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Abstract 
 
This paper examines the geometric and physical aspects of the vector space formed by 
three, linearly independent eigenvectors of a special type of integer matrix. The 
matrix is special because two of its three eigenvectors are distinct Pythagorean triples 
with a third, integer eigenvector, linking the two and satisfying a hyperbolic equation. 
The eigenvector space is seen to be a three-dimensional lattice with the geometry of 
two discrete cones and a hyperboloid. The linear and angular evolution of the 
eigenvectors in the lattice is examined and the curvature seen to flatten, following an 
inverse square law as the evolution progresses. A consistent, physical interpretation of 
the eigenvectors as position, velocity and acceleration is given and links to key 
concepts in mathematical physics made. 
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(1) Introduction 
 
This paper is actually a minor revision of that first published 2011 in [1]#3, i.e. Ref. 
[1], paper number 3). The paper is split into two parts, where the first part, Sections 
(1) to (10), starts with a review of earlier work, followed by a study of the geometric 
aspects of unity root matrix theory, when under Pythagoras conditions [2]. The second 
part, Section (11) onward, considers the physical aspects plus a summary of the entire 
paper and some example data in Appendices (B) and (C). 
 
(1.0) Definition. A Pythagorean triple considered herein comprises any ordered 
triple ),,( cba , of integers cba ,,  that satisfy the Pythagoras equation 2220 cba  . 
This definition is to be interpreted in its loosest sense with the only condition being 
that )0,0,0(),,( cba . In other words, ,a  b  and c  are allowed to be positive or 
negative integers, and a  may be less than or greater than b ; a  can be zero, in which 
case cb  , or b  can be zero, in which case ca  . Non-primitive triples are also 

included, i.e. those such that for non-zero, integer factor k , if ),,( cba  is a 
Pythagorean triple then so too is ),,( kckbka . Otherwise, primitive solutions are co-
prime, i.e. 1),gcd(),gcd(),gcd(  cbcaba . 
 
The subject of Pythagorean triples, as eigenvectors of the following integer matrix 
(symbol A ), was first studied in [2]. 
  

(1.1)  
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A , RQP ,, ℤ, )0,0,0(),,( RQP . 

 
Ref. [2] is purely algebraic and gives no insight into what the particular eigenvector 
space of A  looks like from a geometric viewpoint; neither does it associate any 
variables or equations with the physical world. The A  matrix is actually a 
simplification of a more general ‘Unity Root Matrix Theory’ studied in [1], which is 
primarily derived from concepts in mathematical physics (transformation invariance) 
but also offers little insight into what the work might actually represent in the physical 
world. Albeit, some comparisons are made and, given a similarity of the variational 
matrices to infinitesimal rotation matrices, angular momentum conservation is mooted 
[2017_1]. This paper makes some geometric and physical observations to remedy this 
omission, and it will be seen that the eigenvector geometry is that of a discrete, 3D 

lattice in ℤ3, comprising two discrete cones and a hyperboloid through which the 
eigenvectors trace out an evolving path. The three eigenvectors can, themselves, be 
associated with a constant vector and a first and second order derivative with respect 
to an evolutionary parameter (e.g. time) and, hence, may be identified with position, 
velocity and acceleration vectors or equivalent. 
 
The use of lattices in Physics is, of course, not new. However, much of the work, to 
the author’s knowledge, appears focussed on the solution of real or complex, 
differential equations as functions on a discrete lattice. See, for example, Ref. [3]. The 

work in this paper is, however, exclusively about a particular lattice in ℤ3 and not 
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functions on it. The points in the lattice being represented by the eigenvectors as 
ordered triples. 
 
The work is exclusively in integers, excepting geometric properties such as curvature, 
which is approximated in the transition from a discrete set of points to a continuum. 
The subject matter thus overlaps that of physics in integers; see Section (14.1). 
Because of the quadratic nature of the equations and their solutions, the earlier work 
in [1] and [2] concerns number theoretic concepts such as quadratic residues, power 
residues and primitive roots. This applies, in particular, to the hyperbolic, dynamical 
conservation equation, (2.1.1) further below, and associated dynamical variables 

RQP ,, , the latter being associated with integer, primitive roots of unity. The reader is 
therefore referred to any standard number theory text such as [4], which is 
comprehensive on quadratic issues. Lastly, at its core, are matrices and eigenvectors, 
and thus the work (more so in [2]) also calls upon some relatively elementary matrix 
theory for which most under-graduate texts will suffice. 
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- Part I - 
 
(2) Review 
 
This Section is a short review of the work in [2], itself deriving from [1], and adds an 
extension for non-unity eigenvalues. 
 
(2.1) Fundamentals. 
 
The matrix elements RQP ,,  of A  (1.1) are termed dynamical variables since they 
satisfy a conservation equation. The form of this conservation equation, when under 
Pythagoras conditions (see [1]), is given as follows 
 
(2.1.1)  2221 RQP  . 
 
This equation is actually the non-singular matrix condition 0)det(  IA  , 1,0  , 
and also known as the dynamical conservation equation. 
 
Although matrix A  (1.1) is a simplification of a unity root matrix in [1], it is of 
interest since it is shown in [2] that, subject to (2.1.1), it has three eigenvectors X , 

0X  and X , with eigenvalues 1 , 0 , 1  respectively, whereby two of 

the eigenvectors, X and X , are Pythagorean triples. The eigenvectors X  and X  
are defined as follows, in terms of integers zyx ,,  and  ,, , 
 

(2.1.2) 
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(2.1.3) 2220 zyx   
 

(2.1.4) 
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(2.1.5) 2220   . 
 
The three, integer variables  ,,  are also referred to as divisibility (or scale) 
factors. 
 
It is noted that (2.1.3) and (2.1.5) are the equations of a quadric cone when 

),,( zyx ℝ3, and (2.1.1) and (2.2.1), below, are the equations of a quadric, 

hyperboloid sheet when ),,( RQP ℝ3. This is discussed again shortly. 
 
The third eigenvector 0X  is a function of the elements of matrix A  (1.1) 
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(2.1.6) 
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It is concluded in [2] that every Pythagorean triple, as an eigenvector X , can be 
related to a similar matrix A  (1.1), subject to constraint (2.1.1), with eigenvalues 1 , 
0  and 1 . 
 
(2.2) An extension to non-unity eigenvalues. 
 
The eigenvalues need not be restricted to zero and unity, and the results apply equally 
for arbitrary, integer eigenvalues CC  ,0, , C ℤ, 0C , with associated 

eigenvectors X , 0X , X  respectively. However, all equations in [2] are for a unity 

eigenvalue and so require adjustment here. The complete, revised set is provided in 
Appendix (A). 
 
Addition of a variable eigenvalue C  has the advantage that it makes all the equations 
visibly homogeneous and usually quadratic. More importantly, it adds another 
arbitrary parameter for tuning to the physical world. The only change to the equations 
given so far is that the constraint (2.1.1) is modified as follows. 
 
(2.2.1)  2222 RQPC  , C ℤ, 0C  
 
It is seen that this is now clearly homogeneous of degree 2. This equation is actually 
referred to in [1] as the ‘dynamical conservation equation’ and, adding parameter C , 
modifies the theory from a conserved quantity of unity in (2.1.1) to a conserved 
quantity of 2C , above. See also Section (14.6). 
 
Notice that, although C  is arbitrary, the sum and product of the eigenvalues 
( C ,0 ) is always zero. The zero sum is dictated by the all-zero lead diagonal and 
consequent trace of A  (1.1) being zero. The product of the eigenvalues is zero 
because it is equal to the ‘Potential’ term V , see [1], which is zero under Pythagoras 
conditions [2]. Pythagoras is the zero Potential form of the dynamical conservation 
equation (2.2.1), which would normally have an extra, non-zero Potential term on the 
right of (2.2.1). See also Section (14.4). 
 
With eigenvalues CC  ,0, , the eigenvectors satisfy the following equations by 
definition 
 
(2.2.2) 
(2.2.2a)    XAX C  

(2.2.2b) 00 AX  

(2.2.2c)   XAX C . 
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When expanded in component form, these equations are referred to in [1] as the 
'dynamical equations'. For the X  and X  eigenvectors, expanding (2.2.2a) and 
(2.2.2c) gives the following linear equations 
 
(2.2.3) 
(2.2.3a) QzRyCx   
(2.2.3b) PzRxCy   
(2.2.3c) PyQxCz   
 
(2.2.3e)  QRC   
(2.2.3f)  PRC   
(2.2.3g)  PQC  . 
 
Multiplying (2.2.3a) by P , (2.2.3b) by Q  and (2.2.3c) by R , and summing as 
follows, gives the useful identity 
 
(2.2.4)  0 zRyQxP . 
 
Likewise, multiplying (2.2.3e) by P , (2.2.3f) by Q  and (2.2.3g) by R , and summing 
as follows, gives another useful identity 
 
(2.2.5)  0 RQP  . 
 
The elements RQP ,,  of the matrix A  and eigenvector 0X , the three coordinates 

zyx ,,  forming eigenvector X , and the three elements  ,,  of the eigenvector 

X , are all related by the following ‘divisibility criteria’  
  
(2.2.6) 
(2.2.6a) )( 22 PCx   

(2.2.6b) )( 22 QCy   

(2.2.6c) )( 22 RCz  . 
 
Upon summing these three relations, and using (2.2.1), this neatly combines to give 
the equation and invariant 22C . 
 
(2.2.7)  22Czyx    
 
This is actually termed the Potential equation in [1], albeit the Potential V  is zero for 
Pythagoras and so the V  term is not seen. 
 
(2.2.8) The vector 0X  (2.1.6) is never a Pythagorean triple because, as shown further 

below in Section (5), the conserved quantity 2C  in (2.2.1) is never zero and, 
consequently, 0222  RQP . Therefore 0X , comprising RQP ,, , is never a 

Pythagorean triple. Nevertheless, for a finite value of eigenvalue C , dynamical 
variables QP,  and R  can be made arbitrarily large and come close to being a 
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Pythagorean triple. This is by virtue of the invariance principle in [1] and 
consequential equations (2.5.8), further below. The integer m  in (2.5.8) can be 
chosen to be of sufficient magnitude such that CRQP ,, , and 0X  then 

approximates as Tmzmymx ),,(0 X , for 0m , i.e. it approximates the non-

primitive triple ),,( zyxm   for large m . So, in the limit m , the vector 0X  (and 
0X , (2.3.1b) below) limits to a Pythagorean triple for finite C . Because C  is 

considered a conserved, energy-like quantity, it is also regarded to be finite, even if 
possibly huge. See also Section (14.6). 
 
(2.3) Conjugate Vectors 
 
The following conjugate (or reciprocal) row-vectors X , 0X , X  are added such that 
the vector inner product relations, i.e. 0 j

i XX , ji  and 0 j
i XX , ji  , are 

of a familiar, orthogonal form. See also Section (14.7). 
 
(2.3.1) 
(2.3.1a)  X  

(2.3.1b)   RQP 0X  

(2.3.1c)   zyx X  
 
The conjugate vectors, X , 0X  and X , are the basis vectors dual to the standard 
vectors, X , 0X  and X  respectively, and are also known in the literature as the 

reciprocal basis. 
 
By defining the conjugation matrix T  as 
 

(2.3.2)  



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
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 
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1TTT T , 

 
the conjugate vectors are formed from their standard counterparts X , 0X  and X  as 

follows 
 
(2.3.3) 
(2.3.3a) T)( 

  TXX  

(2.3.3b) T)( 0
0 TXX   

(2.3.3c) T)( 
  TXX . 
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Conversely, the standard vectors are obtained from their conjugate forms as follows: 
 
(2.3.4) 
(2.3.4a) T)( 

  TXX  

(2.3.4b) T)( 0
0 TXX   

(2.3.4c) T)( 
  TXX . 

 
Note that the conjugate of X  is X  and not X . Likewise, the conjugate of X  is 

X  and not X . 
 
Using standard row-eigenvector algebra, the conjugate vectors also satisfy the 
following, conjugate (transpose) forms of the eigenvector equations (2.2.2) 
 
(2.3.5) 
(2.3.5a)   XAX C  
(2.3.5b) 00 AX  
(2.3.5c)   XAX C . 
 
With the complete set of standard and conjugate vectors defined, the standard 
definitions of norm and magnitude are given next, preceded by a quick definition of 
the notation used herein to denote inner products between conjugate, row vectors and 
standard, column vectors. 

(2.4.0) Inner Product Notation. The inner (or dot) product of a conjugate, row 
vector with a column vector, giving a scalar result, is usually written in this paper 
(and general URMT publications) as the product of a conjugate or reciprocal row-
vector and a column vector, without the explicit ‘dot’ notation. For example, the inner 
product of the row vector X  and column vector X  is written as 

XX  instead of 

the more usual 
 XX , i.e. 


XX 

 XX . 

This notation is that of matrix multiplication, whereby a n1  element row-vector 
multiplies a 1n element column vector, to give a 11  scalar result. 

Note the inner products between vectors of the same form, i.e. inner products between 
column vectors, or inner products between row vectors, e.g. the inner product between 

X  and X  still uses the dot notation, i.e.  XX . Without the dot, the vector 
product would be that of a n1  vector with a n1  vector to give an nn  matrix, 
otherwise known as an outer product. Such products are not required in this paper. 

