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Abstract

This paper examines the geometric and physical aspects of the vector space formed by
three, linearly independent eigenvectors of a special type of integer matrix. The
matrix is special because two of its three eigenvectors are distinct Pythagorean triples
with a third, integer eigenvector, linking the two and satisfying a hyperbolic equation.
The eigenvector space is seen to be a three-dimensional lattice with the geometry of
two discrete cones and a hyperboloid. The linear and angular evolution of the
eigenvectors in the lattice is examined and the curvature seen to flatten, following an
inverse square law as the evolution progresses. A consistent, physical interpretation of
the eigenvectors as position, velocity and acceleration is given and links to key
concepts in mathematical physics made.
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(1) Introduction

This paper is actually a minor revision of that first published 2011 in [1]#3, i.e. Ref.
[1], paper number 3). The paper is split into two parts, where the first part, Sections
(1) to (10), starts with a review of earlier work, followed by a study of the geometric
aspects of unity root matrix theory, when under Pythagoras conditions [2]. The second
part, Section (11) onward, considers the physical aspects plus a summary of the entire
paper and some example data in Appendices (B) and (C).

(1.0) Definition. A Pythagorean triple considered herein comprises any ordered
triple (a,b,c), of integers a,b,c that satisfy the Pythagoras equation 0 =a” +b> —c’.
This definition is to be interpreted in its loosest sense with the only condition being
that (a,b,c) # (0,0,0). In other words, a, b and c are allowed to be positive or
negative integers, and @ may be less than or greater than b; a can be zero, in which
case |b| = |c , or b can be zero, in which case |a| = |c| Non-primitive triples are also

included, i.e. those such that for non-zero, integer factor k, if (a,b,c) is a
Pythagorean triple then so too is (ka,kb,kc) . Otherwise, primitive solutions are co-
prime, i.e. gcd(a,b) = ged(a,c) = ged(b,c) =1.

The subject of Pythagorean triples, as eigenvectors of the following integer matrix
(symbol A), was first studied in [2].

0 R O
(1.1) A=|-R 0 P|, P,O,ReZ, (P,0,R)+(0,0,0).
O P 0

Ref. [2] is purely algebraic and gives no insight into what the particular eigenvector
space of A looks like from a geometric viewpoint; neither does it associate any
variables or equations with the physical world. The A matrix is actually a
simplification of a more general ‘Unity Root Matrix Theory’ studied in [1], which is
primarily derived from concepts in mathematical physics (transformation invariance)
but also offers little insight into what the work might actually represent in the physical
world. Albeit, some comparisons are made and, given a similarity of the variational
matrices to infinitesimal rotation matrices, angular momentum conservation is mooted
[2017 1]. This paper makes some geometric and physical observations to remedy this
omission, and it will be seen that the eigenvector geometry is that of a discrete, 3D

lattice in Z3, comprising two discrete cones and a hyperboloid through which the
eigenvectors trace out an evolving path. The three eigenvectors can, themselves, be
associated with a constant vector and a first and second order derivative with respect
to an evolutionary parameter (e.g. time) and, hence, may be identified with position,
velocity and acceleration vectors or equivalent.

The use of lattices in Physics is, of course, not new. However, much of the work, to
the author’s knowledge, appears focussed on the solution of real or complex,
differential equations as functions on a discrete lattice. See, for example, Ref. [3]. The

work in this paper is, however, exclusively about a particular lattice in Z3 and not

Page 2 of 64
Richard J. Miller. Issue 2.0 June 2017
http://www.urmt.org



functions on it. The points in the lattice being represented by the eigenvectors as
ordered triples.

The work is exclusively in integers, excepting geometric properties such as curvature,
which is approximated in the transition from a discrete set of points to a continuum.
The subject matter thus overlaps that of physics in integers; see Section (14.1).
Because of the quadratic nature of the equations and their solutions, the earlier work
in [1] and [2] concerns number theoretic concepts such as quadratic residues, power
residues and primitive roots. This applies, in particular, to the hyperbolic, dynamical
conservation equation, (2.1.1) further below, and associated dynamical variables
P,0, R, the latter being associated with integer, primitive roots of unity. The reader is
therefore referred to any standard number theory text such as [4], which is
comprehensive on quadratic issues. Lastly, at its core, are matrices and eigenvectors,
and thus the work (more so in [2]) also calls upon some relatively elementary matrix
theory for which most under-graduate texts will suffice.
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- Part1I -
(2) Review

This Section is a short review of the work in [2], itself deriving from [1], and adds an
extension for non-unity eigenvalues.

(2.1) Fundamentals.

The matrix elements P,O,R of A (1.1) are termed dynamical variables since they

satisfy a conservation equation. The form of this conservation equation, when under
Pythagoras conditions (see [1]), is given as follows

2.1.1 +1=P*+Q’ -R’.
(

This equation is actually the non-singular matrix condition det(A —AI) =0, 4 =0,£1,
and also known as the dynamical conservation equation.

Although matrix A (1.1) is a simplification of a unity root matrix in [1], it is of
interest since it is shown in [2] that, subject to (2.1.1), it has three eigenvectors X, ,

X, and X , with eigenvalues 4 =+1, 1 =0, A =-1 respectively, whereby two of
the eigenvectors, X, and X , are Pythagorean triples. The eigenvectors X, and X_
are defined as follows, in terms of integers x, y,z and «, f,7,

X
212) X, =|y|, x,y,zeZ, (x,y,z) #(0,0,0)

z
(2.13) 0=x>+y*-2*

a
214) X =| B |,a,p,yel, (a pB,y)#(0,0,0)
-7

2.15) 0=a’+ B> —y°.

The three, integer variables «,f,y are also referred to as divisibility (or scale)
factors.

It is noted that (2.1.3) and (2.1.5) are the equations of a quadric cone when
(x,y,z)eR3, and (2.1.1) and (2.2.1), below, are the equations of a quadric,

hyperboloid sheet when (P,Q, R) € R3. This is discussed again shortly.

The third eigenvector X, is a function of the elements of matrix A (1.1)
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+P
(216) XO = _Q s P,Q,REZ, (P5Q7R)¢(07050)
+R

It is concluded in [2] that every Pythagorean triple, as an eigenvector X,, can be

related to a similar matrix A (1.1), subject to constraint (2.1.1), with eigenvalues —1,
0 and +1.

(2.2) An extension to non-unity eigenvalues.

The eigenvalues need not be restricted to zero and unity, and the results apply equally
for arbitrary, integer eigenvalues A=+C,0,—C, CeZ, C>0, with associated
eigenvectors X,, X,, X respectively. However, all equations in [2] are for a unity

eigenvalue and so require adjustment here. The complete, revised set is provided in
Appendix (A).

Addition of a variable eigenvalue C has the advantage that it makes all the equations
visibly homogeneous and usually quadratic. More importantly, it adds another
arbitrary parameter for tuning to the physical world. The only change to the equations
given so far is that the constraint (2.1.1) is modified as follows.

2.2.1) C*’=P*+0Q°-R*>,CeZ, C>0

It is seen that this is now clearly homogeneous of degree 2. This equation is actually
referred to in [1] as the ‘dynamical conservation equation’ and, adding parameter C,
modifies the theory from a conserved quantity of unity in (2.1.1) to a conserved

quantity of C?, above. See also Section (14.6).

Notice that, although C 1is arbitrary, the sum and product of the eigenvalues
(A =0,£C) is always zero. The zero sum is dictated by the all-zero lead diagonal and
consequent trace of A (1.1) being zero. The product of the eigenvalues is zero
because it is equal to the ‘Potential’ term V', see [1], which is zero under Pythagoras
conditions [2]. Pythagoras is the zero Potential form of the dynamical conservation

equation (2.2.1), which would normally have an extra, non-zero Potential term on the
right of (2.2.1). See also Section (14.4).

With eigenvalues 4 =+C,0,—C, the eigenvectors satisfy the following equations by
definition

(2.2.2)
(2.2.22) AX, =+CX,
(2.2.2b) AX, =0

(2.2.2¢) AX_ =-CX._.
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When expanded in component form, these equations are referred to in [1] as the
'dynamical equations'. For the X, and X _ eigenvectors, expanding (2.2.2a) and
(2.2.2¢) gives the following linear equations

(2.2.3)

(2.2.3a) Cx=Ry+Qz
(2.2.3b) Cy=—-Rx+ Pz
(2.2.3¢) Cz=0x+ Py
(2.2.3¢) —Ca=RpB-0y
(2.2.31) -Cf=—-Ra—-Py
(2.2.32) Cy=Qa+Pp.

Multiplying (2.2.3a) by P, (2.2.3b) by Q and (2.2.3c) by R, and summing as
follows, gives the useful identity

(2.2.4) xP—y0-zR=0.

Likewise, multiplying (2.2.3e) by P, (2.2.3f) by O and (2.2.3g) by R, and summing
as follows, gives another useful identity

(2.2.5) aP — O+ R=0.

The elements P,O,R of the matrix A and eigenvector X, the three coordinates

x, v,z forming eigenvector X, and the three elements «,f,y of the eigenvector

+9

X _, are all related by the following ‘divisibility criteria’

(2.2.6)

(2.2.6a) ax=(C* = P?)
(2.2.6b) py=(C*-0%
(2.2.6¢) 2= (C* +R?).

Upon summing these three relations, and using (2.2.1), this neatly combines to give
the equation and invariant +2C>.

(2.2.7) ax+ Py +yz =+2C*

This is actually termed the Potential equation in [1], albeit the Potential V' is zero for
Pythagoras and so the ' term is not seen.

(2.2.8) The vector X, (2.1.6) is never a Pythagorean triple because, as shown further

below in Section (5), the conserved quantity C° in (2.2.1) is never zero and,
consequently, P>+ Q> —R>#0. Therefore X,, comprising P,Q,R, is never a
Pythagorean triple. Nevertheless, for a finite value of eigenvalue C, dynamical
variables P,0 and R can be made arbitrarily large and come close to being a
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Pythagorean triple. This is by virtue of the invariance principle in [1] and
consequential equations (2.5.8), further below. The integer m in (2.5.8) can be
chosen to be of sufficient magnitude such that P,Q,R>>C, and X, then

approximates as X, ~ (-mx,my,—mz)", for m>>0, i.e. it approximates the non-
primitive triple m(—x, y,—z) for large m . So, in the limit m — oo, the vector X, (and

X°, (2.3.1b) below) limits to a Pythagorean triple for finite C. Because C is
considered a conserved, energy-like quantity, it is also regarded to be finite, even if
possibly huge. See also Section (14.6).

(2.3) Conjugate Vectors

The following conjugate (or reciprocal) row-vectors X, X°, X~ are added such that
the vector inner product relations, i.e. X'-X, #0, i=jand X'-X, =0, i # j, are

of a familiar, orthogonal form. See also Section (14.7).

(2.3.1)
(2.3.1a) X" =(a B 7)
(2.3.1b) X'=(P -0 -R)
(2.3.1¢) X =(x y -z

The conjugate vectors, X", X° and X, are the basis vectors dual to the standard
vectors, X , X, and X, respectively, and are also known in the literature as the

reciprocal basis.

By defining the conjugation matrix T as
1 0 0

(2.3.2) T=T'=T"'={0 1 0|,
0 0

the conjugate vectors are formed from their standard counterparts X, , X, and X_ as

follows

(2.3.3)

(2.3.3a) X =(TX,)’

(2.3.3b) X’ =(TX,)"

(2.3.3¢) X" =(TX )"
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Conversely, the standard vectors are obtained from their conjugate forms as follows:

(2.3.4)

(2.3.4a) X, =(TX")’

(2.3.4b) X, = (TX")’

(2.3.4¢) X_ =(TX"'.

Note that the conjugate of X, is X~ and not X" . Likewise, the conjugate of X_ is
X" and not X

Using standard row-eigenvector algebra, the conjugate vectors also satisfy the
following, conjugate (transpose) forms of the eigenvector equations (2.2.2)

(2.3.5)

(2.3.5a) X*'A = +CX"
(2.3.5b) X’A=0
(2.3.5¢) X A=-CX .

With the complete set of standard and conjugate vectors defined, the standard
definitions of norm and magnitude are given next, preceded by a quick definition of
the notation used herein to denote inner products between conjugate, row vectors and
standard, column vectors.

(2.4.0) Inner Product Notation. The inner (or dot) product of a conjugate, row
vector with a column vector, giving a scalar result, is usually written in this paper
(and general URMT publications) as the product of a conjugate or reciprocal row-
vector and a column vector, without the explicit ‘dot’ notation. For example, the inner

product of the row vector X" and column vector X_ is written as X"X_ instead of

the more usual X" - X, i.e.
XX =X"-X.

This notation is that of matrix multiplication, whereby a 1xn element row-vector
multiplies a nx1element column vector, to give a 1 x1 scalar result.

Note the inner products between vectors of the same form, i.e. inner products between
column vectors, or inner products between row vectors, e.g. the inner product between
X, and X_ still uses the dot notation, i.e. X, -X . Without the dot, the vector

product would be that of a I1xn vector with a 1xn vector to give an nxn matrix,
otherwise known as an outer product. Such products are not required in this paper.

