 617  6  5 -191  -34 -194  -60  -11  -61 
19 18 684  37 685 18 17 -647  -36 -648 -612  -35 -613 
20  1  40 399 401  1  0   -1  -20  -20    0   -1   -1 
20  3 120 391 409  7  1  -41 -137 -143  -14  -48  -50 
20  7 280 351 449  3  1  -41  -53  -67   -6   -8  -10 
20  9 360 319 481  9  4 -161 -144 -216  -72  -65  -97 
20 11 440 279 521 11  6 -241 -154 -286 -132  -85 -157 
20 13 520 231 569 17 11 -441 -197 -483 -374 -168 -410 
20 17 680 111 689 13 11 -441  -73 -447 -286  -48 -290 
20 19 760  39 761 19 18 -721  -38 -722 -684  -37 -685 