(2.4.1) Definition. The norm (or length) of a vector, using the standard definition of 
the norm, see [6], is the square root of the inner product of itself with its conjugate, 

e.g. for X  the norm, denoted by X , is given by 


  XXX . Normally the 

positive square root is assumed unless otherwise stated. Since X  is a Pythagorean 
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triple, the norm is zero as 0
XX , which is the same as (2.1.3). The same remarks 

also apply to X  and its conjugate form X , but note that the norm of 0X  is non-

zero, as given by 2
0

0
0 C XXX , which is the same as (2.2.1).  

 
(2.4.2) Definition. The magnitude of a vector is the positive square root of the inner 

product of a vector with itself, e.g.   XXX T   222 zyx , where T
X  is 

simply the transpose of X . Hence z2X , using (2.1.3). Likewise, 2X , 

using (2.1.5), and 22
0 2RC X . Normally the positive root is taken.  

 
For those familiar with bra and ket notation, see [6], the kets are   XX , 

00 XX   and   XX , and the bras are the conjugate forms 
  XX , 


  XX  and 0

0 XX  . The above inner products are then given by, for example, 




  XXXXX . 

 
(2.5) Analytic solution 
 
The starting point for the study of the geometry of the eigenvectors is the analytic 
solution, in integers, derived in [2] for all unknown variables, i.e. the elements of the 
eigenvectors. In total there are nine variables separated into three triples ),,( RQP , 

),,( zyx  and ),,(  . A complete solution is obtained when all nine unknowns 
},,,,,,,,{ RQPzyx  are determined. note that the invariant eigenvalue C (2.2.1) is 

a free, integer parameter, and often set to unity. 
 
The Pythagorean triple ),,( zyx  is parameterised in the standard textbook form by two 
arbitrary integers, k  and l , subject to the following condition (2.5.1), which allows 
one, but not both, of x  or y  to be zero. Neither is there any constraint on lk 1  
such that xy  . However, there is the constraint Clk |),gcd( . This is so that the 
congruence (2.5.3), further below, has integer solutions. The full list of conditions on 
k  and l  is thus 
 
(2.5.1)  lk , ℤ, )0,0(),( lk , Clk |),gcd( . 
 
The triple ),,( zyx  is then given by the familiar Pythagorean parameterisation 
 
(2.5.2) 
(2.5.2a) klx 2  
(2.5.2b) )( 22 kly   

(2.5.2c) )( 22 klz  . 
 
To solve for ),,( RQP  and ),,(  , two more integers s  and t  are introduced as 
solutions to the following congruence (a linear Diophantine equation) in integers k  
and l  
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(2.5.3)  ltksC  , ts, ℤ. 
 
This congruence is solved by standard methods [4] to obtain two particular, integer 
solutions s  and t  , and general solutions s  and t , parameterised by a third, arbitrary 

parameter m , m ℤ 
 
(2.5.4) 
(2.5.4a) mlss   
(2.5.4b) mktt  . 
Note that a super-script prime denotes an initial value in this paper. 
 
Thus, given a particular solution s  and t  , there are now three arbitrary parameters 
k , l  and m . Using these parameters, and the general solution in s  and t , then 

),,( RQP  and ),,(   are obtained from the following relations 
 
(2.5.5) 
(2.5.5a) )( ltksP   
(2.5.5b) )( ktlsQ   
(2.5.5c) )( ktlsR   
 
(2.5.6) 
(2.5.6a) st2  
(2.5.6b) )( 22 st   

(2.5.6c) )( 22 st  . 
 
Note that one of   or  , but not both, can legitimately be zero, see [2]. 
 
(2.5.7) 
The solutions (2.5.2) and (2.5.6) do not cover every Pythagorean triple, according to 
(1.0), without extensions, as noted and discussed in Appendix (D) in [2]. These 
extensions allow for all non-primitive triples and all sign combinations, and are really 
added for completeness rather than uniqueness as solutions. However, the study of the 
geometric aspects in this paper does not require these extensions and the analysis uses 
only those solutions given by the equations in this Section. Suffice to say, (2.5.2) and 
(2.5.6) can give some non-primitive triples and sign combinations, just not all of 
them. 
 
Integer parameter m  can be set to zero such that ss   and tt   in (2.5.4). The 

0m  case is also referred to as the primitive or initial value solution. Denoting the 
initial, 0m , dynamical variables by RQP  ,, , and the divisibility factors by 

  ,, , then the general solution for (2.5.5) and (2.5.6) is expressed in terms of the 
initial solution and the coordinates zyx ,,  as follows: 
 
(2.5.8) 
(2.5.8a) mxPP   
(2.5.8b) myQQ   
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(2.5.8c) mzRR   
 
(2.5.9) 
(2.5.9a)  xmPm 22    
(2.5.9b) ymQm 22    

(2.5.9c) zmRm 22   . 
 
Variation of ),,( RQP  and ),,(  in (2.5.8) and (2.5.9), by arbitrary choice of m , 
constitutes what is known as a ‘global Pythagoras variation' in [1]. It has the effect of 
transforming the A  matrix (1.1) and eigenvectors 0X , X  and their conjugates 0X , 

X , but leaves the eigenvector X  and its conjugate X  invariant, hence X  is 
referred to as the invariant eigenvector [2017_2]. The conservation equation (2.2.1) 
also remains invariant, as does the determinant of A , which is zero and identical to 
the Potential V . Physically, the global variation leaves the Potential invariant and 
zero when X  is a Pythagorean triple, see [2] for full details. 
 
This completes the review of papers [1]#1 and [2]. 
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(3) Triples, Points and Eigenvectors 
 
Before discussing the geometry in detail, the following relevant notes are given. In 
brief, since X  and X  are Pythagorean triples, (2.1.3) and (2.1.5), their geometry is 

that of a cone, and the geometry of 0X  is a hyperboloid sheet, (2.2.1). 

 
All points p  on the cone and hyperboloid are ordered triples of integers, i.e. p ℤ3, 
and so the cone and hyperboloid quadric ‘surface’ (2.2.1) is not a continuum but an 

infinite set of points coincident with a continuous, quadric 2D surface in ℝ3. The set 
of points is collectively referred to as the lattice L , defined further below, (4.7). 
 
The points and vectors correspond as follows, which is simply a restatement of their 
definitions without the row and column vector formalism of matrix algebra, 
 
(3.1) 
(3.1a)  ),,(~ zyxX ,  ),,(~0 RQP X , ),,(~  X , 

(3.1b)  ),,(~ X , ),,(~0 RQP X , ),,(~ zyx X . 
 
All points are plotted, as per normal, on the familiar, right-handed, Euclidean, 3-axis, 

),,( zyx  frame, oriented such that the z  axis is considered pointing upward, normal to 
the horizontal yx,  plane. 
 
The eigenvectors are treated as fixed with their base at the origin, as opposed to free 
(floating) vectors, and so allows the two terms, points and eigenvectors, to be used 
interchangeably, i.e. the lattice points are the tips of the eigenvectors. A common 
eigenvector origin is a somewhat unnecessary constraint but is, nevertheless, for ease 
of illustration.  
 
The geometric aspects are chiefly, but not exclusively, studied in terms of the 
standard eigenvectors X , 0X  and X , and not their conjugates, X , 0X  and X  

respectively. This is because, by definition, one is the dual basis of the other and 
either is good as the other. 
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(4) Cones, Hyperboloid and Lattice 
 
Definition. The upper cone, symbol UC , is the set of all discrete points ),,( cbap  , 

in accordance with the definition of a Pythagorean triple (1.0), and with 0c , 
specified as 
 
(4.1)  )},,{(|{ cbappU C , ),,( cba ℤ3, 0c }. 

 
Definition. The lower cone, symbol LC , is the set of all discrete points ),,( cbap  , 
in accordance with the definition of a Pythagorean triple (1.0), and with 0c , 
specified as 
 
(4.2)  )},,{(|{ cbappL C , ),,( cba ℤ3, 0c }. 
 
Definition. The cone, symbol C , is the union of sets LC  and UC  

 
(4.3)  UL CCC  . 

 
Definition. The lower hyperboloid, symbol LH , is the set of all discrete points, 

pointed to by the eigenvector 0X  in the lower plane, 0R , i.e. all points p , where 

p  is a triple ),,( RQP  , with P , Q  and R  given by (2.5.5), satisfying (2.2.1), and 
formally defined as 
 
(4.4)  )},,{( RQPL H , 0R . 
 
Note that for 0R  the lower hyperboloid intersects the P, Q plane as a circle, radius 
C, by (2.2.1). 
 
Definition. The upper hyperboloid, symbol UH , is defined as per LH  (4.4), except 

0R , 
 
(4.5)  )},,{( RQPU H , 0R . 

 
Definition. The hyperboloid, symbol H , is the union of sets LH  and UH  

 
(4.6)  UL HHH  . 

 
Definition. The lattice, as referred to herein, is defined as the set of points L  formed 
from the union of all points in the cone C  (4.3) and the hyperboloid H  (4.6) 
 
(4.7)  HCL  . 
 
The lattice is a collective term for all discrete points occupied by X , 0X  and X  

and their conjugates, X , 0X  and X  respectively. 
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(4.8) Commentary 
 
Eigenvectors X  and X  in UC  represent Pythagorean triples in the upper half plane, 

and point upward when 0z  and 0  ; eigenvectors X  and X  in LC  represent 
Pythagorean triples in the lower half and point downward when 0z  and 0  . 
Note that z  and   are never zero, see Section (5). 
 
By definition, UC  and LC  are disjoint subsets of C . 

 
(4.9)   LU CC . 

 
The cone C  and hyperboloid H  are also disjoint subsets since the points ),,( RQP   in 
H  never lie on the cone C , i.e. they are never Pythagorean triples, see (2.2.8). As a 
consequence, the following set relation is given 
 
(4.10)  HC . 
 
C  comprises every Pythagorean triple allowed by definition (1.0) but, as stated in 
(2.5.7), the equations (2.5.2) and (2.5.6) do not cover every Pythagorean triple. Thus, 
strictly speaking, only a subset of C  is required in this paper. See also Section 
(14.10). 
 
Figure 1 illustrates the upper and lower cones, UC  and LC  respectively. X  is shown 

in the upper cone UC , and X  simultaneously in the lower cone LC . As discussed 

further below, if X  is in UC  then X  is simultaneously in LC  and vice versa. 

 
 
 Z, 

X+(x,y,z)C
 

CU=upper cone 

x, 

y, 

CL=lower cone 

X-(,,-)CL 

 
Figure 1 Upper and Lower Cones 
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Basically, with the usual zyx ,, , right-handed coordinate frame oriented such that the 

z  axis is considered pointing upward, normal to the horizontal yx,  plane, then UC  

represents an upside-down cone, symmetric about the z  axis, with its hypothetical tip 
at the origin. It is only hypothetical because the origin is excluded from UC , see 

Section (5) below, and, as noted, it only comprises discrete, integer points. 
Conversely, LC  is the reflection of UC  in the yx,  plane. 

 
The cone tips are shown coincident at the origin but this is not strictly accurate. 
Indeed, in relativity texts (see [7] for a popular account on light cones), a second cone 

LC  is usually drawn with its origin starting at the tip of X  on the first cone UC  and 

not at the origin of X . However, for finite X , by a suitably large choice of an 

integer parameter m  in (2.5.9), the X  vector can be made such that   XX  

and, in fact, the two cones then become effectively coincident. Therefore, for ease of 
illustration, the cones UC  and LC  are considered with a common origin and mirror 

images of each other in the yx,  plane. 
 
The X  and X  vectors always lie on opposite cones, e.g. if UCX  then 

LCX , i.e. X  lies on the mirror image of the cone to X  and vice versa. This is 

by virtue of equation (2.2.6c), )( 22 RCz  , and the eigenvector definitions (2.1.2) 

and (2.1.4), where the third component, z  in X , is given the opposite sign to   in 

X . With the quantity )( 22 RC   always greater than zero, then the product z  must 
also always be positive and, hence, z  and   must be of the same sign. Thus, having a 

z  component in X , and a   component in X , always makes the two 
eigenvectors lie in opposing cones and point in the opposite direction, i.e. away from 
each other. 
 
For each vector X  in a particular quadrant of the yx   plane, the conjugate vector 

X  (2.3.1c) lies in the same quadrant but on the opposite cone. Since the cone slant 
angle is a constant 45 deg (justification follows), the angle between them is 90 deg 
and, naturally, their inner vector product is zero, as per (2.3). Identical remarks apply 
to X  and X . This also means that if, for example, UCX , then LCX  and 

therefore X  lies in the same set LC  as X , from what was said earlier. Likewise, 
X  and X  also reside in the same cone, UC  in this example. 

 
The cone slant angle for both cones, LC  and UC , is always a constant 45 deg 

because, considering X  for example, at any height z  the cone radius r  is equal to 

the height, i.e. zyxr   22 , hence the cone angle deg45)/(tan 1   rz . 
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Figure 2 illustrates the hyperboloid H  associated with 0X . The same remark for C , 

about origin positioning, equally applies to H . It too would be rather neater drawn at 
the tip of X  since, just like X , for each X  there is actually a unique hyperboloid 

subset m-H , where HHm-  , parameterised by the same integer m  as for X , see 

0mX  (6.2b). Nevertheless, for ease of illustration, all m-H  are plotted as if they have a 

common origin (0,0,0), albeit this origin is not actually an element of H , as explained 
in the next Section. 
 
 R 

X0(P,-Q,-R)HU,-R>0 

HU=upper 
hyperboloid 

Q 

P HL=lower 
hyperboloid 

X0(P,-Q,R)HL,R<0 

 
Figure 2 The Hyperboloid 
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(5) Exclusion of the origin from L . 
 