(2.4.1) Definition. The norm (or length) of a vector, using the standard definition of
the norm, see [6], is the square root of the inner product of itself with its conjugate,

, 1s given by||X+|| =+vX"X_. Normally the

positive square root is assumed unless otherwise stated. Since X, is a Pythagorean

e.g. for X, the norm, denoted by ||X+
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triple, the norm is zero as X" X_ =0, which is the same as (2.1.3). The same remarks

also apply to X_ and its conjugate form X, but note that the norm of X, is non-

zero, as given by [X,| = vVX°X, = C?, which is the same as (2.2.1).

(2.4.2) Definition. The magnitude of a vector is the positive square root of the inner
product of a vector with itself, e.g. [X,|=X]X, ={x*+y’+z*, where X is
X_|=+2y,

simply the transpose of X, . Hence |X+| =42z , using (2.1.3). Likewise,
using (2.1.5), and |XO| =+/C* + 2R’ . Normally the positive root is taken.

For those familiar with bra and ket notation, see [6], the kets are X, ;|X+>,

X, ;|X0> and X_ ;|X_>, and the bras are the conjugate forms X~ E(X

+ |

X" = <X7| and X’ = <X0 | . The above inner products are then given by, for example,

X=X = VXX

(2.5) Analytic solution

The starting point for the study of the geometry of the eigenvectors is the analytic
solution, in integers, derived in [2] for all unknown variables, i.e. the elements of the
eigenvectors. In total there are nine variables separated into three triples (P,QO,R),

(x,y,z) and («a,f,7). A complete solution is obtained when all nine unknowns
{x,y,2,P,O,R,a, B,y} are determined. note that the invariant eigenvalue C (2.2.1) is
a free, integer parameter, and often set to unity.

The Pythagorean triple (x,y,z) is parameterised in the standard textbook form by two

arbitrary integers, k and [/, subject to the following condition (2.5.1), which allows
one, but not both, of x or y to be zero. Neither is there any constraint on 1<k </

such that y > x. However, there is the constraint gcd(k,/)|C. This is so that the
congruence (2.5.3), further below, has integer solutions. The full list of conditions on

k and [ is thus
(2.5.1) k,leZ, (k,1)=(0,0), gcd(k,])|C.

The triple (x,y,z) is then given by the familiar Pythagorean parameterisation

(2.5.2)
(2.5.2a) x =2k

(2.5.2b) y=01%-k?)
(2.5.2¢) 2= +k2).

To solve for (P,QO,R) and («, f,7), two more integers s and ¢ are introduced as

solutions to the following congruence (a linear Diophantine equation) in integers &
and /
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(2.5.3) +C=ks—1t, s,tel.

This congruence is solved by standard methods [4] to obtain two particular, integer
solutions s" and ¢, and general solutions s and ¢, parameterised by a third, arbitrary

parameter m, meZ

(2.5.4)
(2.5.4a) s=s"+ml
(2.5.4b) t=t"+mk.

Note that a super-script prime denotes an initial value in this paper.

Thus, given a particular solution s’ and ¢', there are now three arbitrary parameters
k, | and m. Using these parameters, and the general solution in s and ¢, then
(P,O,R) and («, B,y) are obtained from the following relations

(2.5.5)

(2.5.52) P =—(ks+1t)
(2.5.5b) Q= (s—kt)
(2.5.5¢) R =—(Is +kt)
(2.5.6)

(2.5.6a) o =-2st
(2.5.6b) L= -s%)
(2.5.6¢) y=@>+s%).

Note that one of @ or £, but not both, can legitimately be zero, see [2].

(2.5.7)

The solutions (2.5.2) and (2.5.6) do not cover every Pythagorean triple, according to
(1.0), without extensions, as noted and discussed in Appendix (D) in [2]. These
extensions allow for all non-primitive triples and all sign combinations, and are really
added for completeness rather than uniqueness as solutions. However, the study of the
geometric aspects in this paper does not require these extensions and the analysis uses
only those solutions given by the equations in this Section. Suffice to say, (2.5.2) and
(2.5.6) can give some non-primitive triples and sign combinations, just not all of
them.

Integer parameter m can be set to zero such that s =s" and ¢=1¢" in (2.5.4). The
m =0 case is also referred to as the primitive or initial value solution. Denoting the
initial, m =0, dynamical variables by P’,Q".R’, and the divisibility factors by
a',B',y", then the general solution for (2.5.5) and (2.5.6) is expressed in terms of the
initial solution and the coordinates x, y,z as follows:

(2.5.8)
(2.5.8a) P=P —mx
(2.5.8b) 0=0"+my
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(2.5.8¢) R=R-mz

(2.5.9)

(2.5.9a) a=a +2mP' —m’x
(2.5.9b) L=p-2mQ —m’y
(2.5.9¢) y=y'-2mR +m’z.

Variation of (P,0Q,R) and (e, f,7)in (2.5.8) and (2.5.9), by arbitrary choice of m,
constitutes what is known as a ‘global Pythagoras variation' in [1]. It has the effect of
transforming the A matrix (1.1) and eigenvectors X,, X_ and their conjugates X°,

X", but leaves the eigenvector X, and its conjugate X~ invariant, hence X, is
referred to as the invariant eigenvector [2017 2]. The conservation equation (2.2.1)
also remains invariant, as does the determinant of A, which is zero and identical to
the Potential /. Physically, the global variation leaves the Potential invariant and
zero when X, is a Pythagorean triple, see [2] for full details.

This completes the review of papers [1]#1 and [2].
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(3) Triples, Points and Eigenvectors

Before discussing the geometry in detail, the following relevant notes are given. In
brief, since X, and X_ are Pythagorean triples, (2.1.3) and (2.1.5), their geometry is

that of a cone, and the geometry of X, is a hyperboloid sheet, (2.2.1).

All points p on the cone and hyperboloid are ordered triples of integers, i.e. p € Z3,
and so the cone and hyperboloid quadric ‘surface’ (2.2.1) is not a continuum but an

infinite set of points coincident with a continuous, quadric 2D surface in R3. The set
of points is collectively referred to as the lattice L, defined further below, (4.7).

The points and vectors correspond as follows, which is simply a restatement of their
definitions without the row and column vector formalism of matrix algebra,

3.1)
(3121) X+ N(xayaz)’ Xo N(P’_QaR)a X_ ~(a,ﬁ,—y),
(3.1b) X" ~(@pB,7), X" ~(P,—0,—R), X ~(x,y,~2).

All points are plotted, as per normal, on the familiar, right-handed, Euclidean, 3-axis,
(x,y,z) frame, oriented such that the z axis is considered pointing upward, normal to

the horizontal x, y plane.

The eigenvectors are treated as fixed with their base at the origin, as opposed to free
(floating) vectors, and so allows the two terms, points and eigenvectors, to be used
interchangeably, i.e. the lattice points are the tips of the eigenvectors. A common
eigenvector origin is a somewhat unnecessary constraint but is, nevertheless, for ease
of illustration.

The geometric aspects are chiefly, but not exclusively, studied in terms of the
standard eigenvectors X,, X, and X_, and not their conjugates, X, X° and X"

respectively. This is because, by definition, one is the dual basis of the other and
either is good as the other.
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(4) Cones, Hyperboloid and Lattice

Definition. The upper cone, symbol C,,, is the set of all discrete points p = (a,b,c),

in accordance with the definition of a Pythagorean triple (1.0), and with ¢ >0,
specified as

4.1 C,={plpei(ab,c)},(ab,c)el’c>0}.

Definition. The lower cone, symbol C,, is the set of all discrete points p = (a,b,c),

in accordance with the definition of a Pythagorean triple (1.0), and with ¢ <0,
specified as

(4.2) C,={rlpel(ab.o)},(ab,c)el’c<0}.
Definition. The cone, symbol C, is the union of sets C, and C,
4.3) Cc=C,uC,.

Definition. The lower hyperboloid, symbol H,, is the set of all discrete points,
pointed to by the eigenvector X, in the lower plane, R <0, 1.e. all points p, where
p is a triple (P,—Q,R), with P, Q and R given by (2.5.5), satisfying (2.2.1), and
formally defined as

(4.4) H, ={(P,-O,R)},R<0.

Note that for R =0 the lower hyperboloid intersects the P, Q plane as a circle, radius
C, by (2.2.1).

Definition. The upper hyperboloid, symbol H,, , is defined as per H, (4.4), except
R>0,

(45) HU = {(Pa_QaR)} > R>0.
Definition. The hyperboloid, symbol H, is the union of sets H, and H,,
(4.6) H=H, UH,.

Definition. The lattice, as referred to herein, is defined as the set of points L formed
from the union of all points in the cone C (4.3) and the hyperboloid H (4.6)

4.7) L=CuUH.

The lattice is a collective term for all discrete points occupied by X,, X, and X_
and their conjugates, X, X’ and X" respectively.
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(4.8) Commentary

Eigenvectors X, and X in C, represent Pythagorean triples in the upper half plane,
and point upward when z >0 and —y > 0; eigenvectors X, and X in C, represent
Pythagorean triples in the lower half and point downward when z <0 and —y <0.
Note that z and y are never zero, see Section (5).

By definition, C,, and C, are disjoint subsets of C.
(4.9) C,nC,=0.

The cone C and hyperboloid H are also disjoint subsets since the points (P,—Q, R) in

H never lie on the cone C, i.e. they are never Pythagorean triples, see (2.2.8). As a
consequence, the following set relation is given

(4.10) CnH=0.

C comprises every Pythagorean triple allowed by definition (1.0) but, as stated in
(2.5.7), the equations (2.5.2) and (2.5.6) do not cover every Pythagorean triple. Thus,
strictly speaking, only a subset of C is required in this paper. See also Section
(14.10).

Figure 1 illustrates the upper and lower cones, C,, and C, respectively. X, is shown
in the upper cone C,, and X simultaneously in the lower cone C,. As discussed

further below, if X, isin C, then X_ is simultaneously in C, and vice versa.

A Z"Y

,y,z)eC

Cy=upper cone

y.B

C, =lower cone

X_(Q,B,-'Y) CL

Figure 1 Upper and Lower Cones
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Basically, with the usual x, y, z, right-handed coordinate frame oriented such that the
z axis is considered pointing upward, normal to the horizontal x,y plane, then C

represents an upside-down cone, symmetric about the z axis, with its hypothetical tip
at the origin. It is only hypothetical because the origin is excluded from C,, see

Section (5) below, and, as noted, it only comprises discrete, integer points.
Conversely, C, is the reflection of C, in the x,y plane.

The cone tips are shown coincident at the origin but this is not strictly accurate.
Indeed, in relativity texts (see [7] for a popular account on light cones), a second cone
C, is usually drawn with its origin starting at the tip of X, on the first cone C, and

not at the origin of X,. However, for finite X,, by a suitably large choice of an

integer parameter m in (2.5.9), the X_ vector can be made such that |X_| >> |X+

and, in fact, the two cones then become effectively coincident. Therefore, for ease of
illustration, the cones C,, and C, are considered with a common origin and mirror

images of each other in the x, y plane.

The X, and X vectors always lie on opposite cones, e.g. if X, €C, then
X €C,,ie. X lies on the mirror image of the cone to X, and vice versa. This is
by virtue of equation (2.2.6¢), 5z = (C* + R?), and the eigenvector definitions (2.1.2)
and (2.1.4), where the third component, z in X, , is given the opposite sign to y in
X_. With the quantity (C* + R*) always greater than zero, then the product 7z must
also always be positive and, hence, z and y must be of the same sign. Thus, having a
z component in X,, and a —y component in X , always makes the two

eigenvectors lie in opposing cones and point in the opposite direction, i.e. away from
each other.

For each vector X, in a particular quadrant of the x —y plane, the conjugate vector

X" (2.3.1¢) lies in the same quadrant but on the opposite cone. Since the cone slant
angle is a constant 45 deg (justification follows), the angle between them is 90 deg
and, naturally, their inner vector product is zero, as per (2.3). Identical remarks apply

to X" and X . This also means that if, for example, X, € C,, then X~ € C, and
therefore X~ lies in the same set C, as X _, from what was said earlier. Likewise,

X" and X, also reside in the same cone, C,, in this example.

The cone slant angle for both cones, C, and C,, is always a constant 45 deg
because, considering X, for example, at any height z the cone radius r is equal to

the height, i.e. 7 =4/x* +* =|z

, hence the cone angle @ =tan"'(z/r) = 45deg.
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Figure 2 illustrates the hyperboloid H associated with X,. The same remark for C,

about origin positioning, equally applies to H. It too would be rather neater drawn at
the tip of X, since, just like X _, for each X, there is actually a unique hyperboloid

subset H,,., where H,,. < H, parameterised by the same integer m as for X _, see
X, (6.2b). Nevertheless, for ease of illustration, all H,,_ are plotted as if they have a

common origin (0,0,0), albeit this origin is not actually an element of H, as explained
in the next Section.

AR

(Pa_Qa ) € HUa_R>O

Hu=upper
hyperboloid

Q

H;=lower
hyperboloid

XO(Pa_QaR GHL9R<O

Figure 2 The Hyperboloid
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(5) Exclusion of the origin from L.

The exclusion of the origin from the sets C, H and, consequently, L (4.7), is for
genuine algebraic reasons rather than just an arbitrary condition, and is explained as
follows.