The exclusion of the origin from the sets C , H  and, consequently, L  (4.7), is for 
genuine algebraic reasons rather than just an arbitrary condition, and is explained as 
follows. 
 
As regards C , definition (1.0) excludes the zero Pythagorean triple )0,0,0(  because it 
is algebraically impossible within Unity Root Matrix Theory [1]. If z  is zero in the 
Pythagorean triple ),,( zyx  then the divisibility relation (2.2.6c) becomes 

0)( 22  RC  and, since 02 C , this cannot hold true. Note that 0C  because it is 
a non-zero eigenvalue by definition - the theory already has a separate, zero 
eigenvalue. In general 0R  because )(mod12 zR  , see [1] or [2]. However it can 
be zero in what is termed the ‘almost trivial’ solution, see Appendix (C). 
Nevertheless, even then, R  can be transformed away from zero without affecting 

),,( zyx by the invariance principle in [1]. The other triple )0,0,0(),,(   because 
0 , for the same reason that 0z , discussed above re (2.2.6c). 

 
As regards H , it also excludes the origin as algebraically impossible since the 
eigenvector elements 0X  (and 0X ) satisfy the hyperbolic, conservation equation 

(2.2.1), for which )0,0,0(),,( RQP  is not a valid solution. In general, the dynamical 
variables RQP ,,  are always unity roots but, as mentioned above in the case of C , 
there is a special exception when 0 RQ , CP   or 0 RP , CQ  , i.e. 
triples )0,0,(),,( CRQP   or )0,,0(),,( CRQP  . In this exceptional case, two of 
the dynamical variables are zero but, nevertheless, the third is never zero, and so the 
origin remains excluded. Also, as mentioned in [1], if 0X   is unpalatable containing 

two zeros, these zeros can be transformed away by adjusting m  in (2.5.8) and (2.5.9), 
without affecting the X  solution and all invariants of the theory. 
 
Geometrically speaking, exclusion of the origin from L  means that the cones are 
without a tip and the hyperboloid always has a non-zero radius in the yx   plane. 
 
See also Section (14.2) and (14.3). 
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(6) Eigenvector Evolution in L  
 
The general solution for RQP ,,  (2.5.8) and  ,,  (2.5.9) is explicitly parameterised 

by a single integer m  and, hence, eigenvectors 0X  and X , by (3.1a), evolve with 

respect to m . For this reason, m  is termed the ‘evolution parameter’. 
 
By contrast, the triple ),,( zyx  (2.5.2) has no dependency on m  and, hence, 

eigenvector X  (3.1a) is static with respect to m . The evolution of 0X  and X  will 

therefore be discussed with respect to X . Of course, X  is also parameterised by 

integers k  and l  (2.5.1) and so too, therefore, 0X  and X . A full 3D evolution, given 

with respect to k , l  and m , is beyond the scope of this paper. The benefit in using a 
single parameter lies in the simplicity of 0X  and X  evolving with respect to a 

single, constant vector X , later tentatively identified as a constant acceleration. 
 
Because the evolution of eigenvectors is described by a single parameter, evolving 
vectors trace a line (path) through L . 
 
Eigenvectors for a specific value of m  are denoted by the subscript m , as in mX , 

0mX  and mX . When m  is arbitrary, the usual forms X , 0X  and X  are used and 

the subscript dropped. The subscript m  is also dropped for the initial eigenvectors, 
when 0m , and the eigenvectors are given a primed superscript instead, i.e. 
 
(6.1) 
(6.1a)  )0(   mmXX  

(6.1b)  )0(00  mmXX  

(6.1c)  )0(   mmXX . 

 
Using this notation, the vector form of solutions (2.5.2), (2.5.8) and (2.5.9) becomes 
 
(6.2) 
(6.2a)    XXm  

(6.2b)  00 XXX  mm  

(6.2c)    XXXX 0
2 2mmm . 

 
The equivalent, conjugate eigenvector forms of (6.2) are obtained by applying the 
conjugation operator T  (2.3.2) and transposing, as per (2.3.3), to obtain 
 
(6.3) 
(6.3a)    XXm  
(6.3b)  00 XXX  mm  
(6.3c)    XXXX 02 2mmm . 
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The equations (6.2) and (6.3) show how the eigenvectors evolve with respect to m , 
which could be a spatial, temporal or other evolution parameter. Nevertheless, 
unsurprisingly, it seems preferable to associate it with a temporal coordinate, i.e. time. 
A spatial parameter could be associated with the scalar distance, e.g. arc-length, 
which is also natural for curvature discussions, see Section (9) further below. 
Nevertheless, because physical association is still rather tentative, time will be mainly 
considered, and a unit change in m  is consequently termed a clock ‘tick’. However, 
an open mind as to its physical interpretation is the safest option. Suffice to add, 
although m is considered here as increasing in the positive direction, there is no 
overriding reason for this and it could equally grow more negative. Ultimately, m  is 
just an arbitrary integer parameter to give the most general solution to congruence 
(2.5.4). 
 
Equation (6.2a) shows that the X  eigenvector is independent of m  and, for a given 
choice of two arbitrary integers k  and l , fixing the initial eigenvector via (2.5.2) fixes 

X . Thereafter, X  does not evolve with respect to m , i.e. it is static, and so 
 
(6.4)    XXX m . 

 
Since   XX  the prime is usually dropped from X  and simply denoted by X  
 
Equation (6.2b) shows that the 0X  evolution only depends on the eigenvector X , 

which, itself, is static as described above. The X  eigenvector’s evolution (6.2c) is 

dependent upon both the initial eigenvectors X  and 0X . 

 
Looking first at 0mX  (6.2b), it is clear that for each positive increment (a clock tick) 

in m , )0( m , the vector changes by  X , i.e. it changes anti-parallel to X , see 

Figure 3. The increment is defined as 0mX  and given by the difference of successive 

iterates 1m  and m  as follows, using (6.2b), 
 
(6.5)   XXXX 0)1(00 mmm , )0( m . 

 
Note that if m  incremented in the negative direction then the vector change would be 
parallel to X , and not anti-parallel. 
 
 

-mX+ 

Evolution of X0 

X+ 
X`0 

Xm0=X`0-mX+ 

X`0 

X`- 

 
Figure 3 Evolution of X0 
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As X  is static, 0X  lengthens as m  increases and aligns with it. For large m  it is 

effectively anti-parallel to X , i.e. 0,0   mmm XX . Since the initial vector 0X  

is definitely not parallel to X  ( 0X  is never a Pythagorean triple, including a multiple 

of it, see (2.2.8)), and neither is it ever in C  for the same reason, 0X  becomes more 

anti-parallel to X  as m  increases, i.e. its angle with X  converges to 180 deg. 

Whilst 0X  is always in H , it moves ever closer to C  because 0X  approximates, ever 

closer, a Pythagorean triple, see (2.2.8). 
 
Because all changes to 0X  are subtractions of a linear multiple of X , the vector 

0mX  never moves off the plane spanned by the two initial vectors X  and 0X . 

Therefore the path it traces is always in this plane. This path is thus the intersection of 
the plane, spanned by X  and 0X , with the hyperboloid H . Furthermore, all points 

0mX , 0m , are collinear but also always lie in H . 

 
Visually it is hard to see a plane intersecting a curved hyperboloid sheet, where the 
intersection is also a straight line, as opposed to the more usual conic. However, it is 
the points in H  that are collinear and not the space in-between, which is undefined 
and not in H . It can be verified that all 0mX  points lie in H  as follows: writing 0mX  

as the evolved point )(mp , in accordance with (2.5.8), and since 0X  is the point 

 RQPp  ,, , p H  by definition, then 
 
(6.6)  mzRmyQmxPRQPmp  ,,),,()( , p ℤ3,  RQP  ,, H . 
 
It is verified that this point )(mp  also satisfies the hyperbolic conservation equation 
(2.2.1) since, using (6.6), 
 
(6.7) )()(2)( 222222222 zyxzRyQxPmRQPRQP  , 
 
and, using equations (2.2.1) for p , (2.1.3) and (2.2.4), the right of (6.7) reduces to 

2C , i.e. (6.7) becomes 
 
(6.8) 2222 CRQP  . 
 
This is just the original conservation equation (2.2.1) and, hence, )(mp  also satisfies 
(2.2.1) if p  satisfies (2.2.1), which it does by definition, therefore )(mp H . 
 
Moving on to the evolution of the X  vector: this vector evolves according to (6.2c) 

and, at each positive increment in m  )0( m , the vector changes by mX  as 

follows, and illustrated in Figure 4 below, 
 
(6.9) 0)1( 2)12( XXXXX   mmmm , 0m . 
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It is seen that the change is similar to (6.5) but more rapid, as it grows by a factor 
)12(  m  of X , i.e. an ever increasing lengthening, anti-parallel to X , with only a 

slight compensatory constant change of 02X . Thus, similar remarks for 0X  apply to 

X , and the angle with X  also converges to 180 deg as m  increases. For large m , 

X  is, like 0X , anti-parallel to X , i.e. 
 XX 2lim mm

m
. 

 
Also, as for 0X , since changes in X  are anti-parallel to X  then, for example, if 

UCX  then LCX  and, conversely, if LCX   then UCX . 

 
 

-m 2X+ 

Evolution of X- 

X+ 

2mX`0 

2mX`0-m2X+ 

2mX`0 

X`- 

X+ 
2mX`0-m2X+ 

X`- Xm-=2mX`0-m2X++X`- 

X`- 

 
Figure 4 Evolution of X- 

 
It is noted that the path of X  only goes in one direction, on the opposite cone to that 

of the static X , and, with the current sign convention chosen for m , never crosses 

the origin (strictly speaking, never traverses the yx,  plane). The vector 0X  also 

traces a unidirectional path in the same direction as X , in the opposite direction to 

that pointed to by X . Usually, but not exclusively, 0X  also always points away from 

X , i.e. 0R  for 0X  as opposed to 0z  for X , and so, it too, does not traverse 

the yx,  plane. Note, however, it is possible for 0X  to start ( 0m ) on the same side 

of the yx,  plane as X  in some cases, not discussed here. Whatever the case though, 

both 0X  and X  always traverse a unidirectional path and, when using the chosen 

sign convention 0m , the evolution is in the opposite direction to X . 
 
In summary, X  is static, 0X  grows linearly with constant vector  X  added on 

each increment of m , and X  grows quadratically, with an ever-increasing vector 

 X)12( m , plus a small constant addition of 02X , added on each increment of m . 

Both 0X  and X  become anti-parallel with X , in the large m  limit, with X  lying 
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on the mirror image cone to X , and 0X  becoming ever closer, but never touching, 

the same mirror image cone in C . 
 
Since the sets C  and H  are disjoint, i.e. HC  (4.10), the paths of X  

( CX ) and 0X  ( H0X ) never intersect, i.e. they never contain a common point. 

 
This completes the discussion on eigenvector path evolution. The next section looks 
at the eigenvectors as a basis, and their highly oblique nature, as a prelude to studying 
the angular evolution of the eigenvectors and basic differential geometry.
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(7) Eigenvectors as a basis 
 
The eigenvectors X , 0X  and X  are suitable as a basis since they are linearly 

independent, as given by the following, non-zero vector triple product, where C  is the 
positive, non-zero eigenvalue. An explanation of the derivation follows, 
 
(7.1)  3

0 2^ C  XXX . 

 
Using (2.1.2) for X  and (2.1.6) for 0X , the cross product in (7.1) is calculated as 

 PyQxPzRxQzRy  0^ XX . From the dynamical equations (2.2.3), 

this product reduces to  zyxC  0^ XX , which is simply the conjugate vector 
X  (2.3.1c), scaled by the eigenvalue C . Using (2.1.4) for X , the full triple product 

now reduces to the inner product  zyxC   
 XX . By (2.2.7), the bracketed 

term   22Czyx   , hence the result (7.1). 
 
In fact, the vector triple product is a non-zero invariant, 32C , of the lattice, and 
independent of the value of the three arbitrary parameters k , l  and m , Section (2.5). 
 
Although linearly independent, the basis is far from orthonormal since none of the 
vectors has a unit magnitude and, in almost every case, they are not orthogonal to 
each other, except when R is zero – explained following. These properties can be seen 
from the following six, unique vector inner products, see also [2]. 
 
(7.2) 
(7.2a)  22z 

 XXXX  

(7.2b)  zR20
0  

 XXXX  

(7.2c)  22 2)(2 RzC 


 XXXX , by (2.2.6c) 

(7.2d)  R20
0  

 XXXX  

(7.2e)  22 
 XXXX  

(7.2f)  2200
00 2RC  XXXX  

 
Firstly, there is a single, special case termed the ‘almost trivial’ solution, when 0R , 
as documented in Appendix (C). In this case the mixed, eigenvector inner products, 

0XX   (7.2b),  XX  (7.2c) and 0XX   (7.2d), are all zero and, hence, X , 0X  

and X  are orthogonal. Other than this exceptional case, z ,  , R  and C  can never 
be zero, by (5), and none of the above mixed products are consequently zero, hence 
the basis is not orthogonal. With the minimum absolute value of z ,  , R  and C  as 

unity, then neither are any of the mixed products 0XX  ,  XX  and 0XX   unity 

and, consequently, none of the vectors is of unit magnitude. Of course, the basis can 
be diagonalised so the issue of non-othonormality is mainly one of academic interest. 
However, as an evolving triad of vectors, as discussed in the previous Section, the 
angles between them and how they evolve, in terms of the curvature of the path they 
trace in the lattice L , is of interest and discussed next. 
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(8) Angles, Tangents and Flatness 
 
The normal route to assess the geometry of a path in a vector space is by calculation 
of the tangent and normal vectors and application of the Serret-Frenet formulae, see 
[8]. This won’t actually be done here, barring a quick look at the tangent vectors, 
because the basis vectors X , 0X  and X  are both discrete and distinctly non-

orthonormal (previous section), and the vector algebra for the Serret-Frenet formulae 
is unnecessarily unwieldy. Instead, for the purposes of this paper, the evolution of 
curvature is obtained more simply by studying the scalar angles obtained from the 
inner products (7.2). The key properties are the same, irrespective of method, and the 
curvature of the X  path will be seen to follow an inverse square law in parameter 
m . 
 
Appendices (B) and (C) provide example data in the case of the simplest, non-trivial 
Pythagorean triple )5,3,4(  and the almost-trivial )1,1,0( . This data includes all 
eigenvectors and angles, given further below, plus data for ‘flatness’ parameter   
(8.13) and curvature   (9.1) as they evolve. 
 
A tangent vector 0T , to the path of 0X  in H , is calculated from (6.5) as follows, 

where 1m  since, trivially, 
 
(8.0)  1)1(  mmm  
 

(8.1)   X
X

T
m

 0
0 . 

 
Similarly, a tangent vector T , to the path of X  in C , is calculated from (6.9) as 
 

(8.2)  02)12( XX
X

T  


 m
m


. 

 
Since X  has no parametric variation with respect to m , its derivative, i.e. tangent 
vector, is zero and not considered further, except for completeness, 
 

(8.3)  0 
 m

X
T . 

 
From (8.1) it is seen that 0T  is the constant vector  X  and so there is no non-zero 

second derivative, and no intrinsic curvature of the 0X  path as a consequence; it was 

mentioned in Section (6) that 0X  traces a straight line parallel to X . 

 

(8.4)  00 
m

T
. 
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The T  tangent vector (8.2) is not so trivial as it is dependent on m , and thus has a 
non-zero, second derivative and, therefore, some curvature. 
 
It is this curvature that is investigated shortly, by examination of the evolving change 
in the scalar angle of X  with respect to the static vector X . Beforehand, however, 
the angles between all axes are examined. 
 
Denoting the angle between X  and 0X  by 0 , the angle between X  and X  by 

 , and the angle between 0X  and X  by 0 , then 0 ,   and 0  are obtained 

by the standard inner product relations, and depicted in Figure 5, 
 
(8.5) 
(8.5a)  000cos XXXX    

(8.5b)    XXXXcos  

(8.5c)    XXXX 000cos . 

 

 
Figure 5 The Oblique Eigenvector Basis 

 
The eigenvector magnitudes X , 0X  and X  are calculated from definition 

(2.4.2) as follows: Using (2.1.2) for X , then 222 zyx   XX . Since X  is a 

Pythagorean triple then, by (2.1.3), 22z  XX . Likewise, for X  (2.1.4), by 

(2.1.5), 22  XX . Lastly, using (2.1.6) for 0X , the inner product is 
222

00 RQP XX , and by (2.2.1), 2222 RCQP  , hence 
22

00 2RC XX . Taking the square root of these inner products gives the 

following expressions for the magnitudes 
 
(8.6) 

(8.6a)  z2  XXX  

(8.6b)  22
000 2RC  XXX  

(8.6c)  2  XXX  

 

 

X0(P,-Q,R)  

X -( ,,- )  

X + (x,y,z)   +- 
+0   

0 - 

+0 + 0 -=180deg  
= 

note +0 +0 -+ -+-=60deg   
=  
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The mixed inner product expressions in the numerators of (8.5) are obtained from 
(7.2b) zR20  XX , (7.2c), 22R  XX  and (7.2d) R20  XX . Putting 

these expressions, plus (2.2.6c) and the magnitudes (8.6), into (8.5) gives the angles 
as follows, where )(zRsg  denotes the sign of term zR  and )( Rsg   the sign of term 
R , see (8.7d), below, for the signum function ' sg ' definition, 

 
(8.7) 

(8.7a)    2/1222
0 )2(2)(cos RCRzRsg   

(8.7b)  )(cos 222 RCR   

(8.7c)    2/1222
0 )2(2)(cos RCRRsg   . 

(8.7d)  0,1)(;0,0)(;0,1)(  aasgaasgaasg  
 
Since z  and   always have the same positive sign, by (2.5.2c) and (2.5.6c), the 

angles 0  and 0  are related as follows, using 0)cos()180cos(   , when 

restricting to the 0-180 deg range, which will be taken as the principle range 
throughout 
 
(8.8)  deg18000    . 

 
Note that since the eigenvectors are linearly independent, and therefore not co-planar, 
the sum of all three angles is not 360 deg, contrary to the appearance in Figure 5 
 
(8.9)  deg36000    . 

 
Since )( 222 RCR   is always zero or less, then   in (8.7b) is always 90 deg or 

greater and, because 0C , it is always less than exactly 180 deg, hence   lies in 
the interval 
 
(8.10)  deg18090   . 
 
The 90 deg equality is only satisfied for the almost trivial solution, when 0R , 
Appendix (C). 
 
Restricting X  to the upper cone such that 0z , UCX , then LH0X  if 0R  

(4.4) and, consequently, )(zRsg  in (8.7a) is minus, hence 0  also lies in the interval 

 
(8.11)  deg18090 0   , 0z , 0R . 

 
As an aside note, the condition 0R  is not guaranteed and it is possible for 0X  to be 

such that 0R , i.e. UH0X  (4.5). Nevertheless, given the sign convention adopted, 

0m  (see Section (6)), then the solution always evolves quickly to 0R  when X  

lies in the upper cone 0z , UCX . So, for discussion purposes, this condition 

0R  is safely adopted. 
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Given that 0X  can never lie in a plane spanned by X  and X  (the vectors are 

linearly independent by (7.1)), then 0  can never be zero and, as per (8.11), 

restricting X  to the upper cone gives 
 
(8.12)  deg900 0   , 0z , 0R . 

 
All three angles, 0 ,   and 0  (8.7), are parameterised by the single variable R . 

With X  static, i.e. k  and l  constant, then R  is a function only of the evolution 
parameter m , as in (2.5.8c), and all angles therefore evolve with respect to m . 
 
For the discussion of the angular evolution it is more useful, from both an algebraic 
and physical perspective, to re-parameterise equations (8.7) in terms of a single 
‘flatness’ parameter  , instead of R  or m , and defined as follows. 
 
Definition. The flatness parameter   is defined as the ratio of the eigenvalue C  to 
the dynamical variable R , for 0R , (see below on transforming R  away from 
zero), 
 
(8.13)  RC / , 0R . 
 
By dividing the angular equations (8.7) throughout by 2R , they can be neatly re-
written, purely in terms of  , as follows 
 
(8.14) 

(8.14a)    2/12
0 )2(2)(cos   zRSg  

(8.14b)  )1(1cos 2   

(8.14c)    2/12
0 )2(2)(cos   RSg . 

 
In this form, and disregarding the sign terms )(zRSg  and )( RSg  , the angular 

equations are a function of 2  only. 
 
Since R  is parameterised by the evolution parameter m , as in mzRR   (2.5.8c), 
then, whatever finite value for C  is chosen, a value for m , and consequently R , can 
always be found such that CR   and 1  by (8.13), hence 0lim  R . See 

also Section (14.8). Thus, the flatness parameter   becomes ever smaller as the 
evolution progresses. As a reminder, the ability to modify R  by choice of m , whilst 
keeping X  and the eigenvalue C  constant, is a consequence of the invariance 
principle in [1], and is known as an invariance transformation. 
 
To obtain   directly in terms of m , instead of R , substitute for R  from (2.5.8c) into 
(8.13) to get 
 
(8.15)   mzRC  / . 
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For large m , and to first order in m/1 , this approximates to 
 

(8.16)  
mz

C 1






  , 1m , Rmz  . 

 
Hence   is inversely proportional to m , for large m , where C  is a constant and z  is 
constant by virtue of a static X  when integer parameters k  and l  are constant. 
 
Looking at   (8.14b) and 0  (8.14a), the choice of the name ‘flatness’ is now 

evident in that cos  converges to –1 and 0cos   also converges to -1 (for 0z , 

0R ), and so   and 0  both converge to 180 deg as   becomes ever smaller, 

i.e. the axes flatten out. As noted earlier in Section (6), the X  and 0X  eigenvectors 

become parallel to each other and anti-parallel to X : 
 
(8.17)  0limlim    mR  

 
(8.18)  180limlim 000     deg. 

 
Rearranging (8.8) for 0  to get deg)180( 00    , and using (8.18), the limit 

 00lim   is zero since 

 
(8.19)  0lim180lim 0000     deg. 

 
It can easily be shown that   and 0  are never equal and, likewise, for   and 

0 , as follows. By squaring and equating (8.14a) and (8.14b) a quadratic in 2  is 

obtained 
 
(8.20)  42 230   . 
 
This has no real solution for   other than zero, which is not possible since C  is never 
zero (2.2.1), and so   in (8.13) is never zero. Hence   and 0  are never equal and, 

likewise,   and 0  are never equal since expressions 0   (8.14a) and 0   (8.14c) 

are equivalent, to within a sign. 
 
Denoting the small angle rad)(   by symbol   as in 
 
(8.21)  )(     
 
then, using (8.14b), the cosine )cos(  is given by 
 
(8.22)  )1(1)cos()cos( 2   . 
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By expanding deg)cos(   as a power series (in radians), and the right-hand side of 

(8.22) as a power series in 2 , the following two series are obtained, the second 
being convergent only for 1 . 

 

(8.23)  







 

 
!6!4!2

1)cos(
642 

  

 
(8.24)    6422 1)1(1  , 1 . 

 
Comparing the two series, then   is related to  , to second order, as follows: 
 

(8.25)  
2





 , )( 2O , 1 . 

 
The negative root is purposefully chosen since   is always greater than zero, by 
(8.10) and (8.21), and   is invariably less than zero, by its definition (8.13), since the 
values usually chosen for R  (2.5.8c) make it negative, i.e. a particular solution R  in 
(2.5.8c) can always be made less than zero and, invariably, 0m . It is stressed this is 
a choice, not a constraint, and it is really only   that is of interest since its limiting 

value is zero anyhow. 
 
Given there is no 3rd order term in (8.23) and (8.24), the approximation is better than 
second order, and the first error term is of the 4th order 
 

(8.26)  
4

4
44 
 


 , )( 4O , 1 . 

 
Thus, returning to   (8.21), the flatness parameter   (8.25) is approximately equal 

in magnitude to the angle 2/)(    for small  , with the approximation 
becoming better as 0  
 

(8.28)  2/)(   , 1 . 

 
Once again, as in (8.25), the negative value has been chosen for   since    and 
it is usual for   to be negative, see above. 
 
A relation between 0  and   is obtained, for small  , by squaring and dividing 

(8.14c) throughout by 2, and using the trig relation 1)2cos(cos2 00
2     to give 

 

(8.29)  
1

0
2

1212cos


 








 . 
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Expanding both sides as power series for small   and 0  gives 

 

(8.30)  
 

 
 !6

2

3

2
2212cos

6
0

4
02

00


  

 

(8.31)  


















 64
2

1

2
2

2
2

2
12


, 1 . 

 
Comparing the two series, then   is related to 0 , to second order, as follows 

 

(8.32)   02 , )( 2O , 1  

 
Given there is no 3rd order term, the approximation is better than second order, and 
the first error term is of the 4th order 
 

(8.33)  
3

4 4
04

0
4 

 


 , )( 4O , 1 . 

 
Comparing (8.32) with (8.25) it is seen that 0  and   are approximately related, 

for small  , by 
 

(8.34)  
20


 


 , )( 2O , 1 . 

 
The approximation getting better as   becomes smaller such that 
 

(8.35)  
2

)(

2
lim 00








 . 

 
All this analysis is given some numbers in Appendices (B) and (C), and confirms the 
remarks on the size of large m , small  , and the choice of signs in (8.25), (8.28) etc. 
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(9) Curvature 
 
Curvature, symbol  , is defined here as the rate of change of angle   with respect 
to the evolution parameter m , i.e., 
 
(9.1)  m / . 
 
Changes in angle,  , on each evolutionary tick, m , are given by the discrete 

difference   )1()( mm  . With 1m , the curvature is thus defined as 

 

(9.2)  
  )1()( mmm





 . 

 
Equations (8.16) and (8.28) are combined to obtain   in terms of m   
 

(9.3)  
mz

C 12








  , 1m . 

 
And, applying (9.2), gives the curvature as follows 
 

(9.4)  
















 


1

112

mmz

C , 1m . 

 
For large m , this becomes 
 

(9.5)  
2

12

mz

C








 , 1m . 

 
Note that, for large m , the discrete goes over to the continuum and this result could 
also be obtained by straightforward calculus on (9.3) 
 
Thus, it is seen from (9.5) that the curvature of  , with respect to m , is an inverse 
square law. By (8.8) and (8.32), the same relation, barring a factor, applies to angles 

0  and 0  respectively. Therefore all three angles  , 0  and 0  have an inverse 

square law curvature relation with respect to m , for large m . 
 
Note that, once again, the expression for   is a ‘large m ’ approximation, becoming 
better as m  increases. 