As regards C, definition (1.0) excludes the zero Pythagorean triple (0,0,0) because it
is algebraically impossible within Unity Root Matrix Theory [1]. If z is zero in the
Pythagorean triple (x,y,z) then the divisibility relation (2.2.6c) becomes
(C*+R*)=0 and, since C*> >0, this cannot hold true. Note that C # 0 because it is
a non-zero eigenvalue by definition - the theory already has a separate, zero
eigenvalue. In general R # 0 because R> = —1(modz), see [1] or [2]. However it can

be zero in what is termed the ‘almost trivial’ solution, see Appendix (C).
Nevertheless, even then, R can be transformed away from zero without affecting
(x,y,z) by the invariance principle in [1]. The other triple («, £,y) # (0,0,0) because
y # 0, for the same reason that z # 0, discussed above re (2.2.6¢).

As regards H, it also excludes the origin as algebraically impossible since the
eigenvector elements X, (and X°) satisfy the hyperbolic, conservation equation
(2.2.1), for which (P,Q, R) =(0,0,0) is not a valid solution. In general, the dynamical
variables P,Q,R are always unity roots but, as mentioned above in the case of C,
there is a special exception when Q=R=0, P=2C or P=R=0, O=+C, ie.
triples (P,Q,R) =(+C,0,0) or (P,QO,R)=(0,£C,0). In this exceptional case, two of
the dynamical variables are zero but, nevertheless, the third is never zero, and so the
origin remains excluded. Also, as mentioned in [1], if X, is unpalatable containing
two zeros, these zeros can be transformed away by adjusting m in (2.5.8) and (2.5.9),
without affecting the X, solution and all invariants of the theory.

Geometrically speaking, exclusion of the origin from L means that the cones are
without a tip and the hyperboloid always has a non-zero radius in the x — y plane.

See also Section (14.2) and (14.3).
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(6) Eigenvector Evolution in L

The general solution for P,Q,R (2.5.8) and «, S,y (2.5.9) is explicitly parameterised
by a single integer m and, hence, eigenvectors X, and X , by (3.1a), evolve with
respect to m . For this reason, m is termed the ‘evolution parameter’.

By contrast, the triple (x,y,z) (2.5.2) has no dependency on m and, hence,
eigenvector X, (3.1a) is static with respect to m . The evolution of X, and X will
therefore be discussed with respect to X, . Of course, X, is also parameterised by
integers k£ and / (2.5.1) and so too, therefore, X, and X . A full 3D evolution, given
with respect to &, / and m, is beyond the scope of this paper. The benefit in using a
single parameter lies in the simplicity of X, and X_ evolving with respect to a

single, constant vector X, , later tentatively identified as a constant acceleration.

Because the evolution of eigenvectors is described by a single parameter, evolving
vectors trace a line (path) through L.

Eigenvectors for a specific value of m are denoted by the subscript m, as in X

m+ 2

X,, and X, . When m is arbitrary, the usual forms X,, X, and X are used and

the subscript dropped. The subscript m is also dropped for the initial eigenvectors,
when m =0, and the eigenvectors are given a primed superscript instead, i.e.

(6.1)
(6.1a) X, =X, (m=0)
(6.1b) X! =X  (m=0)
(6.1c) X' =X, (m=0).

Using this notation, the vector form of solutions (2.5.2), (2.5.8) and (2.5.9) becomes

(6.2)

(6.2a) X, =X,

(6.2b) X,, =-mX, +X,

(6.2¢) X, =-m’X, +2mX} + X" .

The equivalent, conjugate eigenvector forms of (6.2) are obtained by applying the
conjugation operator T (2.3.2) and transposing, as per (2.3.3), to obtain

(6.3)

(6.3a) X" =X'""

(6.3b) X" =-—mX'™ +X'°

(6.3¢) X" =-m*X'"” +2mX"" + X",
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The equations (6.2) and (6.3) show how the eigenvectors evolve with respect to m
which could be a spatial, temporal or other evolution parameter. Nevertheless,
unsurprisingly, it seems preferable to associate it with a temporal coordinate, i.e. time.
A spatial parameter could be associated with the scalar distance, e.g. arc-length,
which is also natural for curvature discussions, see Section (9) further below.
Nevertheless, because physical association is still rather tentative, time will be mainly
considered, and a unit change in m is consequently termed a clock ‘tick’. However,
an open mind as to its physical interpretation is the safest option. Suffice to add,
although m is considered here as increasing in the positive direction, there is no
overriding reason for this and it could equally grow more negative. Ultimately, m is

just an arbitrary integer parameter to give the most general solution to congruence
(2.5.4).

Equation (6.2a) shows that the X, eigenvector is independent of m and, for a given
choice of two arbitrary integers & and /, fixing the initial eigenvector via (2.5.2) fixes
X, . Thereafter, X, does not evolve with respect to m , i.e. it is static, and so

(6.4) X, =X, =X
Since X, = X' the prime is usually dropped from X' and simply denoted by X,

Equation (6.2b) shows that the X, evolution only depends on the eigenvector X,
which, itself, is static as described above. The X_ eigenvector’s evolution (6.2¢) is
dependent upon both the initial eigenvectors X, and Xj.

Looking first at X, (6.2b), it is clear that for each positive increment (a clock tick)
in m, (m>0), the vector changes by — X, i.e. it changes anti-parallel to X, see
Figure 3. The increment is defined as 06X, and given by the difference of successive
iterates m —1 and m as follows, using (6.2b),

(6.5) X,o=X,— X =—X (m>0).

+ 9

Note that if m incremented in the negative direction then the vector change would be
parallel to X, , and not anti-parallel.

Evolution of Xo X

—
Xm0=X‘0—mX+ X *
0

Figure 3 Evolution of X0
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As X, is static, X, lengthens as m increases and aligns with it. For large m it is
effectively anti-parallel to X, ,i.e. X , ~-mX,,m >>0. Since the initial vector X
is definitely not parallel to X, (X, is never a Pythagorean triple, including a multiple
of it, see (2.2.8)), and neither is it ever in C for the same reason, X, becomes more
anti-parallel to X, as m increases, 1.e. its angle with X, converges to 180 deg.
Whilst X, is always in H, it moves ever closer to C because X, approximates, ever
closer, a Pythagorean triple, see (2.2.8).

Because all changes to X are subtractions of a linear multiple of X, , the vector
X,, never moves off the plane spanned by the two initial vectors X, and Xj.

Therefore the path it traces is always in this plane. This path is thus the intersection of
the plane, spanned by X, and X, with the hyperboloid H. Furthermore, all points

X, ., m >0, are collinear but also always lie in H.

Visually it is hard to see a plane intersecting a curved hyperboloid sheet, where the
intersection is also a straight line, as opposed to the more usual conic. However, it is
the points in H that are collinear and not the space in-between, which is undefined

and not in H. It can be verified that all X, points lie in H as follows: writing X, ,
as the evolved point p(m), in accordance with (2.5.8), and since X is the point
p = (P’,—Q’,R’), p' € H by definition, then

(6.6) p(m)=(P,—Q,R)= (P' —mx,—Q" —my, R’ —mz), pels, (P',—Q',R') eH.

It is verified that this point p(m) also satisfies the hyperbolic conservation equation
(2.2.1) since, using (6.6),

(6.7) P*+0Q*-R*=(P”+0"7 —R"*)+2m(-=xP+yQ+zR)+(x* + y* = z%),

and, using equations (2.2.1) for p’, (2.1.3) and (2.2.4), the right of (6.7) reduces to
+C?,i.e. (6.7) becomes

(68) P>+0Q>—R>=+C>.

This is just the original conservation equation (2.2.1) and, hence, p(m) also satisfies
(2.2.1)if p' satisfies (2.2.1), which it does by definition, therefore p(m) € H.

Moving on to the evolution of the X_ vector: this vector evolves according to (6.2¢)
and, at each positive increment in m (m >0), the vector changes by X, as
follows, and illustrated in Figure 4 below,

6.9 X, =X, ~X,.,. =-Qm-DX, +2X}, m>0.

m— m
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It is seen that the change is similar to (6.5) but more rapid, as it grows by a factor
—(2m—1) of X_, i.e. an ever increasing lengthening, anti-parallel to X, , with only a

slight compensatory constant change of 2Xj. Thus, similar remarks for X, apply to
X _, and the angle with X, also converges to 180 deg as m increases. For large m,
X_ s, like X, anti-parallel to X, ,i.e. IimX, = —m2X+.

Also, as for X, since changes in X_ are anti-parallel to X, then, for example, if
X, € C, then X € C, and, conversely, if X, € C, then X €C,.

Evolution of X. .
X .
2mX‘0_mZX+ \>X+
ZmX‘o
Xm-=2mX o-m*X,+X". X.
X <
2mX o-m*“X., \AX

Figure 4 Evolution of X-

It is noted that the path of X_ only goes in one direction, on the opposite cone to that
of the static X, , and, with the current sign convention chosen for m , never crosses
the origin (strictly speaking, never traverses the x,y plane). The vector X, also
traces a unidirectional path in the same direction as X_, in the opposite direction to
that pointed to by X, . Usually, but not exclusively, X, also always points away from
X,,1.e. R<0 for X, as opposed to z>0 for X,, and so, it too, does not traverse
the x,y plane. Note, however, it is possible for X, to start (m = 0) on the same side
of the x,y plane as X, in some cases, not discussed here. Whatever the case though,
both X, and X always traverse a unidirectional path and, when using the chosen
sign convention m > 0, the evolution is in the opposite direction to X, .

In summary, X, is static, X, grows linearly with constant vector — X, added on

+

each increment of m, and X grows quadratically, with an ever-increasing vector

+

- (2m-1)X,, plus a small constant addition of 2X, added on each increment of m .

Both X, and X become anti-parallel with X, , in the large m limit, with X lying
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on the mirror image cone to X, , and X, becoming ever closer, but never touching,
the same mirror image cone in C.

Since the sets C and H are disjoint, i.e. CNH=C (4.10), the paths of X_
(X_€eC)and X, (X, € H) never intersect, i.e. they never contain a common point.

This completes the discussion on eigenvector path evolution. The next section looks
at the eigenvectors as a basis, and their highly oblique nature, as a prelude to studying
the angular evolution of the eigenvectors and basic differential geometry.

Page 22 of 64
Richard J. Miller. Issue 2.0 June 2017
http://www.urmt.org



(7) Eigenvectors as a basis

The eigenvectors X,, X, and X_ are suitable as a basis since they are linearly

independent, as given by the following, non-zero vector triple product, where C is the
positive, non-zero eigenvalue. An explanation of the derivation follows,

(7.1) X, X, - X_=2C,

Using (2.1.2) for X, and (2.1.6) for X, the cross product in (7.1) is calculated as
X, "X, = (Ry +Qz —-Rx+Pz —-QOx-— Py). From the dynamical equations (2.2.3),
this product reduces to X, "X, = C(x y - z), which is simply the conjugate vector
X" (2.3.1c), scaled by the eigenvalue C. Using (2.1.4) for X_, the full triple product
now reduces to the inner product X™ - X_ = C(ax + [y + ;z). By (2.2.7), the bracketed
term (ax + fy + 3z) = 2C?, hence the result (7.1).

In fact, the vector triple product is a non-zero invariant, +2C°, of the lattice, and
independent of the value of the three arbitrary parameters £, [/ and m , Section (2.5).

Although linearly independent, the basis is far from orthonormal since none of the
vectors has a unit magnitude and, in almost every case, they are not orthogonal to
each other, except when R is zero — explained following. These properties can be seen
from the following six, unique vector inner products, see also [2].

(7.2)
(7.2a) X, X, =X X =27’

(7.2b) X, X, =X -X"=2zR

(7.2¢) X, -X_=X"-X" =2(C*-jz)=-2R", by (2.2.6¢)
(7.2d) X X, =X"-X"=-2;R

(7.2¢) X X =X'"-X'"=2y’

(7.2f) X, X, =X"-X"=C*+2R’

Firstly, there is a single, special case termed the ‘almost trivial’ solution, when R =0,
as documented in Appendix (C). In this case the mixed, eigenvector inner products,
X, -X, (7.2b), X, -X_ (7.2c) and X_-X, (7.2d), are all zero and, hence, X, , X,

and X_ are orthogonal. Other than this exceptional case, z, ¥, R and C can never

be zero, by (5), and none of the above mixed products are consequently zero, hence
the basis is not orthogonal. With the minimum absolute value of z, y, R and C as

unity, then neither are any of the mixed products X, -X,, X, -X and X_-X, unity

and, consequently, none of the vectors is of unit magnitude. Of course, the basis can
be diagonalised so the issue of non-othonormality is mainly one of academic interest.
However, as an evolving triad of vectors, as discussed in the previous Section, the
angles between them and how they evolve, in terms of the curvature of the path they

trace in the lattice L, is of interest and discussed next.
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(8) Angles, Tangents and Flatness

The normal route to assess the geometry of a path in a vector space is by calculation
of the tangent and normal vectors and application of the Serret-Frenet formulae, see
[8]. This won’t actually be done here, barring a quick look at the tangent vectors,
because the basis vectors X,, X, and X_  are both discrete and distinctly non-
orthonormal (previous section), and the vector algebra for the Serret-Frenet formulae
is unnecessarily unwieldy. Instead, for the purposes of this paper, the evolution of
curvature is obtained more simply by studying the scalar angles obtained from the
inner products (7.2). The key properties are the same, irrespective of method, and the
curvature of the X_ path will be seen to follow an inverse square law in parameter

m.

Appendices (B) and (C) provide example data in the case of the simplest, non-trivial
Pythagorean triple (4,3,5) and the almost-trivial (0,L1). This data includes all

eigenvectors and angles, given further below, plus data for ‘flatness’ parameter w
(8.13) and curvature x (9.1) as they evolve.

A tangent vector T, to the path of X, in H, is calculated from (6.5) as follows,
where om =1 since, trivially,

(8.0) om=m—-(m-1)=1
X,
(8.1) T, = F X,.

Similarly, a tangent vector T_, to the path of X_in C, is calculated from (6.9) as

(8.2) T =% _om- DX, +2X),.
om

Since X, has no parametric variation with respect to m, its derivative, i.e. tangent
vector, is zero and not considered further, except for completeness,

(8.3) T, =—+=0,

From (8.1) it is seen that T is the constant vector — X, and so there is no non-zero
second derivative, and no intrinsic curvature of the X, path as a consequence; it was
mentioned in Section (6) that X, traces a straight line parallel to X, .

51‘0

(8.4) ~=0.
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The T_ tangent vector (8.2) is not so trivial as it is dependent on m , and thus has a
non-zero, second derivative and, therefore, some curvature.

It is this curvature that is investigated shortly, by examination of the evolving change
in the scalar angle of X  with respect to the static vector X, . Beforehand, however,
the angles between all axes are examined.

Denoting the angle between X, and X, by 6,,,
0. _, and the angle between X, and X_ by ¢, , then &

+0 2
by the standard inner product relations, and depicted in Figure 5,

the angle between X, and X by
0

. and 6, are obtained

(8.5)
(8.5a) cosf,, =X, - X, /[X,[X,]
(8.5b) cosf,_ =X, - X_/IX,|X_|
(8.5¢) cosf, =X, - X_/|X,[X_|.
X.(a.B,y)
0o 9+6-+0 X+ (x,y,2) >
Xo(P,-Q.R) 0+0+00-=180deg

note 6+0+60-+0--=60deg

Figure 5 The Oblique Eigenvector Basis

The eigenvector magnitudes |X+

, X0| and |X7| are calculated from definition
(2.4.2) as follows: Using (2.1.2) for X, , then X, -X, =x”> +y” +z. Since X, is a
Pythagorean triple then, by (2.1.3), X, -X, =2z°. Likewise, for X_ (2.1.4), by
(2.1.5), X_-X_=2y". Lastly, using (2.1.6) for X,, the inner product is
X, X, =P*+0*+R?, and by (22.1), P*+Q°=C’+R’, hence
X, X, =C?+2R*. Taking the square root of these inner products gives the
following expressions for the magnitudes

(8.6)

(8.62) X, |=yX, X, =2z
(8.6b) X, =X, - X, =VC* +2R
(8.6¢) X_|=JX_-X_ =42y
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The mixed inner product expressions in the numerators of (8.5) are obtained from
(7.2b) X, -X, =2zR, (7.2¢), X, -X_=-2R’ and (7.2d) X_-X, =-2)R. Putting
these expressions, plus (2.2.6¢) and the magnitudes (8.6), into (8.5) gives the angles
as follows, where sg(zR) denotes the sign of term zR and sg(yR) the sign of term
JR , see (8.7d), below, for the signum function 'sg ' definition,

(8.7)

(8.72) cosd,, = sg(zR)2R*/(C* +2R*)) "

(8.7b) cosd,_ =-R*/(C* +R?)

(8.7¢) cosf, = —Sg(ﬂ'e)(ZRZ/(C2 +2R’ ))1/2 :

(8.7d) sg(a)=-1,a <0; sg(a)=0,a=0; sg(a)=+la>0

Since z and y always have the same positive sign, by (2.5.2c) and (2.5.6¢), the
angles 6,, and 6, are related as follows, using cos(180—@)+ cos(d) =0, when

restricting to the 0-180 deg range, which will be taken as the principle range
throughout

(8.8) 0.,+6, =180deg.

Note that since the eigenvectors are linearly independent, and therefore not co-planar,
the sum of all three angles is not 360 deg, contrary to the appearance in Figure 5

(8.9) 0.,+6, +0. #360deg.

Since — R*/(C* + R?) is always zero or less, then @,  in (8.7b) is always 90 deg or
greater and, because C >0, it is always less than exactly 180 deg, hence 6, lies in
the interval

(8.10) 90 <6, <180deg.

The 90 deg equality is only satisfied for the almost trivial solution, when R =0,
Appendix (C).

Restricting X, to the upper cone such that z>0, X, €C,, then X, eH, if R<0

(4.4) and, consequently, sg(zR) in (8.7a) is minus, hence @, also lies in the interval
(8.11) 90<80,,<180deg, z>0,R<0.

As an aside note, the condition R <0 is not guaranteed and it is possible for X to be
such that R >0, i.e. X, € H, (4.5). Nevertheless, given the sign convention adopted,
m >0 (see Section (6)), then the solution always evolves quickly to R <0 when X,
lies in the upper cone z>0, X, € C,. So, for discussion purposes, this condition
R <0 is safely adopted.
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Given that X, can never lie in a plane spanned by X and X, (the vectors are
linearly independent by (7.1)), then 6, can never be zero and, as per (8.11),
restricting X, to the upper cone gives

(8.12) 0<6, <90deg, z>0,R<0.

All three angles, 6,,, 8, and 6, (8.7), are parameterised by the single variable R .

.
With X, static, i.e. £ and / constant, then R is a function only of the evolution
parameter m , as in (2.5.8c), and all angles therefore evolve with respect to m .

For the discussion of the angular evolution it is more useful, from both an algebraic
and physical perspective, to re-parameterise equations (8.7) in terms of a single
‘flatness’ parameter @, instead of R or m, and defined as follows.

Definition. The flatness parameter @ is defined as the ratio of the eigenvalue C to
the dynamical variable R, for R# 0, (see below on transforming R away from
Z€ero),

(8.13) w=C/R,R#0.

By dividing the angular equations (8.7) throughout by R*, they can be neatly re-
written, purely in terms of @, as follows

(8.14)

(8.14a) cosd,, = +Sg(ZR)(2/(2 + o’ ))1/2
(8.14b) cosd, =-1/(1+a?)

(8.140) cos8, = -SgOR)2/2+w*)) .

In this form, and disregarding the sign terms Sg(zR) and Sg()R), the angular

equations are a function of @’ only.

Since R is parameterised by the evolution parameter m, as in R = R'—mz (2.5.8¢c),
then, whatever finite value for C is chosen, a value for m , and consequently R, can

always be found such that |R| >>C and |a)| <<1 by (8.13), hence lim, ,,, @ =0. See

—to0
also Section (14.8). Thus, the flatness parameter @ becomes ever smaller as the
evolution progresses. As a reminder, the ability to modify R by choice of m , whilst
keeping X, and the eigenvalue C constant, is a consequence of the invariance
principle in [1], and is known as an invariance transformation.

To obtain @ directly in terms of m , instead of R, substitute for R from (2.5.8c) into
(8.13) to get

(8.15) w=C/(R' —mz).
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For large m , and to first order in 1/m, this approximates to

m|>>1,

mz| >>[R'].

(8.16) a)z[ijl
z m

Hence w is inversely proportional to m , for large m , where C is a constant and z is
constant by virtue of a static X, when integer parameters k£ and / are constant.

Looking at 6,  (8.14b) and 4,, (8.14a), the choice of the name ‘flatness’ is now
evident in that cos@,  converges to —1 and cos@,, also converges to -1 (for z>0,
R <0),and so 8, and 6,, both converge to 180 deg as |a)| becomes ever smaller,
1.e. the axes flatten out. As noted earlier in Section (6), the X and X, eigenvectors

become parallel to each other and anti-parallel to X, :

(8.17) lim, ,  o=Ilm, . o=0
(8.18) lim, ,60, =lim, ,60,,=180deg.

Rearranging (8.8) for 6, to get 6, =(180-60,,)deg, and using (8.18), the limit

lim, , 6, is zero since

o—0

(8.19) lim, ,6, =180-lim_ ,6,, = 0deg.

w—0 w—0 V40

It can easily be shown that 6, and &, are never equal and, likewise, for 6,  and

0, , as follows. By squaring and equating (8.14a) and (8.14b) a quadratic in @’ is
obtained

(8.20) 0=30" +20".

This has no real solution for @ other than zero, which is not possible since C is never
zero (2.2.1), and so @ in (8.13) is never zero. Hence 6, and 6,, are never equal and,

likewise, 8, and 6, are never equal since expressions &,, (8.14a) and 6, (8.14c)
are equivalent, to within a sign.

Denoting the small angle (7 — 6, )rad by symbol §+7 as in
(8.21) 0, =(r-0,)
then, using (8.14b), the cosine cos(af) is given by

(8.22) cos(§+_) =—cos(f, )=+ 1/(1 + ).
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By expanding cos(d,_)deg as a power series (in radians), and the right-hand side of

(8.22) as a power series in @”, the following two series are obtained, the second
being convergent only for |a)| <.

o8t 6

(8.23) cos(@, )=|1 ) 4 o +

(8.24) 1/(1+a)2):[1—a)2+a)4—a)6+---],

a)|<1.

Comparing the two series, then @ is related to @, , to second order, as follows:

(8.25) /oy O(w?),

NG

a)|<1.

The negative root is purposefully chosen since @, is always greater than zero, by

(8.10) and (8.21), and @ is invariably less than zero, by its definition (8.13), since the
values usually chosen for R (2.5.8c) make it negative, i.e. a particular solution R' in
(2.5.8c) can always be made less than zero and, invariably, m > 0. It is stressed this is

a choice, not a constraint, and it is really only |a)| that is of interest since its limiting

value is zero anyhow.

Given there is no 3" order term in (8.23) and (8.24), the approximation is better than
second order, and the first error term is of the 4™ order

— 4
e

<O 0w,

(8.26) o' -6,

a)|<1.

Thus, returning to §+_ (8.21), the flatness parameter @ (8.25) is approximately equal

in magnitude to the angle —(7[—9+_)/\/§ for small @, with the approximation
becoming better as @ — 0

(8.28) w~—(r-6,)/2,

a)|<<1.

Once again, as in (8.25), the negative value has been chosen for @ since 6, <7 and
it is usual for @ to be negative, see above.

A relation between 6, and @ is obtained, for small @, by squaring and dividing

(8.14c) throughout by 2, and using the trig relation 2cos’ 8, = cos(26, )+1 to give
g 0 0

-1
(8.29) c0s20, +1= 2(1 + ﬁ} .

V2
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Expanding both sides as power series for small @ and 6, gives

200 _(0,)

(8.30) c0s26, +1=2-20; + 3 —T+
o) ! o
(8.31) 2(”5) :2—a)2+7—2(ﬁj +o o] <1

Comparing the two series, then o is related to 6, , to second order, as follows

(8.32) o~—20, , O(w),

a)|<1

Given there is no 3" order term, the approximation is better than second order, and
the first error term is of the 4™ order

46,

4
. O(@"),
3 (0")

(8.33) o' -6, | = o<1,

Comparing (8.32) with (8.25) it is seen that 6, and §+7 are approximately related,
for small @, by

(8.34) 6, ~ 95‘ , O(0%),

a)|<1.

The approximation getting better as @ becomes smaller such that

. 0. (7-0.)
8.35 lim g =——= it
( ) w—>0 Y 0- 2 2

All this analysis is given some numbers in Appendices (B) and (C), and confirms the
remarks on the size of large m , small @, and the choice of signs in (8.25), (8.28) etc.
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(9) Curvature

Curvature, symbol x, is defined here as the rate of change of angle 6, with respect
to the evolution parameter m , i.e.,

9.1) k=00, /om.

Changes in angle, 06, , on each evolutionary tick, om, are given by the discrete
difference 60, =6,,,. -6, - With om =1, the curvature is thus defined as

o0,
9.2) K= S = 9(m)+7 _0(n1—1)+—'

Equations (8.16) and (8.28) are combined to obtain €, in terms of m

(9.3) 0, zﬂ—(ﬁch,

z m

m|>>1.
And, applying (9.2), gives the curvature as follows

9.4) m[_ﬁCJ(i_Lj,
z m m-—1

For large m , this becomes

©9.5) x z[ﬁcji

2
z m

m|>>1.

m|>>1.

Note that, for large m, the discrete goes over to the continuum and this result could
also be obtained by straightforward calculus on (9.3)

Thus, it is seen from (9.5) that the curvature of &, , with respect to m, is an inverse
square law. By (8.8) and (8.32), the same relation, barring a factor, applies to angles
0., and 6, respectively. Therefore all three angles &, , 6, and 6, , have an inverse

square law curvature relation with respect to m , for large m .

Note that, once again, the expression for x is a ‘large m’ approximation, becoming
better as

m| increases.

The curvature (9.5) is seen to be proportional to the eigenvalue C, which is
effectively a free parameter for tuning; see Section (2.2).
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If m is a time parameter, then the curvature is actually an angular rate with units
rad/s. More usually, curvature is expressed by the Serret-Frenet formulae [8] with
respect to arc-length, hence m would be a length parameter and the curvature is the
rate of change of angle with distance along the path.