 
The curvature (9.5) is seen to be proportional to the eigenvalue C , which is 
effectively a free parameter for tuning; see Section (2.2). 
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If m  is a time parameter, then the curvature is actually an angular rate with units 
rad/s. More usually, curvature is expressed by the Serret-Frenet formulae [8] with 
respect to arc-length, hence m  would be a length parameter and the curvature is the 
rate of change of angle with distance along the path. 
 
See table (B19) in Appendix (B) for a numeric example of  . 
 

Since 2/)(   , by (8.28), then the rate of change of flatness 
m


 is simply 

related to the curvature by 
 

(9.6)  
22

1 






 

mm
, 1m . 

 
Using (9.5) for   this becomes 
 

(9.7)  
2

1

mz

C

m











, 1m . 

 
Note that, with the chosen sign combinations, the curvature   is positive, the flatness 

  negative, and the rate of change of flatness 
m


  (9.7) also positive, i.e. 0 , 

0 , 0
m


. Regardless of sign, all limit to zero in the large m  approximation. 
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(10) Mixed Angle Curvature 
 
So far all reference has been made to ‘flatness’ and a flattening-out of the standard 
eigenvectors X  and 0X  with respect to X , i.e. an alignment of eigenvectors as 

they evolve. However, it would be preferable that a basis formed from these 
eigenvectors would be orthogonal and not flat. As the theory here is three-
dimensional, then an orthogonal triad is aesthetically appealing for physical 
comparison. To which end, there is nothing to stop the construction of such a basis 
from the standard eigenvectors X , 0X  and X , given they linearly independent, see 

Section (7). The ‘flattening’ would then become more of a straightening whereby the 
axes fold out to a 90 deg angle with each other. It is not necessary to construct such a 
basis, at least in this paper, because the conjugate eigenvectors effectively play this 
role and can be illustrative in so far as angles are concerned. With that in mind, this 
section examines the angles between the standard and conjugate vectors, termed 
‘mixed angle curvature’ herein, and these angles are seen to converge to a 90 deg 
angle as the flattening evolves. In fact, the convergence is seen to be even more rapid 
than the flattening (inverse cube rather than inverse square). 
 
Denoting the angle between X  and X  by 

 , the angle between X  by X  by 

 , and the angle between 0X  and 0X  by 0

0 , then 
 , 

  and 0
0  are obtained by 

the standard inner product relations 
 
(10.1) 

(10.1a)  )(.cos 222 RCC  






 XXXX  

(10.1b)  )(.cos 222 RCC  






 XXXX  

(10.1c)  )2(.cos 2220
0

0
0

0
0 RCC  XXXX . 

 
The magnitudes in the above can be obtained from the standard eigenvector 
magnitudes (8.6) as follows 
 
(10.2) 

(10.2a)  2 


 XXXX  

(10.2b)  2200
0

0 2RC  XXXX  

(10.2c)  z2 


 XXXX . 

 
Note that the other mixed angles between X  and 0X , X  and X , X  and 0X , are 
all zero as a consequence of their conjugate, orthogonal definition (2.3). 
 
Dividing the angular equations (10.1) throughout by 2R , they are re-written in terms 
of   (8.13) as follows 
 
(10.3) 
(10.3a)  )1(cos 22 

   
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(10.3b)  )1(cos 22 
   

(10.3c)  )2(cos 220
0   . 

 
As per (8.14), the angular equations (10.3) are only a function of the flatness 
parameter   (8.13) in squared form but, unlike (8.14), they are unconditionally 
positive and have no usage of the Sg function. 
 
From (10.3a) and (10.3b) it can be seen that, in the limit as 0 , the cosine of the 
angles 

  and 
  tend to zero hence, 

 
(10.4)  90limlim 00  



   deg. 

 
Given the angles 

  and 
  converge to 90 deg then, to obtain small angle 

approximations, the angle rad)2/( 
  is used instead and defined as angle 

  by 
 
(10.5)  )2/( 



   . 

 
The expression (10.3a) is then given for 

  as 
 
(10.6)  )1(sin 22 

  . 
 
By expanding )sin( 

  as a power series (in radians), and the right of (10.6) as a 

power series in 2 , the following two series are obtained, the second being 
convergent only for 1 . 

 

(10.7)  





 !3

)sin(
3


  

 
(10.8)   4222 )1(  , 1 . 

 
Comparing the two series then, crudely seen,   is related to 

 , to first order in 
 , 

as follows, where the negative root is taken, see the sign choice in (8.25). 
 

(10.9)  
  , )( 2O , 1

 . 

 
Although certainly not a rigorous exercise in real-analysis, this approximation is seen 
to be numerically correct in Appendix (B), table (B21) and, as expected, the 
approximation improves as 0 . 
 
Using the definition (10.5) for 

 , the flatness parameter   is approximately equal 

in magnitude to the square root of the angle )2/( 
  for small   

 

(10.10)  )2/( 
  . 
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Since the expressions (10.3a) and (10.3b) for 

  and 
  are identical, then (10.10) is 

duplicated for 
  as 

 

(10.11)  )2/( 
  . 

 
Lastly, for 0

0 , its defining expression (10.3c) is almost identical to that of 
  (10.3a) 

and, by dividing throughout by a factor 2, it is re-written as follows 
 

(10.12)  )1)2/(()2/(cos 220
0   . 

 

It is seen that replacing   by 2/  in (10.3a) makes it identical in form to (10.3c) 
for 

  and, hence, the result (10.9) can be directly translated for 0
0  as follows, where 

an extra 2  factor now appears on the right-hand side 
 

(10.13)  0
02  , )( 2O , 10

0  . 

 
Equating   (8.16) with (10.10) gives 

  in terms of m  as 
 

(10.14)  
22

2 1
2/

mz

C










  , 1m . 

 
Taking the derivative (finite difference) of 

  in (10.14) with respect to m , and 
making a large m  approximation in the denominator, gives the following expression 

for the curvature 
m







   

 

(10.15)  1,
12

32

2














 m
mz

C

m


 . 

 
It is seen that the curvature 

  is an inverse cubic function of m , as opposed to an 

inverse square law for   curvature  , as in (9.5). Re-writing (10.15) in terms of  , 
and disregarding the proportionality constant, gives 
 

(10.16)  1, 
 m

m

 . 

 
Comparing (9.5) with (10.16), it is seen that the angular convergence (to 90 deg), 
between X  and X  ( 

 ), is more rapid than the flattening between X  and X  

(  ). Otherwise, similar remarks apply. See table (B22) in Appendix (B) for a 

numeric example of 
 . 

- End of Part I - 
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- Part I I- 

 
(11) Physical Considerations Overview 
 
Fundamentally, the matrix A  and its associated eigenvectors, X , 0X , and X , 

arose from an invariance principle that was applied algebraically as local and global 
transformations, to dynamical variables in a conservation equation in [1]. This was 
purely and simply mathematical physics, but with a couple of twists: 1) the 
conservation equation was generally an abstraction, albeit with some consideration of 
energy conservation; 2) the development was entirely in integers and more the realm 
of number theoretic issues such as power residues, primitive roots, and nth order 
Diophantine equations. 
 
Overall, the work is considered to be physics in integers and, as such, this second part 
of the paper is intended to highlight some plausible connections with mathematical 
physics and the physical world. It is only intended as a tentative introduction but, 
nonetheless, is meant to highlight what the author considers are connections too 
interesting to ignore. 
 
Association of all equations and variables to physical quantities requires dimensional 
consistency if they are to represent the physical world. As such, a dimensional 
analysis is given before physical associations are made. 
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(12) Dimensional (Units) Analysis 
 
By examination of equations (2.1.3), (2.1.5) and (2.2.1), it is clear that  
 
(12.1)  x , y , z , X , X  all have the same units, 
 
(12.2)   ,  ,  , X , X  all have the same units, 
 
(12.3)  P , Q , R , C , 0X , 0X  all have the same units. 

 
A ‘units’ function is defined as follows 
 
(12.4)  Mmassunits )(  
(12.5)  Llengthunits )(  
(12.6)  Ttimeunits )(  
(12.7)  )(munits  to be determined. 
 
The units of each set of triples will be related via the evolution parameter m , which 
will be left undefined for the moment (12.7). Whatever the units of m  are, the units of 
(12.1) to (12.3) are determined as follows, where the standard eigenvectors, X , 0X  

and X , are used to represent all the quantities in (12.1) to (12.3), excepting 
eigenvalue C . 
 
By examination of (2.5.8), the units of X  are related to 0X  by 

 

(12.8)  
)(

)(
)( 0

munits

units
units

X
X  . 

 
Examination of (2.2.7) shows that  
 
(12.9)  )()(   XX unitsunits = 2

0 )(Xunits  

 
and, using (12.8), this gives for the units of )( X  
 
(12.10)  )()()( 0 munitsunitsunits  XX . 

 
Lastly, the units of integer parameters k  and l  in (2.5.1) are, from (2.5.2), 
 

(12.11)   )(),(  Xunitslkunits . 

 
and, similarly, the units of integer parameters s  and t  in (2.5.4) are 
 

(12.12)  )(),(  Xunitstsunits . 
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It is seen from (12.8) that, whatever the units of 0
0 ,,,,, XXCRQP , those of 


 XX ,,,, zyx  are equivalent to the derivative of 0

0 ,,,,, XXCRQP  with respect to 

m , i.e. division by m , and those of 
 XX ,,,,   are the integral, i.e. multiplication 

by m . 
 

Using the standard calculus derivative 
dm

d
 as a good, large m  approximation for 

discrete differences, i.e. 
 

(12.13)  
mdm

d




 , 0m , 1m , 

 
then the above dimensional relations can be verified by looking at the derivatives of 
the evolution equations (6.1), as follows, 
 

(12.14)  )(0









X
X

units
dm

d
units  

 

(12.15)  )( 0X
X

units
dm

d
units 






  . 

 
Differentiating (12.15) a second time, and using (12.14), gives 
 

(12.16)  )(0
2

2


 















X

XX
units

dm

d
units

dm

d
units . 

 

The derivative 
dm

d m0X
 is calculated from (6.2b) as follows, confirming (12.14) 

 

(12.17)   X
X

dm

d m0 . 

 

Likewise, the derivative 
dm

d mX
 is calculated from (6.2c) as follows, confirming 

(12.15), since the term  Xm2  has the same units as 0X , by (12.8), 

 

(12.18)  022 XX
X  

 m
dm

d m . 

 

Taking the derivative of (12.18) to get the second order derivative 
2

2

dm

d mX
 confirms 

(12.16) since 
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(12.19)  
  X

X
2

2

2

dm

d m  

 
It is also seen to be constant since X  is static, by (6.2a), formalised as 
 

(12.20)  0

dm

dX
 

 

For the same reason, the second order derivative 
2

0
2

dm

d mX
 is zero by (12.17) 

 

(12.21)  0
2

0
2


dm

d mX
 

 
These derivative relations will be seen to be important in relating the variables to 
physical quantities in the next Section. See also Section (14.5). 
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(13) Physical Associations 
 
This Section makes some tentative associations of all the variables zyx ,, , RQP ,, ,C  
and  ,,  to real-world quantities. 
 
Given that (2.2.1) is a conservation equation with sum-squared quantities, the natural 
assumption is to attribute the squared terms to kinetic energies and, hence, associate 
the dynamical variables RQP ,,  to momentum per unit mass, i.e. velocity. This was 
alluded to in [1] and thus their suggestive name, ‘dynamical variables’, albeit that 
name was primarily motivated by the invariance principle (likened to invariance of 
momentum to translations). Whilst these quantities are linear, they could equally be 
angular, i.e. angular velocity and momentum. Indeed, [1] makes the comparison of the 
conservation equation and invariance principle with that of angular rather than linear 
momentum. Nevertheless, for familiarity, linear quantities will be used for the 
following discussion. Lastly, these comparisons are tentative and the exact physical 
nature of this work is yet to be determined [2017_3]. 
 
Given the arguments in Section (12), and since force is the derivative of momentum 
with respect to time, then the following physical associations are made,  
 
(13.2) 
(13.2a)  m  ~ time 
(13.2b)  0X , RQP ,, ,C  ~ momentum 

(13.2c)  X , zyx ,,  ~ force (momentum per unit time) 

(13.2d)  X ,  ,,  ~ momentum time (mass length). 
 
The last association of X  with momentum time does not seem to have a physical 
association except when all three quantities are considered as ‘per unit mass’, then 

X  is equivalent to position, momentum 0X  is equivalent to velocity, and force X  

equivalent to acceleration, i.e. 
 
(13.3) 
(13.3a)  0X , RQP ,, ,C  ~ velocity (momentum per unit mass) 

(13.3b)  X , zyx ,,  ~ acceleration (rate of change of momentum per unit mass) 

(13.3c)  X ,  ,,  ~ position (momentum per unit mass x time).  
 
Given that X  is static, i.e. a constant vector (6.2a), then (13.2c) represents a constant 
force (per unit mass), and (13.3b) a constant acceleration (per unit mass), i.e. 
 

(13.4)  0

dm

dX
 ~ constant force = constant acceleration per unit mass 

 
The derivative relations (12.17) to (12.19) are also consistent with the interpretations 
(13.2) and (13.3), given as follows, all per unit mass: 
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(13.5)   X
X

dm

d m0  ~  rate of change of velocity = acceleration 

 

(13.6)  022 XX
X  

 m
dm

d m  ~ rate of change of position = velocity 

 

(13.7)  
  X

X
2

2

2

dm

d m  ~ rate of change of velocity = acceleration. 