See table (B19) in Appendix (B) for a numeric example of « .
) ow . .
Since o = —(7 - 6’+_)/\/E , by (8.28), then the rate of change of flatness B is simply
i
related to the curvature by

so 1680, «

9.6 —=— =—, |m/>>1.
©-6) on 2 om 2 |
Using (9.5) for « this becomes

ow (C) 1
9.7 — == |—, m|>>1.
©7 om (zjmz |

Note that, with the chosen sign combinations, the curvature x is positive, the flatness

o negative, and the rate of change of flatness i—w (9.7) also positive, i.e. ¥ >0,
i

w<0, i—w > 0. Regardless of sign, all limit to zero in the large m approximation.
i
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(10) Mixed Angle Curvature

So far all reference has been made to ‘flatness’ and a flattening-out of the standard
eigenvectors X_and X, with respect to X,, i.e. an alignment of eigenvectors as

they evolve. However, it would be preferable that a basis formed from these
eigenvectors would be orthogonal and not flat. As the theory here is three-
dimensional, then an orthogonal triad is aesthetically appealing for physical
comparison. To which end, there is nothing to stop the construction of such a basis
from the standard eigenvectors X, , X, and X _, given they linearly independent, see

Section (7). The ‘flattening’ would then become more of a straightening whereby the
axes fold out to a 90 deg angle with each other. It is not necessary to construct such a
basis, at least in this paper, because the conjugate eigenvectors effectively play this
role and can be illustrative in so far as angles are concerned. With that in mind, this
section examines the angles between the standard and conjugate vectors, termed
‘mixed angle curvature’ herein, and these angles are seen to converge to a 90 deg
angle as the flattening evolves. In fact, the convergence is seen to be even more rapid
than the flattening (inverse cube rather than inverse square).

Denoting the angle between X, and X' by 6/, the angle between X by X by
0~ , and the angle between X, and X" by 6, , then €', 6~ and 6 are obtained by
the standard inner product relations

(10.1)
(10.1a) cosf =X, -X+/|X+.X+ =C*/(C*+R?)
(10.1b) cos@” =X_-X /X [[x"|=C/(C* +R?)
(10.1c) costy =X, - X" [|X,[[X°| = C*/(C* +2R%).

The magnitudes in the above can be obtained from the standard eigenvector
magnitudes (8.6) as follows

(10.2)
(10.2a) \x

=|X_|=VX* X" =42y

(10.2b) IX°| =[X,| = VX" X" =+/C* +2R?

(10.2¢) X7 =[X,|=VX" X" =42z

Note that the other mixed angles between X, and X°, X, and X*, X and X’ are
all zero as a consequence of their conjugate, orthogonal definition (2.3).

Dividing the angular equations (10.1) throughout by R*, they are re-written in terms
of w (8.13) as follows

(10.3)
(10.3a) cosf! = 0’ [(@* +1)
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(10.3b) cosd- =’ /(0* +1)

(10.3¢) cos8 = w*/(0* +2).

As per (8.14), the angular equations (10.3) are only a function of the flatness
parameter @ (8.13) in squared form but, unlike (8.14), they are unconditionally

positive and have no usage of the Sg function.

From (10.3a) and (10.3b) it can be seen that, in the limit as @ — 0, the cosine of the
angles 6 and 6~ tend to zero hence,

(10.4) lim, 6 =lim

w—0 Y+ w—0

6~ =90deg.

Given the angles 6 and O~ converge to 90 deg then, to obtain small angle

approximations, the angle (7/2— 6. )rad is used instead and defined as angle 5: by
(10.5) 0 =(x/2-6;).

The expression (10.3a) is then given for gj as

(10.6) sin@," = 0’ /(0* +1).

By expanding sin(éj) as a power series (in radians), and the right of (10.6) as a
power series in ®°, the following two series are obtained, the second being
convergent only for |a)| <lI.

_+3

(10.7) sin(0, ) =6, - 9; +...

(10.8) 0’1+ 0*) =0 -0 +--,

a)|<1.

Comparing the two series then, crudely seen, @ is related to 5:, to first order in 5:,
as follows, where the negative root is taken, see the sign choice in (8.25).
<<1.

(10.9) w~—0] , 0(), |0,

Although certainly not a rigorous exercise in real-analysis, this approximation is seen
to be numerically correct in Appendix (B), table (B21) and, as expected, the
approximation improves as @ — 0.

Using the definition (10.5) for 5:, the flatness parameter @ is approximately equal

in magnitude to the square root of the angle (7/2—8.") for small @

(10.10) W~ —(r12-67).
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Since the expressions (10.3a) and (10.3b) for &~ and 6 are identical, then (10.10) is
duplicated for 6~ as

(10.11) w~—(r12-607).

Lastly, for 6, , its defining expression (10.3c) is almost identical to that of &, (10.3a)
and, by dividing throughout by a factor 2, it is re-written as follows

(10.12) cos8 = (@/v2)*[(w/\2)* +1).

It is seen that replacing @ by @/ V2 in (10.3a) makes it identical in form to (10.3c)
for 8 and, hence, the result (10.9) can be directly translated for &, as follows, where

an extra /2 factor now appears on the right-hand side

(10.13) w~—20) , O(&),

500‘<<1.

Equating @ (8.16) with (10.10) gives € in terms of m as

+

A - m|>>1.
z

2
(10.14) N m/z—(c—jiz,
m

Taking the derivative (finite difference) of & in (10.14) with respect to m, and

making a large m approximation in the denominator, gives the following expression

+
+

for the curvature x| =

om
., o60r (20*) 1
(10.15) KR — :( > jﬁ,m| >> 1.

It is seen that the curvature x| is an inverse cubic function of m, as opposed to an
inverse square law for 6, curvature «, as in (9.5). Re-writing (10.15) in terms of «,
and disregarding the proportionality constant, gives

(10.16) Ko
m

m|>>1.

Comparing (9.5) with (10.16), it is seen that the angular convergence (to 90 deg),
between X, and X' (6.), is more rapid than the flattening between X, and X_
(6, ). Otherwise, similar remarks apply. See table (B22) in Appendix (B) for a
numeric example of «; .

- End of Part I -
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- PartlI-
(11) Physical Considerations Overview

Fundamentally, the matrix A and its associated eigenvectors, X,, X,, and X _,

arose from an invariance principle that was applied algebraically as local and global
transformations, to dynamical variables in a conservation equation in [1]. This was
purely and simply mathematical physics, but with a couple of twists: 1) the
conservation equation was generally an abstraction, albeit with some consideration of
energy conservation; 2) the development was entirely in integers and more the realm
of number theoretic issues such as power residues, primitive roots, and nth order
Diophantine equations.

Overall, the work is considered to be physics in integers and, as such, this second part
of the paper is intended to highlight some plausible connections with mathematical
physics and the physical world. It is only intended as a tentative introduction but,
nonetheless, is meant to highlight what the author considers are connections too
interesting to ignore.

Association of all equations and variables to physical quantities requires dimensional
consistency if they are to represent the physical world. As such, a dimensional
analysis is given before physical associations are made.
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(12) Dimensional (Units) Analysis

By examination of equations (2.1.3), (2.1.5) and (2.2.1), it is clear that

(12.1) x,y,z,X,, X" all have the same units,
(12.2) a,f, 7, X_, X" all have the same units,
(12.3) P,0O,R,C,X,, X’ all have the same units.

A ‘units’ function is defined as follows

(12.4) units(mass) = M

(12.5) units(length) = L

(12.6) units(time) =T

(12.7) units(m) = to be determined.

The units of each set of triples will be related via the evolution parameter m , which
will be left undefined for the moment (12.7). Whatever the units of m are, the units of
(12.1) to (12.3) are determined as follows, where the standard eigenvectors, X, , X,

and X_, are used to represent all the quantities in (12.1) to (12.3), excepting
eigenvalue C.

By examination of (2.5.8), the units of X, are related to X, by

units(X,)

(12.8) units(X,) = units(m)
Examination of (2.2.7) shows that

(12.9) units(X_) x units(X, ) =units(X, )’

and, using (12.8), this gives for the units of (X_)

(12.10) units(X_) = units(X, ) x units(m).

Lastly, the units of integer parameters k and / in (2.5.1) are, from (2.5.2),
(12.11) units(k,1) = \Junits(X., ) .

and, similarly, the units of integer parameters s and ¢ in (2.5.4) are

(12.12) units(s,t) = Junits(X_) .
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It is seen from (12.8) that, whatever the units of P,Q,R,C,XO,XO, those of
x,y,z,X,,X" are equivalent to the derivative of P, Q,R,C,XO,X0 with respect to

m , i.e. division by m , and those of «, ,7,X_,X" are the integral, i.e. multiplication
by m.

Using the standard calculus derivative di as a good, large m approximation for
m

discrete differences, i.e.

(12.13) 40 w0, om=l,
dm om

then the above dimensional relations can be verified by looking at the derivatives of
the evolution equations (6.1), as follows,

(12.14) units(dxo J =units(X,)
dm

(12.15) um’ts(dx j =units(X,).
dm

Differentiating (12.15) a second time, and using (12.14), gives

m m

2
(12.16) units[dd X2_ j = units(a;ixo j =units(X,).

m0

dm

The derivative

is calculated from (6.2b) as follows, confirming (12.14)

(12.17) X -X .
dm

dm
(12.15), since the term —2mX, has the same units as X, by (12.8),

Likewise, the derivative

is calculated from (6.2c) as follows, confirming

(12.18) X, _ —2mX, +2X).
dm

2
m—

Taking the derivative of (12.18) to get the second order derivative d confirms

dm

(12.16) since
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d*X
12.19 n- — 92X
( ) i N

It is also seen to be constant since X, is static, by (6.2a), formalised as

(12.20) X, =0
dm

2

.. dX, .
For the same reason, the second order derivative 7 ;”0 is zero by (12.17)
m

d’X,, 0

2

12.21
(12.21) =

These derivative relations will be seen to be important in relating the variables to
physical quantities in the next Section. See also Section (14.5).
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(13) Physical Associations

This Section makes some tentative associations of all the variables x,y,z, P,O,R,C
and a, B,y to real-world quantities.

Given that (2.2.1) is a conservation equation with sum-squared quantities, the natural
assumption is to attribute the squared terms to kinetic energies and, hence, associate
the dynamical variables P,Q,R to momentum per unit mass, i.e. velocity. This was

alluded to in [1] and thus their suggestive name, ‘dynamical variables’, albeit that
name was primarily motivated by the invariance principle (likened to invariance of
momentum to translations). Whilst these quantities are linear, they could equally be
angular, i.e. angular velocity and momentum. Indeed, [1] makes the comparison of the
conservation equation and invariance principle with that of angular rather than linear
momentum. Nevertheless, for familiarity, linear quantities will be used for the
following discussion. Lastly, these comparisons are tentative and the exact physical
nature of this work is yet to be determined [2017 3].

Given the arguments in Section (12), and since force is the derivative of momentum
with respect to time, then the following physical associations are made,

(13.2)

(13.2a) m ~ time

(13.2b) X,, P,O,R,C ~momentum

(13.2¢) X,, x,y,z ~force (momentum per unit time)
(13.2d) X_, a,f,y ~ momentum x time (mass x length).

The last association of X with momentumxtime does not seem to have a physical
association except when all three quantities are considered as ‘per unit mass’, then
X is equivalent to position, momentum X, is equivalent to velocity, and force X,
equivalent to acceleration, i.e.

(13.3)

(13.3a) X,, P,O,R,C ~ velocity (momentum per unit mass)

(13.3b) X,, x,»,z ~acceleration (rate of change of momentum per unit mass)
(13.3¢) X_, a,f,y ~ position (momentum per unit mass x time).

Given that X, is static, i.e. a constant vector (6.2a), then (13.2¢c) represents a constant
force (per unit mass), and (13.3b) a constant acceleration (per unit mass), i.e.

dX . .
(13.4) 7 ~ = (0 ~ constant force = constant acceleration per unit mass

m

The derivative relations (12.17) to (12.19) are also consistent with the interpretations
(13.2) and (13.3), given as follows, all per unit mass:
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dX

(13.5) d—'”o =—-X, ~ rate of change of velocity = acceleration
m
). S , .. .
(13.6) y — =-2mX, +2X ~ rate of change of position = velocity
m
d’X,,_ : :
(13.7) 7 7= =-2X, ~ rate of change of velocity = acceleration.
m

Integrating (13.5) gives X, , = -mX, + X{, as per (6.2b), i.e. the velocity X, starts
with an initial value Xj and increases linearly in magnitude with time, i.e. constant

acceleration X, .

Likewise, integrating the acceleration of X, (13.7) once gives its velocity as
—2mX, +2Xj (13.6), which is actually twice the velocity of X, , (6.2b). Integrating

a second time returns the position X, as per (6.2¢).

Comparing (13.5) and (13.7), the position X, accelerates with an acceleration
—2X,, twice that of X, ; but in the same direction, and so the velocity X, , (6.2b) is
always half that of X _ (13.6).

In terms of cones and hyperboloids, Section (4), these associations are interpreted as
follows: with a static vector X, in the upper cone, i.e. X, € C,,, then the X, vector

accelerates at a constant rate —X,, always in the opposite direction to X, and,

)
consequently, along the surface of the lower hyperboloid H, . Simultaneously, the
X_ vector also accelerates at a constant rate, —2X, along the surface of the lower

cone C,, forever going twice the speed of X, .