 
Integrating (13.5) gives 00 XXX  mm , as per (6.2b), i.e. the velocity 0mX  starts 

with an initial value 0X  and increases linearly in magnitude with time, i.e. constant 

acceleration X . 
 
Likewise, integrating the acceleration of mX  (13.7) once gives its velocity as 

022 XX  m  (13.6), which is actually twice the velocity of 0mX  (6.2b). Integrating 

a second time returns the position mX  as per (6.2c). 

 
Comparing (13.5) and (13.7), the position mX  accelerates with an acceleration 

 X2 , twice that of 0mX  but in the same direction, and so the velocity 0mX  (6.2b) is 

always half that of mX  (13.6). 

 
In terms of cones and hyperboloids, Section (4), these associations are interpreted as 
follows: with a static vector X  in the upper cone, i.e. UCX , then the 0X  vector 

accelerates at a constant rate  X , always in the opposite direction to X  and, 

consequently, along the surface of the lower hyperboloid LH . Simultaneously, the 

X  vector also accelerates at a constant rate,  X2  along the surface of the lower 

cone LC , forever going twice the speed of 0X . 

 
The evolution parameter m  could also be associated with inverse time or inverse 
length or, indeed, inverse other, instead of time. Looking at dimensional equations 
(12.8) to (12.10), this would then make X  a position vector which, given its 
elements are labelled with the traditional Cartesian zyx ,, , intuitively makes sense. 

The vector 0X  would remain a velocity and the X  vector would then be 

acceleration. Superficially then, this would seem to be a simple re-labelling exercise 
or swap in X  and X , which it is, and is closely related to a duality between X  

and X , i.e., denoting a dual variable by an over-struck tilde, then   XX
~

 or 

  XX
~

. See also Section (14.9). 
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(14) Concepts in Mathematical Physics 
 
This last Section is a short collection of some key links with mathematical physics 
and the physical world. The list is both speculative in places and far from exhaustive, 
with some key points still under consideration and others omitted since they are the 
subject of ongoing work for future publication. [2017_4] 
 
(14.1) Quantisation. First and foremost, all the work here and in [1] and [2] is 
entirely in integers, and is therefore quantised from the beginning. The development 
has been pursued explicitly avoiding rational, real or complex numbers. Nevertheless, 
complex numbers have their isomorphs in the form of integer, unity roots (or 
primitive roots and power residues), which are the dynamical variables RQP ,, . With 
this isomorphism in mind, trace-free, complex matrices, used throughout 
mathematical physics, are not so dissimilar to matrix A  (1.1). [2017_5] 
 
(14.2) No Singularities. Section (5) explains that the zero point is not possible as an 
element of the lattice, i.e. neither the cone C  (4.3) nor hyperboloid H  (4.6), contain 
the origin )0,0,0( . This is fundamentally due to the fact that, for C , the eigenvalue C 
is non-zero - a separate eigenvalue 0  is already allocated for eigenvectors 

H0
0 , XX ; for H , )0,0,0(),,( RQP  is never a valid solution to the hyperbolic 

equation (2.2.1). Hence C  and H  are referred to as having no singularity. As H  is a 

discrete quadric surface, its real ℝ3 analogue would, anyhow, ordinarily have a finite 
radius (eigenvalue C ) in the yx,  plane. On the other hand, C  comprises both upper 

and lower cones, UC  and LC , and its ℝ3 analogue always includes the origin where 

the tips meet. But, when working in ℤ3, as stated in Section (5), this is no longer 
possible. As a consequence, any path connecting the cones would skip the origin 
when going from LC  to UC  (evolving forward) and vice versa, UC  to LC  (evolving 

backward); likewise for a path on the hyperboloid H . 
 
(14.3) No Infinities. It is noted in [1] that zero divisors are possible but can be 
removed by transformation without altering X . By definition, this transforms 0X  to 

remove the zero, and X  transforms as a consequence, maintaining invariance in 
(2.2.5) – see also (14-7) further below. This transformation property has not been 
explicitly employed herein but is mentioned in connection with singularities as a 
useful property for any awkward expressions, in particular the indeterminate form 

0/0 , which can arise in [1]. 
 
(14.4) Symmetry. The simplifying ‘Pythagoras Conditions’ in [1], that reduce the 
unity root matrix theory in [2] to that of Pythagoras, represent a transition from an 
asymmetric to symmetric set of equations and solutions. The Pythagoras ‘state’ 
actually represents a very symmetric, zero Potential energy form. However, this is 
really the realm of extensions to [1] and mentioned here only as further evidence of 
links to the physical world.  The local and global invariance transformations, their 
affect on symmetry and, in particular, the vanishing Potential term V  in the 
conservation equation, are considered analogous to gauge transformations in field 
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theory. Note that the Potential term is not shown in (2.2.1) precisely because it is zero 
for Pythagoras. 
 
(14.5) Calculus. The physical associations in Section (13) compare the eigenvectors 

X , 0X  and X  to a position, velocity and acceleration vector respectively, and 

notes that they could equally well be angular equivalents or other unspecified. 
Whatever the association, the important point is that they span constant, first and 
second order vector derivatives with respect to an evolutionary parameter m  (~time), 
as shown in the dimensional analysis. Furthermore, the second order derivative 
(~acceleration) is constant and so there are no higher-order, non-zero derivatives. 
 
(14.6) A Conserved Non-zero, Zero-point Energy. The quantity 2C  in equation 
(1.1) is analogous to energy in Ref. [1] and split into a kinetic and potential term, 
albeit an abstraction. Nevertheless, since it is the square of a non-zero eigenvalue, it is 
never zero, and its smallest value, 12 C , is akin to a ‘zero-point’ energy, per unit 
mass. The zero-point energy is always non-zero and, for a single oscillator, is given 
by 0E ℏ 2/  for oscillator frequency  . Using the Planck frequency (the 

reciprocal of the Planck time, see (14.8) below), this gives the rather large energy 
GeVE 1910  ( J9102 ). The impact of a non-zero C  (or 2C ) is wider reaching 

since it also dictates that a trivial, zero Pythagorean triple )0,0,0(  is impossible within 
the theory, as explained in Section (5), and discussed above in (14.2). 
 
(14.7) Invariants. The three eigenvalues 0,C  are, by definition, invariants of 
the theory. The eigenvector space generates six other scalar invariants via the vector, 
inner product relations between the three eigenvectors and their conjugate forms. Of 
course, three of these are zero by the orthogonal properties between row and column 
eigenvectors vectors with distinct eigenvalues. The full suite of inner products is a set 
of six equations, given earlier in this paper and reproduced below, 
 
(2.1.3)  0222 

 zyxXX , Pythagoras equation 

(2.1.5)  0222 
 XX , Pythagoras equation 

(2.2.1)  2222
0

0 CRQP XX , Dynamical conservation equation 

(2.2.7)  22Czyx  



 XXXX , Potential equation 

(2.2.4)  00
0  

 zRyQxPXXXX  

(2.2.5)  00
0  

 RQP XXXX . 

 
The volume element gives another, derived invariant 32C  
 
(7.1)  3

0 2^ C  XXX . 

 
The important point about these values is that, for any evolved set of eigenvectors 

},,{ 0  mm XXX  and their conjugates, they are truly invariant in the lattice L  (4.7). 

The invariants cover the integer set }2,2,,,0,{ 322 CCCCC , and it is noticed that, for 
unity C , this set covers the most basic integers }2,1,0,1{ . Even when 1C , their 

ratios also include the simple set of integers }2,1,,0{ 2
1  . Given the musings on 
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angular momentum conservation in [1], it is tempting, but admittedly extremely 
tenuous, to think of spin [2017_6]. 
 
(14.8) Scale As the lattice L  (4.7) is discrete, by definition, it is evident that at some 
stage it must appear continuous in the macroscopic world. Difference equations must 
become differential equations and, given almost the entire world of mathematical 
physics works with continuous differential equations (even string theory), the integer 
values used herein must be very large such that a numeric difference of 1 or 2 is 
relatively tiny, and all quantities appear continuous. 
 
A tentative scale can be obtained by looking at the smallest possible interval of 
evolution, i.e. 1m . At the smallest scale of physical reality, considered to be either 
the Planck time or length, a value of 1m  represents a length of 35106.1  m or a 

time of 44104.5  s, see Penrose [7],  5 Gcht  and  3 Gchl , 

)(10055.1 1234  sKgmJsh , 2311110673.6  smKgG , 1810998.2  msc . So, 

at the one metre length, m  is 3510  and, for a time of 1s, m  is 4310 . Thus, there is 
no issue with approximating the continuous by the discrete with these sizes of 
numbers. 
 
The smallest magnitude solution for a Pythagorean triple X  or X  is )1,1,0( , 
according to definition (1.0). This is the ‘almost trivial’ solution, see Appendix (C), 
and has an associated, smallest point in H , eigenvector )0,0,(0 CX , i.e. its 

magnitude is the eigenvalue C . The level represented by the ‘position’ eigenvector 
T)1,1,0( X , with magnitude 2 , is thus considered the Planck level, i.e. if it 

represented distance it would be around 3510 m. 
 
When making physical comparisons on the flatness   (8.16) and curvature   (9.5) of 
the lattice, the question arises, how large does ‘large m ’ have to be before the 
granularity of a discrete lattice starts to appear continuous and the flatness   
becomes imperceptibly zero? The short answer is not very large, but it is dependent 
on the value chosen for the conserved quantity given by eigenvalue C . This can be 
most obviously seen in (8.16) where   is proportional to C  and inversely 
proportional to m , for constant z . As noted in (14.6), given that C  can also be large 
but finite, a value for m  can always be chosen to make   as small as desired. Indeed, 
Ref. [1] chose 1C , as in equation (2.1.1), and with this value a ‘large m ’ can be as 
small as 10m . The flatness is inversely proportional to m , as given by (8.16), and 
the curvature (9.5) is inversely proportional to the square of m . Considering m  as 
units of Planck time, then a value 10m  represents s4210 . This short evolutionary 
period is discussed again below. Nevertheless, whatever the scaling of m , it is clear 
that a large m  does not have to be very large before the angles   and 0  become 

very close to 180 deg, and the flatness   all but zero, i.e. vectors 0X  and X  align 

anti-parallel with X . 
 
The above discussion on   and   assumes z  is constant in (8.16) but, since this is 
the z  component in eigenvector X , it can be made as large as desired by suitable 

choice of k  and/or l  (2.5.2c), to nullify the effect of a large C . Given X  is static 
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then, once chosen, the evolution proceeds as per a small C . This freedom to vary z  is 
because X  is a Pythagorean triple and the theory herein is valid for all Pythagorean 
triples, 0z ; noting that [2] actually also extends to all Pythagorean triples such that 

0z . Albeit this is not necessary since the region 0z  is effectively the conjugate 
world of X  and arguments of duality apply, i.e. one can either work in the standard 
or dual vector space, but working in both is superfluous. 
 
Translating this discussion on scale to a cosmological analogy then, given that m  
need not be very large at all, i.e. )10( 1Om  , on an evolutionary scale of 

)10( 43Om  , the flattening is all but over in the very early, inflationary stages (first 

10 ticks). Certainly by 4310  ticks (1s) flatness reigns supreme. With a flattening 
period (a function of the clock ticks m ) tamed by choice of a large starting energy 

2C  then, from (8.16), it is clear that the larger the starting energy (for a fixed z , see 
above), the longer the evolutionary period required to attain flatness. 
 
Associating eigenvalue C  with speed (13.3a), and 2C  as energy per unit mass 
(kinetic energy/mass), then the Planck unit of C  is simply the speed of light, little c , 
i.e. smcC /103 8 . Given the age of the universe is approximately 13 billion 
years, which equates to about 1710  seconds, then the evolution parameter is, in units 

of Planck time, 6210m . Using the definition of the flatness parameter 
mz

C 1






   

(8.16), for large m , with 21  msz  as in the ‘almost trivial’ solution, Appendix (C), 

and smC /103 8 , then the flatness is around 5410  (dimensionless), i.e. flat to 
within 1 part in 5410 . 
 
(14.9) Scale Duality 

Although the topic of a duality (   XX
~

), mentioned at the end of Section (13), is 
beyond the scope of this paper, as a prelude, the following observation is supplied. If 
m  is dimensionless, then all three eigenvectors have the same units. In such a case, 
the evolution equations (6.2) show that, in the large m  limit, to within an arbitrary 
choice of sign, mX  tends to X2m . Thus, the large m  formulation in X  is simply a 

scale factor 2m  of the formulation in X  and, hence, mX  is considered the dual of 

X . 
 
In terms of the null-cone sets LC  and UC  then, since LCX  when UCX , 

(Section (14)), this represents a duality between the small and large-scale geometry of 

the sets expressed as UL CC
~

 , or LU CC
~

 . With the middle ground (macroscopic 

world) considered to be that of the eigenvector 0mX  (residing in the disjoint, 

hyperbolic set H ) then, relative to 0mX , the microscopic region is X  and the large 

scale region that of mX . Using (6.2), when viewed with respect to 0mX , the vector 

mX  tends to X
m

1
 and mX  tends to Xm  for large m , i.e. 0mX  sees an m

m
,

1
 

duality between the microscopic and the very large. 
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The m
m

,
1

 duality is analogous to mirror manifold symmetry in modern mathematical 

physics, see the subject of mirror symmetries in string theory, Section (31.14) in [7]. 
It is also of note that the parameter m  is analogous to a 'winding number' since it 
controls the quotient in a moduli relation. For example, using mxPP   (2.5.8), the 
dynamical variable P  has the congruence property )(mod xPP   by virtue of its 

definition as a power residue )mod(22 xCP  , (A7a); when 1C  the dynamical 
variable P  is termed a unity root. The quotient in (2.5.8) is the evolutionary 
parameter m  and is the equivalent of the winding number. 
 