The evolution parameter m could also be associated with inverse time or inverse
length or, indeed, inverse other, instead of time. Looking at dimensional equations
(12.8) to (12.10), this would then make X, a position vector which, given its
elements are labelled with the traditional Cartesian x, y,z, intuitively makes sense.
The vector X, would remain a velocity and the X_ vector would then be
acceleration. Superficially then, this would seem to be a simple re-labelling exercise
or swap in X, and X _, which it is, and is closely related to a duality between X,
and X_, i.e., denoting a dual variable by an over-struck tilde, then X_= }~(+ or

X, = X _. See also Section (14.9).
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(14) Concepts in Mathematical Physics

This last Section is a short collection of some key links with mathematical physics
and the physical world. The list is both speculative in places and far from exhaustive,
with some key points still under consideration and others omitted since they are the
subject of ongoing work for future publication. [2017 4]

(14.1) Quantisation. First and foremost, all the work here and in [1] and [2] is
entirely in integers, and is therefore quantised from the beginning. The development
has been pursued explicitly avoiding rational, real or complex numbers. Nevertheless,
complex numbers have their isomorphs in the form of integer, unity roots (or
primitive roots and power residues), which are the dynamical variables P,Q, R. With
this isomorphism in mind, trace-free, complex matrices, used throughout
mathematical physics, are not so dissimilar to matrix A (1.1).[2017 5]

(14.2) No Singularities. Section (5) explains that the zero point is not possible as an
element of the lattice, i.e. neither the cone C (4.3) nor hyperboloid H (4.6), contain
the origin (0,0,0). This is fundamentally due to the fact that, for C, the eigenvalue C

is non-zero - a separate eigenvalue A =0 1is already allocated for eigenvectors
X,,X’ eH; for H, (P,0,R)=(0,0,0) is never a valid solution to the hyperbolic
equation (2.2.1). Hence C and H are referred to as having no singularity. As H is a

discrete quadric surface, its real R3 analogue would, anyhow, ordinarily have a finite
radius (eigenvalue C) in the x,y plane. On the other hand, C comprises both upper

and lower cones, C, and C,, and its R3 analogue always includes the origin where

the tips meet. But, when working in 73, as stated in Section (5), this is no longer
possible. As a consequence, any path connecting the cones would skip the origin

when going from C, to C, (evolving forward) and vice versa, C, to C, (evolving
backward); likewise for a path on the hyperboloid H.

(14.3) No Infinities. It is noted in [1] that zero divisors are possible but can be
removed by transformation without altering X, . By definition, this transforms X, to

remove the zero, and X_ transforms as a consequence, maintaining invariance in
(2.2.5) — see also (14-7) further below. This transformation property has not been
explicitly employed herein but is mentioned in connection with singularities as a
useful property for any awkward expressions, in particular the indeterminate form
0/0, which can arise in [1].

(14.4) Symmetry. The simplifying ‘Pythagoras Conditions’ in [1], that reduce the
unity root matrix theory in [2] to that of Pythagoras, represent a transition from an
asymmetric to symmetric set of equations and solutions. The Pythagoras ‘state’
actually represents a very symmetric, zero Potential energy form. However, this is
really the realm of extensions to [1] and mentioned here only as further evidence of
links to the physical world. The local and global invariance transformations, their
affect on symmetry and, in particular, the vanishing Potential term » in the
conservation equation, are considered analogous to gauge transformations in field
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theory. Note that the Potential term is not shown in (2.2.1) precisely because it is zero
for Pythagoras.

(14.5) Calculus. The physical associations in Section (13) compare the eigenvectors
X_, X, and X, to a position, velocity and acceleration vector respectively, and

notes that they could equally well be angular equivalents or other unspecified.
Whatever the association, the important point is that they span constant, first and
second order vector derivatives with respect to an evolutionary parameter m (~time),
as shown in the dimensional analysis. Furthermore, the second order derivative
(~acceleration) is constant and so there are no higher-order, non-zero derivatives.

(14.6) A Conserved Non-zero, Zero-point Energy. The quantity C* in equation
(1.1) is analogous to energy in Ref. [1] and split into a kinetic and potential term,
albeit an abstraction. Nevertheless, since it is the square of a non-zero eigenvalue, it is
never zero, and its smallest value, C* = +1, is akin to a ‘zero-point’ energy, per unit
mass. The zero-point energy is always non-zero and, for a single oscillator, is given
by E,=hw/2 for oscillator frequency @. Using the Planck frequency (the
reciprocal of the Planck time, see (14.8) below), this gives the rather large energy
E ~10”GeV (2x10°J). The impact of a non-zero C (or C*) is wider reaching
since it also dictates that a trivial, zero Pythagorean triple (0,0,0) is impossible within
the theory, as explained in Section (5), and discussed above in (14.2).

(14.7) Invariants. The three eigenvalues A =+C,0 are, by definition, invariants of
the theory. The eigenvector space generates six other scalar invariants via the vector,
inner product relations between the three eigenvectors and their conjugate forms. Of
course, three of these are zero by the orthogonal properties between row and column
eigenvectors vectors with distinct eigenvalues. The full suite of inner products is a set
of six equations, given earlier in this paper and reproduced below,

(2.1.3) X X, =x” +y* —z* =0, Pythagoras equation

(2.1.5) X*X_=a’+ p*-y* =0, Pythagoras equation

(2.2.1) XX, = P> +0Q* - R* = C?, Dynamical conservation equation
(2.2.7) XX, =X X_=ax+ fy+)z=2C?, Potential equation
(2.2.4) XX, =X"X,=xP-yQ—-2zR =0

(2.2.5) XX =X'X,=aP-B0+R=0.

The volume element gives another, derived invariant 2C°
(7.1) X, "X, X_=2C".

The important point about these values is that, for any evolved set of eigenvectors
{X,,X,,,,X,_} and their conjugates, they are truly invariant in the lattice L (4.7).
The invariants cover the integer set {~C,0,C,C*,2C*,2C>}, and it is noticed that, for
unity C, this set covers the most basic integers {—1,0,1,2} . Even when C #1, their
ratios also include the simple set of integers {0,£1,£1,#2}. Given the musings on
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angular momentum conservation in [1], it is tempting, but admittedly extremely
tenuous, to think of spin [2017 6].

(14.8) Scale As the lattice L (4.7) is discrete, by definition, it is evident that at some
stage it must appear continuous in the macroscopic world. Difference equations must
become differential equations and, given almost the entire world of mathematical
physics works with continuous differential equations (even string theory), the integer
values used herein must be very large such that a numeric difference of 1 or 2 is
relatively tiny, and all quantities appear continuous.

A tentative scale can be obtained by looking at the smallest possible interval of
evolution, i.e. m =1. At the smallest scale of physical reality, considered to be either

the Planck time or length, a value of m =1 represents a length of 1.6x10m or a

time of 5.4x10™s, see Penrose [7], tzx/iEGc"Si and l=«/i%7Gc‘3 i,
h =1.055x107* Js(Kgm?s™), G=6.673x10"Kg 'm*s™*, ¢ =2.998x10*ms™". So,

at the one metre length, m is ~10> and, for a time of 1s, m is ~10* . Thus, there is
no issue with approximating the continuous by the discrete with these sizes of
numbers.

The smallest magnitude solution for a Pythagorean triple X, or X 1is (0,1,1),
according to definition (1.0). This is the ‘almost trivial’ solution, see Appendix (C),
and has an associated, smallest point in H, eigenvector X, =(C,0,0), i.e. its

magnitude is the eigenvalue C. The level represented by the ‘position’ eigenvector
X_ =(0,1,-1)", with magnitude \/5 , 1s thus considered the Planck level, i.e. if it

represented distance it would be around 107’ m.

When making physical comparisons on the flatness @ (8.16) and curvature x (9.5) of
the lattice, the question arises, how large does ‘large m’ have to be before the
granularity of a discrete lattice starts to appear continuous and the flatness w
becomes imperceptibly zero? The short answer is not very large, but it is dependent
on the value chosen for the conserved quantity given by eigenvalue C. This can be
most obviously seen in (8.16) where @ is proportional to C and inversely
proportional to m , for constant z . As noted in (14.6), given that C can also be large
but finite, a value for m can always be chosen to make @ as small as desired. Indeed,
Ref. [1] chose C =1, as in equation (2.1.1), and with this value a ‘large m ’ can be as
small as m =10. The flatness is inversely proportional to m , as given by (8.16), and
the curvature (9.5) is inversely proportional to the square of m . Considering m as
units of Planck time, then a value m =10 represents ~ 10 *s . This short evolutionary
period is discussed again below. Nevertheless, whatever the scaling of m , it is clear
that a large m does not have to be very large before the angles 8, and 6, become

very close to 180 deg, and the flatness @ all but zero, i.e. vectors X, and X  align
anti-parallel with X, .

The above discussion on @ and x assumes z is constant in (8.16) but, since this is
the z component in eigenvector X, , it can be made as large as desired by suitable
choice of & and/or / (2.5.2c), to nullify the effect of a large C. Given X, is static
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then, once chosen, the evolution proceeds as per a small C. This freedom to vary z is
because X, is a Pythagorean triple and the theory herein is valid for all Pythagorean

triples, z > 0; noting that [2] actually also extends to all Pythagorean triples such that
z < 0. Albeit this is not necessary since the region z <0 is effectively the conjugate

world of X" and arguments of duality apply, i.e. one can either work in the standard
or dual vector space, but working in both is superfluous.

Translating this discussion on scale to a cosmological analogy then, given that m
need not be very large at all, i.e. m=0(0"), on an evolutionary scale of
m = 0(10*), the flattening is all but over in the very early, inflationary stages (first
10 ticks). Certainly by 10* ticks (1s) flatness reigns supreme. With a flattening
period (a function of the clock ticks m ) tamed by choice of a large starting energy

C? then, from (8.16), it is clear that the larger the starting energy (for a fixed z, see
above), the longer the evolutionary period required to attain flatness.

Associating eigenvalue C with speed (13.3a), and C® as energy per unit mass
(kinetic energy/mass), then the Planck unit of C is simply the speed of light, little c,

ie. C=c~3x10°m/s. Given the age of the universe is approximately 13 billion
years, which equates to about 10" seconds, then the evolution parameter is, in units
of Planck time, m ~ 10 . Using the definition of the flatness parameter @ ~ (iji

z )Jm
(8.16), for large m , with z=1ms™> as in the ‘almost trivial’ solution, Appendix (C),
and C ~3x10%m/s, then the flatness is around @ ~10~>* (dimensionless), i.e. flat to

within 1 part in 10>*.

(14.9) Scale Duality
Although the topic of a duality (X_ = )N(+ ), mentioned at the end of Section (13), is

beyond the scope of this paper, as a prelude, the following observation is supplied. If
m is dimensionless, then all three eigenvectors have the same units. In such a case,
the evolution equations (6.2) show that, in the large m limit, to within an arbitrary

choice of sign, X, tends to m”X, . Thus, the large m formulation in X_ is simply a
scale factor m” of the formulation in X, and, hence, X _ is considered the dual of
X,.
In terms of the null-cone sets C, and C, then, since X €C, when X, €C,,
(Section (14)), this represents a duality between the small and large-scale geometry of
the sets expressed as C, = C uvsor G, = C ;- With the middle ground (macroscopic
world) considered to be that of the eigenvector X , (residing in the disjoint,
hyperbolic set H) then, relative to X, ,, the microscopic region is X, and the large
scale region that of X . Using (6.2), when viewed with respect to X, ,, the vector

1 : 1
X,,. tends to —X, and X, tends to mX, for large m, i.e. X, , sees an —,m
m m

duality between the microscopic and the very large.

Page 45 of 64
Richard J. Miller. Issue 2.0 June 2017
http://www.urmt.org



1 o . . . .
The —,m duality is analogous to mirror manifold symmetry in modern mathematical
m

physics, see the subject of mirror symmetries in string theory, Section (31.14) in [7].
It is also of note that the parameter m is analogous to a 'winding number' since it
controls the quotient in a moduli relation. For example, using P = P'—mx (2.5.8), the
dynamical variable P has the congruence property P = P'(modx) by virtue of its

definition as a power residue P> = C* (modx), (A7a); when C =+1 the dynamical
variable P is termed a unity root. The quotient in (2.5.8) is the evolutionary
parameter m and is the equivalent of the winding number.

(14.10) Minkowski Geometry. Not coincidentally, since the points in C satisfy the
Pythagoras equation (2.1.3) and (2.1.5), C is a discrete, 3D version of the null light
cone in the 4D Minkowski space of the Special Theory of Relativity (STR). Hence C
is also referred to here as the discrete, null cone as its vectors, like STR, also have
zero norm (length), see (2.4.1). Reference [7] gives a good, popular account with two
chapters on Spacetime and Minkowskian Geometry. A 4D version of the work in this
paper is pending and no further comment is added at this stage [2017 7].
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(15) Summary

The paper started with a review of its predecessor [2], itself a simplification deriving
from [1]. Ref. [2] showed that the A matrix (1.1) has three eigenvectors X, (2.1.2),

X, (2.1.6) and X (2.1.4), for eigenvalues 4 =+1, A =0 and A =-1 respectively.
The theory is extended in this paper to cover the more general eigenvalues,
A=+C,0,-C, CeZ, C>0. The components of the two eigenvectors X, and X_

satisfy the Pythagoras equations (2.1.3) and (2.1.5) respectively, whilst the third
eigenvector satisfies the hyperbolic, dynamical conservation equation (2.2.1).

A full parametric solution for the eigenvectors is given in Section (2.5), and it is seen
that fixing two of the arbitrary integer parameters, £ and / (2.5.1), fixes X, , and

enables X, and X to be related to X, by a third, arbitrary integer parameter m .

This parameter is identified as an evolution parameter, which relates the evolution of
X, and X_ with respect to X, .

Since all equations and variables are integers only, and with three arbitrary integer
parameters, the eigenvectors represent points in a discrete lattice L in Z3 (4.7). The
lattice comprises two discrete cones, C,, (4.1) and C, (4.2), collectively covered by

the set C (4.3), in which the eigenvectors X, and X reside, and a discrete
hyperboloid H (4.6), the home of X, .

The paper then proceeds to give a simple, geometric interpretation of the eigenvectors
in terms of their evolving path in L. Considering X, as a fixed eigenvector in the

upper cone C,, z>0, it is shown that the X evolution (6.2c), with respect to
parameter m, is a null path on the lower cone C,, —» <0, tracing a curved,
downward path and always pointing away from X, , becoming anti-parallel to X, .
The curvature of the X_ path is shown to follow an inverse square law in m, for
large m . The eigenvector X (6.2b) similarly evolves by tracing a downward path on
the lower hyperboloid H, (4.4), albeit following a straight line, anti-parallel to X,
with a slower growth and linear in m , as opposed to X_, which grows quadratically
with m .

As a basis, the three eigenvectors were found to be highly oblique and become ever
more oblique as they evolve, ‘flattening’ out such that X and X, become parallel

and pointing in the opposite direction to X, , as per their evolving paths in L. The
flattening, 1.e. rate of change of angle of X and X, with respect to X, , also follows
an inverse square law in m . [2017_8§]

Following the geometric study some physical aspects are investigated, starting with a
dimensional analysis, which shows that X, can be regarded as the first derivative of

X, , and the second derivative of X _, with respect to m . This leads to consideration

Page 47 of 64
Richard J. Miller. Issue 2.0 June 2017
http://www.urmt.org



of X, as a constant acceleration vector, X, as a velocity vector with a constant
acceleration — X, , and X _ as a position vector with a constant acceleration —2X, ,
twice that of X. Consequently, the evolution of X_ is a point accelerating down
C,, twice that of X, down H, .

Lastly, given the original unity root matrix theory in Ref. [1] was based upon a
conservation law and an invariance principle, coupled with the cone and hyperboloid
geometry of the eigenvectors, plus a consistent interpretation of the eigenvectors with
physical quantities, then Section (14) provided some links to concepts in
mathematical physics. Key amongst these concepts is: 1) quantisation, since the work
is exclusively in integers; 2) symmetry, conservation laws and local and global
transformation invariance; 3) evolutionary and physical scale; and 4), Minkowski
geometry.

(16) Conclusions

A relatively simple, integer matrix, with two eigenvectors satisfying the Pythagoras
theorem, and a third satisfying a hyperbolic equation, possesses a geometry of
sufficient structure to give some interesting geometric properties, e.g. angular
evolution and curvature. The eigenvectors also possess a consistent physical
interpretation as dynamical quantities such as position, velocity and acceleration with
their related calculus. With such properties observed, from what is a relatively basic
starting point, it is concluded that the further study of unity root matrices, and
associated algebra, may offer a reformulation of some physical phenomena in a
simpler, quantised form, without the need for a real or complex vector space under-
pinning much of modern, mathematical physics.

-  EndofPart 11—
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Appendix (A)
Non-unity eigenvalues A =+C,0,—C

This Appendix is a summary of all relevant equations for non-unity eigenvalues,
A ==xC, used throughout this paper. The unity equivalent equations for 4 =+1 were
first derived in [1] and [2]. There are some additional equations included here that are
not used specifically in this paper but are provided for completeness. Obviously, only
those equations containing the eigenvalue C are actually modified from [1] and [2],
and then, only if using a value C #1.

0 R O

(1.1) A=|-R 0 P|, P,O.ReZ, (P,O,R)#(0,0,0).
O P 0

(A1) det(A - AI)=0

(A2) - A +AUP*+0*-R)=0

(2.2.1) C*=P*+Q*-R*,CeZ, C>0

(A3) AA-C)A+C)=0

(A4) A, =C,2,=0,1 =-C
X

(2.1.2) X, =|y|, x,y,zel, (x,y,z) #(0,0,0)
4

(2.3.1¢) X =(x y -2z)

(2.1.3) X, X =x"+y’ -z =0
(94

(2.1.4) X =| g |,ap,yel, (ap,y)=(0,00)
-7

(2.3.1a) X' =(a B )

(2.1.5) X X' =a’+4*-y*=0
+P

(2.1.6) X,=|-0
+R

(2.3.1b) X'=(P -0 -R)

(2.2.1) X, X'=P'+Q*-R*=C"
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(2.2.2a)
(2.2.2b)
(2.2.2¢)

(2.3.52)
(2.3.5b)
(2.3.5¢)

(2.2.3)
(2.2.32)

(2.2.3b)
(2.2.3¢)

(2.2.3¢)
(2.2.3f)
(2.2.3g)

(2.2.4)
(2.2.5)

(AS5)

(A5a)
(ASb)
(A5c¢)

(AS5d)
(ASe)
(AS1)

(ASg)
(ASh)
(ASi)

(2.2.6)
(2.2.62)

(2.2.6b)
(2.2.6¢)

(2.2.7)

(A6)
(A6a)
(AGb)

AX, =+CX,
AX, =0

X A =+CX"*
XA =0
X A=-CX.

Cx=Ry+0Qz
Cy=—-Rx+Pz
Cz=0x+ Py

—~Ca=Rp~-0y
-Cp=-Ra—-Py
Cy=Qa+Pp.

X, X=X, X" =xP-y0-zR=0
X - X'=X,-X"=aP-pO0+R=0

¥(C* — P*) = (-CR + PQ)x

2(C* = Q%) =(CP+QR)y
x(C? +R*)=(CO+ RP)z

z(C* = P*)=(CQ - RP)x
x(C*-=0*)=(CR+PQ)y
y(C* +R*)=(CP—-0R)z

z(~CR + PQ) = y(CO — RP)
z(CR + PQ) = x(CP + OR)
W(CQ + RP)=x(CP-(QR)

ax=(C* - P?)
Py =(C*-0%)
7z =(C*+R?)

X'X, =XX_=ax+fy+z=2C

ay =(~CR + PQ)
az = (CO - RP)
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(A6c) Bx = (CR + PO)

(A6d) Pz =(CP+QOR)
(A6e) = (CQO+ RP)
(A6f) w =(CP—-0OR)
(2.5.1) k,lel, (k)= (0,0), ged(k,l)|C
(2.5.2a) x =2kl

(2.5.2b) y=(*-k%)
(2.5.2¢) z=("+k%)
(2.5.3) C=ks—1t,s,tel
(2.5.4a) s=s"+ml

(2.5.4b) t=t"+mk

(2.5.5a) P =—(ks+1t)
(2.5.5b) Q= (Is —kt)
(2.5.5¢) R =—(Is + kt)
(2.5.6a) o =-2st

(2.5.6b) L= -s5%)
(2.5.6¢) y=@>+s%).

With the extension to non-unity eigenvalues comes some modification to the
definition of the ‘unity roots’, i.e. the dynamical variables P,Q,R are no longer roots

of unity. For a general eigenvalue C, the dynamical variables P,(Q, R now satisfy the
following congruence relations

(A7)

(A7a) P? =C? (modx)
(A7b) 0% = C? (mod y)
(A7c) R?> =-C? (modz).

When C =+1 the dynamical variables P and O are seen to square to +1, and R

squares to -1, hence they are termed unity roots. When C # +1, the unity root
property evidently no longer applies since the dynamical variables no longer square to

unity, but C* instead, as in (A7). However, from the theory of power residues and
primitive roots, see [4], knowledge of the unity roots is sufficient to find any non-
unity, quadratic residue. For example, if P’ is a unity root such that

P> =+1 (modx), then multiplying throughout by C’ implies
(CP")? =+C? (modx). By defining P as P=CP’' (modx) then P*=C? (modx)
and hence P satisfies (A7a). Therefore knowing P’ enables P to be determined.
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Lastly, note that the special case, illustrated by the almost-trivial solution in Appendix
(C), when Q and R are both zero, does not contradict the definitions (A7b) and

(A7c¢). This is because the dynamical variables Q and R, and eigenvalue C, happen
to be congruent to zero moduli y and z, both moduli being /> in this example, i.e.
0* =(sl)’ =+C? =0(mod/*) and R’ =(-sl)* =—C? =0 (mod/*) since /|C. So,
although O and R are not true unity roots, neither do they contradict any results.

Furthermore P =C for all moduli x, zero or otherwise, so neither does this
contradict definition (A7a).
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Appendix (B)
Example. Pythagorean Triple (4,3,5)

This Section provides some example data in the case of the simplest, non-trivial
Pythagorean triple (4,3,5).

Choose integers k and / subjectto (2.5.1), k,l €Z, (k,I)#(0,0), ged(k,])|C,
(B1) [=2,k=1.

The triple (x, y,z) is then given by the familiar Pythagoras parameterisations (2.5.2),
x=2kl, y=(*-k*) and z=(I* +k*)

(B2) x=4,y=3,z=5.
Choose eigenvalue C as unity for simplicity and to compare with [2]
(B3) C=+1.

Solve the congruence C = ks — It (2.5.3) to give a general solution for s, ¢ in terms
of an arbitrary, integer parameter m

(B4) s=142m,t=m, mel.

The triple (P,Q, R) can then be obtained from (2.5.5), P =—(ks+1t), Q = (Is — kt)
and R = —(Is + kt)

(B5) P=—1-4m
(B6) 0=2+3m
(B7) R=-2-5m.

The divisibility factor triple (e, f5,7) is obtained from (2.5.6), o = —2st,
L=(t"=s*) and y =(t* +5°)

(B8) a =—(4m* +2m)
(B9) L =-0Cm* +4m+1)
(B10) y=06m* +4m+1).

For the primitive solution m =0, so s and ¢ in (B4) become

(B11) s=+1,1=0.
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Substituting m =0 into (B5) to (B10), the following values for the dynamical
variables P,Q, R and scale factors «, 5,y are obtained

(B12) P=-1,0=2,R=-2
(B13) a=0, B=-1, y=1.

With all nine variables {x,y,z,P,Q,R,a, 3,7} assigned, (B2), (B12) and (B13), the
standard eigenvectors X,, X, and X_ are, according to definitions (2.1.2), (2.1.6)
and (2.1.4) respectively,

4 -1 0
(B14) X, =3, X, =[-2|, X =|-1|.
5 -2 -1

The conjugate eigenvectors are, according to (2.3.1),
(B15) X =0 -1 +1),X°=(-1 -2 +2), X" =(4 3 -35).

Using (B12) for the dynamical variables P,Q, R, the A matrix (1.1)is

0 -2 +2
(B16) A=[+2 0 -1].
+2 -1 0

Since z >0 then X, € C, by definition (4.1).

With z=5 and y =1 then z and y are of the same sign and, hence, —y <0 and
X_e€C, by definition (4.2).

With R =-2 then X, e H, by definition (4.4).

(B17) Angle Table

This table gives the angles 6, , 6., and 6,  (8.7) between the eigenvectors X,
(~X,,,) (6.2a), invariant to variations inm, X, (6.2b)and X, _ (6.2¢c).