(14.10) Minkowski Geometry. Not coincidentally, since the points in C  satisfy the 
Pythagoras equation (2.1.3) and (2.1.5), C  is a discrete, 3D version of the null light 
cone in the 4D Minkowski space of the Special Theory of Relativity (STR). Hence C  
is also referred to here as the discrete, null cone as its vectors, like STR, also have 
zero norm (length), see (2.4.1). Reference [7] gives a good, popular account with two 
chapters on Spacetime and Minkowskian Geometry. A 4D version of the work in this 
paper is pending and no further comment is added at this stage [2017_7]. 
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(15) Summary 
 
The paper started with a review of its predecessor [2], itself a simplification deriving 
from [1]. Ref. [2] showed that the A  matrix (1.1) has three eigenvectors X  (2.1.2), 

0X  (2.1.6) and X  (2.1.4), for eigenvalues 1 , 0  and 1  respectively. 

The theory is extended in this paper to cover the more general eigenvalues, 
CC  ,0, , C ℤ, 0C . The components of the two eigenvectors X  and X  

satisfy the Pythagoras equations (2.1.3) and (2.1.5) respectively, whilst the third 
eigenvector satisfies the hyperbolic, dynamical conservation equation (2.2.1). 
  
A full parametric solution for the eigenvectors is given in Section (2.5), and it is seen 
that fixing two of the arbitrary integer parameters, k  and l  (2.5.1), fixes X , and 

enables 0X  and X  to be related to X  by a third, arbitrary integer parameter m . 

This parameter is identified as an evolution parameter, which relates the evolution of 

0X  and X  with respect to X . 

 
Since all equations and variables are integers only, and with three arbitrary integer 

parameters, the eigenvectors represent points in a discrete lattice L  in ℤ3 (4.7). The 
lattice comprises two discrete cones, UC  (4.1) and LC  (4.2), collectively covered by 

the set C  (4.3), in which the eigenvectors X  and X  reside, and a discrete 

hyperboloid H  (4.6), the home of 0X . 

 
The paper then proceeds to give a simple, geometric interpretation of the eigenvectors 
in terms of their evolving path in L . Considering X  as a fixed eigenvector in the 

upper cone UC , 0z , it is shown that the X  evolution (6.2c), with respect to 

parameter m , is a null path on the lower cone LC , 0  , tracing a curved, 

downward path and always pointing away from X , becoming anti-parallel to X . 

The curvature of the X  path is shown to follow an inverse square law in m , for 

large m . The eigenvector 0X  (6.2b) similarly evolves by tracing a downward path on 

the lower hyperboloid LH  (4.4), albeit following a straight line, anti-parallel to X , 

with a slower growth and linear in m , as opposed to X , which grows quadratically 
with m . 
 
As a basis, the three eigenvectors were found to be highly oblique and become ever 
more oblique as they evolve, ‘flattening’ out such that X  and 0X  become parallel 

and pointing in the opposite direction to X , as per their evolving paths in L . The 

flattening, i.e. rate of change of angle of X  and 0X  with respect to X , also follows 

an inverse square law in m . [2017_8] 
 
Following the geometric study some physical aspects are investigated, starting with a 
dimensional analysis, which shows that X  can be regarded as the first derivative of 

0X , and the second derivative of X , with respect to m . This leads to consideration 
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of X  as a constant acceleration vector, 0X  as a velocity vector with a constant 

acceleration  X , and X  as a position vector with a constant acceleration  X2 , 

twice that of 0X . Consequently, the evolution of X  is a point accelerating down 

LC , twice that of 0X  down LH . 

 
Lastly, given the original unity root matrix theory in Ref. [1] was based upon a 
conservation law and an invariance principle, coupled with the cone and hyperboloid 
geometry of the eigenvectors, plus a consistent interpretation of the eigenvectors with 
physical quantities, then Section (14) provided some links to concepts in 
mathematical physics. Key amongst these concepts is: 1) quantisation, since the work 
is exclusively in integers; 2) symmetry, conservation laws and local and global 
transformation invariance; 3) evolutionary and physical scale; and 4), Minkowski 
geometry.  
 
(16) Conclusions 
 
A relatively simple, integer matrix, with two eigenvectors satisfying the Pythagoras 
theorem, and a third satisfying a hyperbolic equation, possesses a geometry of 
sufficient structure to give some interesting geometric properties, e.g. angular 
evolution and curvature. The eigenvectors also possess a consistent physical 
interpretation as dynamical quantities such as position, velocity and acceleration with 
their related calculus. With such properties observed, from what is a relatively basic 
starting point, it is concluded that the further study of unity root matrices, and 
associated algebra, may offer a reformulation of some physical phenomena in a 
simpler, quantised form, without the need for a real or complex vector space under-
pinning much of modern, mathematical physics. 
 

- End of Part II – 
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Appendix (A) 
Non-unity eigenvalues CC  ,0,  
 
This Appendix is a summary of all relevant equations for non-unity eigenvalues, 

C , used throughout this paper. The unity equivalent equations for 1  were 
first derived in [1] and [2]. There are some additional equations included here that are 
not used specifically in this paper but are provided for completeness. Obviously, only 
those equations containing the eigenvalue C  are actually modified from [1] and [2], 
and then, only if using a value 1C . 
 

(1.1)  

















0

0

0

PQ

PR

QR

A , RQP ,, ℤ, )0,0,0(),,( RQP . 

 
(A1)  0)det(  IA   
 
(A2)  0)( 2223  RQP  
 
(2.2.1)  2222 RQPC  , C ℤ, 0C  
 
(A3)  0))((  CC   
 
(A4)  C , 00  , C  

  

(2.1.2)  

















z

y

x

X , zyx ,, ℤ, )0,0,0(),,( zyx  

(2.3.1c)   zyx X  

(2.1.3)  0222  
 zyxXX  

 

(2.1.4)  























X ,  ,, ℤ, )0,0,0(),,(   

(2.3.1a)  X  

(2.1.5)  0222  
 XX  

 

(2.1.6)  





















R

Q

P

0X  

(2.3.1b)   RQP 0X  

(2.2.1)  22220
0 CRQP XX  
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(2.2.2a)    XAX C   

(2.2.2b) 00 AX  

(2.2.2c)   XAX C  
 
(2.3.5a)   XAX C  
(2.3.5b) 00 AX  
(2.3.5c)   XAX C . 
 
(2.2.3) 
(2.2.3a) QzRyCx   
(2.2.3b) PzRxCy   
(2.2.3c) PyQxCz   
 
(2.2.3e)  QRC   
(2.2.3f)  PRC   
(2.2.3g)  PQC  . 
 
(2.2.4)  00

0  
 zRyQxPXXXX  

(2.2.5)  00
0  

 RQP XXXX  

 
(A5) 
(A5a)  xPQCRPCy )()( 22   

(A5b)  yQRCPQCz )()( 22   

(A5c)  zRPCQRCx )()( 22   
 
(A5d)  xRPCQPCz )()( 22   

(A5e)  yPQCRQCx )()( 22   

(A5f)  zQRCPRCy )()( 22   
 
(A5g)  )()( RPCQyPQCRz   
(A5h)  )()( QRCPxPQCRz   
(A5i)  )()( QRCPxRPCQy   
 
(2.2.6) 
(2.2.6a) )( 22 PCx   

(2.2.6b) )( 22 QCy   

(2.2.6c) )( 22 RCz   
 
(2.2.7)  22Czyx  




 XXXX  
 
(A6) 
(A6a)  )( PQCRy   
(A6b)  )( RPCQz   
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(A6c)  )( PQCRx   
(A6d)  )( QRCPz   
(A6e)  )( RPCQx   
(A6f)  )( QRCPy   
 
(2.5.1)  lk , ℤ, )0,0(),( lk , Clk |),gcd(  
 
(2.5.2a) klx 2  
(2.5.2b) )( 22 kly   

(2.5.2c) )( 22 klz   
 
(2.5.3)  ltksC  , ts, ℤ 
 
(2.5.4a) mlss   
(2.5.4b) mktt   
 
(2.5.5a) )( ltksP   
(2.5.5b) )( ktlsQ   
(2.5.5c) )( ktlsR   
 
(2.5.6a) st2  
(2.5.6b) )( 22 st   

(2.5.6c) )( 22 st  . 
 
With the extension to non-unity eigenvalues comes some modification to the 
definition of the ‘unity roots’, i.e. the dynamical variables RQP ,,  are no longer roots 
of unity. For a general eigenvalue C , the dynamical variables RQP ,,  now satisfy the 
following congruence relations 
 
(A7) 
(A7a)  )mod(22 xCP   

(A7b)  )mod(22 yCQ   

(A7c)  )mod(22 zCR  . 
 
When 1C  the dynamical variables P  and Q  are seen to square to +1, and R  
squares to -1, hence they are termed unity roots. When 1C , the unity root 
property evidently no longer applies since the dynamical variables no longer square to 
unity, but 2C  instead, as in (A7). However, from the theory of power residues and 
primitive roots, see [4], knowledge of the unity roots is sufficient to find any non-
unity, quadratic residue. For example, if P  is a unity root such that 

)mod(12 xP  , then multiplying throughout by 2C  implies 

)mod()( 22 xCPC  . By defining P  as )mod( xPCP   then )mod(22 xCP   
and hence P  satisfies (A7a). Therefore knowing P  enables P  to be determined. 
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Lastly, note that the special case, illustrated by the almost-trivial solution in Appendix 
(C), when Q  and R  are both zero, does not contradict the definitions (A7b) and 
(A7c). This is because the dynamical variables Q  andR , and eigenvalue C , happen 

to be congruent to zero moduli y  and z , both moduli being 2l  in this example, i.e. 

)mod(0)( 2222 lCslQ   and )mod(0)( 2222 lCslR   since Cl | . So, 
although Q  and R  are not true unity roots, neither do they contradict any results. 
Furthermore CP   for all moduli x , zero or otherwise, so neither does this 
contradict definition (A7a). 
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Appendix (B) 
Example. Pythagorean Triple (4,3,5) 
 
This Section provides some example data in the case of the simplest, non-trivial 
Pythagorean triple (4,3,5). 
 
Choose integers k  and l  subject to (2.5.1), lk , ℤ, )0,0(),( lk , Clk |),gcd( , 
 
(B1)  2l , 1k . 
 
The triple ),,( zyx  is then given by the familiar Pythagoras parameterisations (2.5.2), 

klx 2 , )( 22 kly   and )( 22 klz   
 
(B2)  4x , 3y , 5z . 
 
Choose eigenvalue C  as unity for simplicity and to compare with [2] 
 
(B3)  1C . 
 
Solve the congruence ltksC   (2.5.3) to give a general solution for s , t  in terms 
of an arbitrary, integer parameter m  
 

(B4)  ms 21 , mt  , m ℤ. 
 
The triple ),,( RQP  can then be obtained from (2.5.5), )( ltksP  , )( ktlsQ   
and )( ktlsR   
 
(B5)  mP 41  
(B6)  mQ 32   
(B7)  mR 52  . 
 
The divisibility factor triple ),,(   is obtained from (2.5.6), st2 , 

)( 22 st   and )( 22 st   
 
(B8)  )24( 2 mm   

(B9)  )143( 2  mm  

(B10)  )145( 2  mm . 
 
For the primitive solution 0m , so s  and t  in (B4) become 
 
(B11)  1s , 0t . 
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Substituting 0m  into (B5) to (B10), the following values for the dynamical 
variables RQP ,,  and scale factors  ,,  are obtained 
 
(B12)  1P , 2Q , 2R  
(B13)  0 , 1 , 1 . 
 
With all nine variables },,,,,,,,{ RQPzyx  assigned, (B2), (B12) and (B13), the 

standard eigenvectors X , 0X  and X  are, according to definitions (2.1.2), (2.1.6) 

and  (2.1.4) respectively, 
 

(B14)   

















5

3

4

X , 






















2

2

1

0X , 



















1

1

0

X . 

 
The conjugate eigenvectors are, according to (2.3.1), 
 
(B15)   110 X ,  2210 X ,  534 X . 
 
Using (B12) for the dynamical variables RQP ,, , the A  matrix  (1.1) is 
 

(B16)  





















012

102

220

A . 

 
Since 0z  then UCX  by definition (4.1). 

 
With 5z  and 1  then z  and   are of the same sign and, hence, 0   and 

LCX  by definition (4.2). 
 
With 2R  then LH0X  by definition (4.4). 

 
(B17) Angle Table 
 
This table gives the angles  , 0  and 0  (8.7) between the eigenvectors X  

(~ mX )  (6.2a), invariant to variations in m, 0mX  (6.2b) and mX  (6.2c). 