X, =X, (6.2b) X, (6.2¢) 0.,+6, =180
(4,3,5)| (C=1) (8.8)

m P -0 | R a B —7 0, 6, 0,

0 -1 -2 -2 0 -1 -1 143.130 | 160.529 | 19.471
1 -5 -5 -7 -6 -8 -10 168.522 | 174.232 | 5.768
2 -9 -8 -12 -20 -21 -29 173.267 | 176.628 | 3.372
4 -17 -14 -22 -72 -65 -97 176.320 | 178.150 | 1.841
8 -33 -26 -42 -272 -225 -353 178.071 | 179.035 | 0.965
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16 -65 -50 -82 -1056 -833 -1345 179.012 | 179.506 | 0.494
32 -129 -98 -162 -4160 -3201 -5249 179.500 | 179.750 | 0.250
64 -257 -194 -322 -16512 | -12545 -20737 179.748 | 179.874 | 0.126
(B18) Flatness Table

This table gives the flatness parameter @, as calculated from (8.13), with an
approximation of it (estimate @, ) from (8.25), using €, from table (B17), converted

to radians, to calculate @,  (8.21). A second approximation is also obtained from

(8.32) using 6, , also from table (B17), and also converted to radians.

evolution | flatness @ approx- | % error @,_approx- % error

parameter | parameter | imated from imated from
®(8.13) 1 4_ (825 g, (8.32)

m w=C/R, . —§+7 &)+_—w| 030—%_\/500— a’\)o_—a)
(C=1) o, = 100 100——

V2 | ] e | w

0 -0.5000 -0.4550 9.00 -0.4806 3.90

1 -0.1429 -0.1417 0.84 -0.1424 0.34

2 -0.0833 -0.0831 0.29 -0.0832 0.12

4 -0.0455 -0.0454 0.086 -0.0454 0.034

8 -0.023810 -0.023804 0.024 -0.023807 0.0094

16 -0.012195 -0.012194 0.0062 -0.012195 0.0025

32 -0.00617284 | -0.00617274 0.0016 -0.006173 0.00064

64 -0.00310559 | -0.00310558 0.0004 -0.003106 0.00016

(B19) Curvature Table

This table gives the curvature x, as calculated from (9.2) using 8, (8.7b), with an

approximation of it (estimate K ) from (9.5).

evolution | 4, angle ¢, | curvature x (9.2) | K approximated | % error
parameter | (deg) | (rad) (9.5), for C =1,
(8.7b) z=5
m 6(m)+— - 0(m—1)+— n \/EC 1 100 K—K
K= —
z )m K
0 143.130 | 2.498092 - - -
1 168.522 | 2.941258 0.443166 0.2828427 36.0
2 173.267 | 3.024081 0.0828232 0.0707107 15.0
4 176.320 | 3.077365 0.0188422 0.0176777 6.2
8 178.071 | 3.107929 0.00454656 0.00441942 2.8
16 179.012 | 3.124347 0.00111968 0.00110485 1.3
32 179.500 | 3.132863 0.00027800 0.00027621 0.64
64 179.748 | 3.137201 0.00006927 0.00006905 0.32
(B20) Mixed Angle Table
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This table gives the mixed angles 6, 6, and 6~ (10.1), between the standard and

conjugate, evolving eigenvectors (6.2) and (6.3). Note that 67 =6~ by (10.1a) and
(10.1b).

X, = | X" (6.3b) X" (6.3c) 0, 6" i

m P -0 |-R a p v (10.1a,b) | (10.1¢)
0 -1 -2 2 0 -1 1 78.463 83.261

1 -5 -5 7 -6 -8 10 88.854 89.421
2 -9 -8 12 -20 -21 29 89.605 89.802
4 -17 -14 22 -72 -65 97 89.882 89.941
8 -33 -26 42 =272 -225 353 89.968 89.984
16 -65 -50 82 -1056 -833 1345 89.991 89.996
32 -129 -98 162 -4160 -3201 5249 89.998 89.9989
64 -257 -194 322 -16512 -12545 20737 89.999 89.9997

(B21) Mixed Angle Flatness Table

This table gives the flatness parameter @, as calculated from (8.13), with an
approximation of it (estimate®’) from (10.9), using @ (10.1a) to calculate 6,
(10.5) in radians.

evolution 0: (deg) angle §++ (rad) flatness (2\)_: approx- % error

parameter | (10.1a) | (10.5) parameter | jmated from

m 0, =(n/2-0) | @=C/R, | 5+ __ [5+ & —w
+ + (C _1 ) ., 9+ 1001—=

w

0 78.463 0.201358 -0.5000 -0.448729 10.0

1 88.854 0.020001 -0.1429 -0.141426 1.0

2 89.605 0.006897 -0.0833 -0.083046 0.35

4 89.882 0.002062 -0.0455 -0.045408 0.17

8 89.968 0.000567 -0.023810 -0.023803 0.028

16 89.991 0.000149 -0.012195 -0.012194 0.0075

32 89.998 0.000038 -0.006173 -0.006173 0.00020

64 89.999 0.000001 -0.003106 -0.003106 0.000074

(B22) Mixed Angle Curvature Table

This table gives the mixed angle curvature x| as calculated from the finite difference
e . . -6

(m)+ (m-1)+>

from (10.15).

using (10.1a) for ;" , and with an approximation of it (estimate &)

evolution | g* (deg) | angle 8 (rad) curvature x; k! % error
parameter | (10 1a) | (10.1a) approximated

(10.15), for

C=1,z=5
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+ + ~
m 9(m)+ - 0(m71)+ ot = (2C2 100 K—K
+ Zz K
0 78.463 1.369438 - - -
1 88.854 1.550795 0.181357 0.08 56.0
2 89.605 1.563900 0.013105 0.01 24.0
4 89.882 1.568734 0.001386 0.0125 14.0
3 89.968 1.570230 0.000163 0.000156 4.3
16 89.991 1.570648 0.00001994 0.00001953 2.0
32 89.998 1.570758 0.00000247 0.00000244 1.0
64 89.999 1.570787 0.00000031 0.0000003 1 0.48
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Appendix (C)
The ‘almost trivial’ solution (0,1,1).

Given the most trivial value (0,0,0), for all three triples (x, y,z), (P,O,R), («,5,7),
is excluded as invalid, see Section (5), then the next simplest solution is considered to
be the triple (x,y,z)=(0,1,1). Of course, with extensions, see Appendix (D) in [2],
any of the four sign combinations are possible, but only the all-positive triple will be
used here for simplicity. Note too that (x, y,z) =(1,0,1) is also possible but considered

one and the same as (1,0,1), at least in this example, given the symmetry between x
and y in Pythagoras.

As (0,1,1) is not generally considered a true Pythagorean triple, it is not given the
status of the more familiar, smallest primitive triple (4,3,5), which is examined in
Appendix (B). Nevertheless, the triple (0,1,1) does satisfy definition (1.0) and is
therefore not to be dismissed lightly.

Instead of using exactly (0,1,1), the more general variant (0,/,/), [ €Z, [ # 0, will be

used in this example. With this choice, the integer &, in (2.5.1), is zero and integer /
remains unspecified, but both subject to the following conditions, for general
eigenvalue C,

(C1) k=0,1|C, kileZ, |+0.

The condition /| C in (C1) ensures integer, not rational, solutions. Obvious choices
are [ =t1 or [ =%C.

The triple (x,y,z) is then given by the familiar Pythagoras parameterisations (2.5.2)
x=2kl, y=(*-k*) and z=(I* +k?)

(C2) x=0,y=10",z=1".

For full generality the eigenvalue C will be left unspecified and not set to unity as in
Appendix (B) or [2].

With £ =0, the congruence C = ks — It (2.5.3) becomes simply ¢ = —C//. Integer s
is arbitrary and will also be left as such for now, acting as a free parameter.

Formalising this, the general solution to C = ks —/t (2.5.3), arbitrary s €Z, is
(C3) t=-C/l,1|C.

The triple (P,Q, R) is obtained from (2.5.5), P =—(ks+1t), O = (Is—kt) and
R = —(Is + kt) , parameterised by s,

(C4)
(C4a) P=C
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(C4b) O=sl
(C4c) R=-sl.

The divisibility factor triple («,f,y) 1s obtained from (2.5.6), «a =-2st,

L =(t"-s*) and y = (¢* +s°), also parameterised by s, as follows

(C5)
(C5a) a= 2s$
2
(C5b) B = f—z—sz
2
(C5c¢) y = % +s°.

Using these results, the full suite of standard eigenvectors X,, X, and X is, in
accordance with (2.1.2), (2.1.6) and (2.1.4) respectively,

0 +C | 2slC

(C6) X, =, X,=|-sl|,X_==| C*=sI
[

I? —sl —(C* +5°1%)
The A matrix (1.1) is

0 —sl +sl
(C7) A=|+sl 0 +C|.

+s/ +C 0

By comparison of the evolution equations (6.2) with eigenvectors (C6), it can be
inferred that the evolution parameter m is related to integer parameter s by

(C8) s=mi.

However, do not substitute for s, using ml (C8), as it will not give all solutions, only
those where s is a multiple of /. Consequently, (C6) is left as is and the 'evolution
parameter' is effectively s here. Evidently s and m can be made equal by setting
[ =1, which is done for the example data tabulated further below, tables (C13) to
(C16).

For the primitive solution, s =0, it is seen that the two dynamical variables O (C4b)
and R (C4c) are both zero. This is the exceptional case where they are most definitely
not unity roots but, that aside, are still perfectly valid and consistent values as regards
satisfying all related equations, notably the conservation equation (2.2.1) and
divisibility criteria (2.2.6).
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The primitive case s =0 also reduces A to having only two, non-zero elements, both
C but, nevertheless, it still gives a consistent set of dynamical equations (2.2.2).

The conjugate eigenvectors are, according to definitions (2.3.1),

(C9) X+=li2(2szc C’ -5’1 C*+5°1)

(C10) X°=(C —sI +sl)
c1y x =0 » -n).

The most interesting aspect of this example is that the eigenvectors for s =0 are
orthogonal and thus form a right-handed triad. Although, without scaling, they are not
unit vectors and, hence, the basis is not orthonormal

0 C 0
(C12) X, =|I*|, X, =|-s/ ,szi2 C* |,5=0.
l
I’ —sl -C?

The magnitudes of X,, X, and X in (C12) are \/512, C and \/E(C/l)z, but the

eigenvectors are never normalised within the context of unity root matrix theory since
this takes it out of the integer domain into the reals, and tantamount to heresy within
the context of this work.

(C13) Angle Table

The following tables are for the above, almost-trivial solution - See (B17) for a
description of the tables.

X, = | X, (62b) X, (6.2¢) 0,, +6, =180
O.LD) | (C=1)

1=1

(C12)

m P [-0|R J|a Vi -7 le_ Tle, e,

0 1 0 0 0 1 -1 90.0 90.0 90.0

1 1 -1 -1 2 0 -2 120.0 144.736 | 35.264
2 1 -2 -2 4 -3 -5 143.130 | 160.529 | 19.471
4 1 -4 -4 8 -15 -17 160.25 169.975 | 10.025
8 1 -8 -8 16 -63 -65 169.937 | 174.949 | 5.051
16 1 -16 -16 32 -255 -257 174.944 | 177.470 | 2.530
32 1 -32 -32 64 -1023 -1025 177.469 | 178.734 | 1.266
64 1 -64 -64 128 -4095 -4097 178.734 | 179.367 | 0.633
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(C14) Flatness Table

See (B18) for description.

evolution | flatness ® approx- | % error @, approx- % error
parameter | parameter | imated from imated from
m=s/l, w(8.13) H+_ (8.25) Ho- (8.32)
l,s =1(C8)
m wo=C/R | -0, &, —o| | @, ~-20, @y —®
(CZI) a,_ = 100 100}———
2 | o | ®
0 w0 (R=0) |-1.110 - -2.221 -
1 -1.0 -0.740 26.0 -0.870 13
2 -0.5 -0.455 9.0 -0.481 3.9
4 -0.25 -0.244 2.5 -0.247 1.0
8 -0.125 -0.12419 0.64 -0.12468 0.26
16 -0.0625 -0.06240 0.16 -0.06246 0.065
32 -0.03215 -0.031237 0.041 -0.031245 0.016
64 -0.015625 -0.0156234 0.01 -0.0156244 0.0041
(C15) Curvature Table
See (B19) for description.
evolution 0, angle 6, curvature x (9.2) | K approximated | % error
parameter | (deg) (rad) (9.5), for C =1,
m=s/l, 1 (8.7b) z=1
l,s =1(C8)
m Oyee = Oty J2c) 1 100 K—K
K= —
z Jm K
0 90.0 1.5708 - - -
1 120.0 2.0940 0.5232 1.4142 170
2 143.130 2.4981 0.4041 0.3535 12
4 160.25 2.7969 0.1063 0.0884 17
8 169.937 2.9660 0.0247 0.0221 11
16 174.944 3.053347 0.005862 0.005524 5.8
32 177.469 3.097416 0.001424 0.001381 3.0
64 178.734 3.119498 0.000351 0.000345 1.5
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(C16) Mixed Angle Table

See (B20) for description.

X, = | X"(6.3b) X" (6.3¢) 0, 6" 00
o,Ln | (C=1)

, =1

m P -0 |-R o p Y (10.1a,b) (10.1c)
0 1 0 0 0 1 1 0.0 0.0

1 1 -1 1 2 0 2 60.0 70.529
2 1 2 2 4 3 5 78.463 83.621
4 1 -4 4 8 -15 17 86.628 88.264
8 1 -8 8 16 -63 65 89.119 89.556
16 1 -16 16 32 255 257 89.777 89.888
32 1 32 32 64 -1023 1025 89.944 89.972
64 1 -64 64 128 -4095 4097 89.986 89.993

The remaining two, equivalent tables to (B21) and (B22) in Appendix (B) have not
been added to this Appendix (C) as unnecessary. They show the same trends as per
(B21) and (B22).
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Appendix (D)
2017 Revision

[2017 1] The connection to angular momentum and spin is firmly established in [IV]
and [V]. In the former, the dynamical variables P,Q, R are related to quaternions and

hence too rotations, whilst in [5] they relate to particle spin.

[2017 2] X+ is invariant under time-domain evolution, parameter m (or t). But latter
URMT introduces dual eigenvector evolution, which is also as the frequency-domain
evolution, and in this case it is the vector X- that is invariant, with X+ and X0
evolving in terms of a frequency parameter.

[2017 3] QPI/SPI

[2017 4] Physical advances have moved on considerably.

[2017 5] Trace-free Generators, Books 4 and 5.

[2017 6] Spin was borne out, books 4 and 5.

[2017 7] 4D and 5D extended in Book 2 and showed Geometric Compactification.
STR 4D and 5D came in Book 3.

[2017 8] This is basically another form of compactification.
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