 

)5,3,4(

X
 0mX  (6.2b) 

( 1C ) 
mX  (6.2c)  18000     

(8.8) 
m  P  Q  R        

  0  0  
0 -1 -2 -2 0 -1 -1 143.130 160.529 19.471 
1 -5 -5 -7 -6 -8 -10 168.522 174.232 5.768 
2 -9 -8 -12 -20 -21 -29 173.267 176.628 3.372 
4 -17 -14 -22 -72 -65 -97 176.320 178.150 1.841 
8 -33 -26 -42 -272 -225 -353 178.071 179.035 0.965 
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16 -65 -50 -82 -1056 -833 -1345 179.012 179.506 0.494 
32 -129 -98 -162 -4160 -3201 -5249 179.500 179.750 0.250 
64 -257 -194 -322 -16512 -12545 -20737 179.748 179.874 0.126 

 
(B18) Flatness Table 
 
This table gives the flatness parameter  , as calculated from (8.13), with an 
approximation of it (estimate ̂ ) from (8.25), using   from table (B17), converted 

to radians, to calculate   (8.21). A second approximation is also obtained from 

(8.32) using 0 , also from table (B17), and also converted to radians. 

 
evolution 
parameter 

flatness 
parameter 
 (8.13) 

  approx-
imated from 

  (8.25) 

% error 
 

0̂ approx-

imated from 

0  (8.32) 

% error 

m  RC / , 
( 1C ) 2

ˆ 






  


 ˆ

100    00 2ˆ   


 0ˆ
100  

0 -0.5000 -0.4550 9.00 -0.4806 3.90 
1 -0.1429 -0.1417 0.84 -0.1424 0.34 
2 -0.0833 -0.0831 0.29 -0.0832 0.12 
4 -0.0455 -0.0454 0.086 -0.0454 0.034 
8 -0.023810 -0.023804 0.024 -0.023807 0.0094 
16 -0.012195 -0.012194 0.0062 -0.012195 0.0025 
32 -0.00617284 -0.00617274 0.0016 -0.006173 0.00064 
64 -0.00310559 -0.00310558 0.0004 -0.003106 0.00016 

 
(B19) Curvature Table 
 
This table gives the curvature  , as calculated from (9.2) using   (8.7b), with an 

approximation of it (estimate ̂ ) from (9.5). 
 
evolution 
parameter 

  
(deg) 
(8.7b) 

angle   
(rad)  

curvature   (9.2)  ̂  approximated  
(9.5), for 1C , 

5z  

% error 

m      )1()( mm   
2

12
ˆ

mz

C








  

 ˆ
100  

0 143.130 2.498092 - - - 
1 168.522 2.941258 0.443166 0.2828427 36.0 
2 173.267 3.024081 0.0828232 0.0707107 15.0 
4 176.320 3.077365 0.0188422 0.0176777 6.2 
8 178.071 3.107929 0.00454656 0.00441942 2.8 
16 179.012 3.124347 0.00111968 0.00110485 1.3 
32 179.500 3.132863 0.00027800 0.00027621 0.64 
64 179.748 3.137201 0.00006927 0.00006905 0.32 

 
(B20) Mixed Angle Table 
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This table gives the mixed angles 
 , 0

0  and 
   (10.1), between the standard and 

conjugate, evolving eigenvectors (6.2) and (6.3). Note that 



    by (10.1a) and 

(10.1b). 
 

)5,3,4(

X  
0mX  (6.3b) 

( 1C ) 

mX  (6.3c) 
 , 

  0
0  

m  P  Q  -R        (10.1a,b) (10.1c) 
0 -1 -2 2 0 -1 1 78.463 83.261 
1 -5 -5 7 -6 -8 10 88.854 89.421 
2 -9 -8 12 -20 -21 29 89.605 89.802 
4 -17 -14 22 -72 -65 97 89.882 89.941 
8 -33 -26 42 -272 -225 353 89.968 89.984 
16 -65 -50 82 -1056 -833 1345 89.991 89.996 
32 -129 -98 162 -4160 -3201 5249 89.998 89.9989 
64 -257 -194 322 -16512 -12545 20737 89.999 89.9997 

 
(B21) Mixed Angle Flatness Table 
 
This table gives the flatness parameter  , as calculated from (8.13), with an 
approximation of it (estimate 

̂ ) from (10.9), using 
  (10.1a) to calculate 

  
(10.5) in radians. 
 
evolution 
parameter 


 (deg)  

(10.1a) 
angle 

  (rad) 
(10.5) 

flatness 
parameter 
 (8.13) 


̂ approx-

imated from 

  (10.9) 

% error 
 

m   )2/( 



    RC / , 

( 1C ) 




  ̂  


 

ˆ
100  

0 78.463 0.201358 -0.5000 -0.448729 10.0 
1 88.854 0.020001 -0.1429 -0.141426 1.0 
2 89.605 0.006897 -0.0833 -0.083046 0.35 
4 89.882 0.002062 -0.0455 -0.045408 0.17 
8 89.968 0.000567 -0.023810 -0.023803 0.028 
16 89.991 0.000149 -0.012195 -0.012194 0.0075 
32 89.998 0.000038 -0.006173 -0.006173 0.00020 
64 89.999 0.000001 -0.003106 -0.003106 0.000074 

 
(B22) Mixed Angle Curvature Table 
 
This table gives the mixed angle curvature 

  as calculated from the finite difference 





  )1()( mm  , using (10.1a) for 
 , and with an approximation of it (estimate 

̂ ) 

from (10.15). 
 
evolution 
parameter 


 (deg) 

(10.1a) 
angle 

  (rad) 
(10.1a) 

curvature 
   

̂  
approximated  
(10.15), for 

1C , 5z  

% error 
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m    



  )1()( mm   

32

2 12

mz

C










  
 ˆ

100  

0 78.463 1.369438 - - - 
1 88.854 1.550795 0.181357 0.08 56.0 
2 89.605 1.563900 0.013105 0.01 24.0 
4 89.882 1.568734 0.001386 0.0125 14.0 
8 89.968 1.570230 0.000163 0.000156 4.3 
16 89.991 1.570648 0.00001994 0.00001953 2.0 
32 89.998 1.570758 0.00000247 0.00000244 1.0 
64 89.999 1.570787 0.00000031 0.00000031 0.48 
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Appendix (C) 
The ‘almost trivial’ solution )1,1,0( . 
 
Given the most trivial value )0,0,0( , for all three triples ),,( zyx , ),,( RQP , ),,(  , 
is excluded as invalid, see Section (5), then the next simplest solution is considered to 
be the triple )1,1,0(),,( zyx . Of course, with extensions, see Appendix (D) in [2], 
any of the four sign combinations are possible, but only the all-positive triple will be 
used here for simplicity. Note too that )1,0,1(),,( zyx  is also possible but considered 
one and the same as )1,0,1( , at least in this example, given the symmetry between x  
and y  in Pythagoras. 
 
As )1,1,0(  is not generally considered a true Pythagorean triple, it is not given the 
status of the more familiar, smallest primitive triple )5,3,4( , which is examined in 
Appendix (B). Nevertheless, the triple )1,1,0(  does satisfy definition (1.0) and is 
therefore not to be dismissed lightly. 
 
Instead of using exactly )1,1,0( , the more general variant ),,0( ll , l ℤ, 0l , will be 
used in this example. With this choice, the integer k , in (2.5.1), is zero and integer l  
remains unspecified, but both subject to the following conditions, for general 
eigenvalue C , 
 
(C1)  0k , Cl | , lk , ℤ, 0l . 
 
The condition Cl |  in (C1) ensures integer, not rational, solutions. Obvious choices 
are 1l  or Cl  . 
 
The triple ),,( zyx  is then given by the familiar Pythagoras parameterisations (2.5.2) 

klx 2 , )( 22 kly   and )( 22 klz   
 
(C2)  0x , 2ly  , 2lz  . 
 
For full generality the eigenvalue C  will be left unspecified and not set to unity as in 
Appendix (B) or [2]. 
 
With 0k , the congruence ltksC   (2.5.3) becomes simply lCt / . Integer s  
is arbitrary and will also be left as such for now, acting as a free parameter. 

Formalising this, the general solution to ltksC   (2.5.3), arbitrary s ℤ, is 
 
(C3)  lCt / , Cl | . 
 
The triple ),,( RQP  is obtained from (2.5.5), )( ltksP  , )( ktlsQ   and 

)( ktlsR  , parameterised by s , 
 
(C4) 
(C4a)  CP   
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(C4b)  slQ   
 (C4c)  slR  . 
 
The divisibility factor triple ),,(   is obtained from (2.5.6), st2 , 

)( 22 st   and )( 22 st  , also parameterised by s , as follows 
 
(C5) 

(C5a)  
l

C
s2  

(C5b)  2
2

2

s
l

C
  

(C5c)  2
2

2

s
l

C
 . 

 
Using these results, the full suite of standard eigenvectors X , 0X  and X  is, in 

accordance with (2.1.2), (2.1.6) and (2.1.4) respectively, 
 

(C6)   

















2

2

0

l

lX , 





















sl

sl

C

0X , 



















)(

2
1

222

222
2

lsC

lsC

slC

l
X . 

 
The A  matrix (1.1) is 
 

(C7)  





















0

0

0

Csl

Csl

slsl

A . 

 
By comparison of the evolution equations (6.2) with eigenvectors (C6), it can be 
inferred that the evolution parameter m  is related to integer parameter s  by 
 
(C8)  mls  . 
 
However, do not substitute for s , using ml  (C8), as it will not give all solutions, only 
those where s  is a multiple of l . Consequently, (C6) is left as is and the 'evolution 
parameter' is effectively s  here. Evidently s  and m  can be made equal by setting 

1l , which is done for the example data tabulated further below, tables (C13) to 
(C16). 
 
For the primitive solution, 0s , it is seen that the two dynamical variables Q  (C4b) 
and R  (C4c) are both zero. This is the exceptional case where they are most definitely 
not unity roots but, that aside, are still perfectly valid and consistent values as regards 
satisfying all related equations, notably the conservation equation (2.2.1) and 
divisibility criteria (2.2.6). 
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The primitive case 0s  also reduces A  to having only two, non-zero elements, both 
C but, nevertheless, it still gives a consistent set of dynamical equations (2.2.2). 
 
The conjugate eigenvectors are, according to definitions (2.3.1), 
 

(C9)  222222
2

2
1

lsClsCslC
l

X  

(C10)  slslC 0X  

(C11)  220 ll X . 
 
The most interesting aspect of this example is that the eigenvectors for 0s  are 
orthogonal and thus form a right-handed triad. Although, without scaling, they are not 
unit vectors and, hence, the basis is not orthonormal 
 

(C12)  

















2

2

0

l

lX , 


















sl

sl

C

0X , 



















2

2
2

0
1

C

C
l

X , 0s . 

 

The magnitudes of X , 0X  and X  in (C12) are 22l , C and 2)/(2 lC , but the 

eigenvectors are never normalised within the context of unity root matrix theory since 
this takes it out of the integer domain into the reals, and tantamount to heresy within 
the context of this work. 
 
(C13) Angle Table 
 
The following tables are for the above, almost-trivial solution - See (B17) for a 
description of the tables. 
 

)1,1,0(

X

1l  
(C12) 

0mX  (6.2b) 

( 1C ) 
mX  (6.2c)  18000     

m  P  Q  R        
  0  0  

0 1 0 0 0 1 -1 90.0 90.0 90.0 
1 1 -1 -1 2 0 -2 120.0 144.736 35.264 
2 1 -2 -2 4 -3 -5 143.130 160.529 19.471 
4 1 -4 -4 8 -15 -17 160.25 169.975 10.025 
8 1 -8 -8 16 -63 -65 169.937 174.949 5.051 
16 1 -16 -16 32 -255 -257 174.944 177.470 2.530 
32 1 -32 -32 64 -1023 -1025 177.469 178.734 1.266 
64 1 -64 -64 128 -4095 -4097 178.734 179.367 0.633 
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(C14) Flatness Table 
 
See (B18) for description. 
 
evolution 
parameter 

lsm /  , 
1, sl (C8) 

flatness 
parameter 
 (8.13) 

  approx-
imated from 

  (8.25) 

% error 
 

0̂ approx-

imated from 

0  (8.32) 

% error 

m  RC /  
( 1C ) 2

ˆ 






  


 ˆ

100    00 2ˆ   


 0ˆ
100  

0  )0( R  -1.110 - -2.221 - 

1 -1.0 -0.740 26.0 -0.870 13 
2 -0.5 -0.455 9.0 -0.481 3.9 
4 -0.25 -0.244 2.5 -0.247 1.0 
8 -0.125 -0.12419 0.64 -0.12468 0.26 
16 -0.0625 -0.06240 0.16 -0.06246 0.065 
32 -0.03215 -0.031237 0.041 -0.031245 0.016 
64 -0.015625 -0.0156234 0.01 -0.0156244 0.0041 

 
(C15) Curvature Table 
 
See (B19) for description. 
 
evolution 
parameter 

lsm / , 
1, sl (C8) 

  
(deg) 
(8.7b) 

angle   
(rad) 

curvature   (9.2)  ̂  approximated  
(9.5), for 1C , 

1z  

% error 

m      )1()( mm   
2

12

mz

C








  

 ˆ
100  

0 90.0 1.5708 - - - 
1 120.0 2.0940 0.5232 1.4142 170 
2 143.130 2.4981 0.4041 0.3535 12 
4 160.25 2.7969 0.1063 0.0884 17 
8 169.937 2.9660 0.0247 0.0221 11 
16 174.944 3.053347 0.005862 0.005524 5.8 
32 177.469 3.097416 0.001424 0.001381 3.0 
64 178.734 3.119498 0.000351 0.000345 1.5 
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(C16) Mixed Angle Table 
 
See (B20) for description. 
 

)1,1,0(

X

, 1l  

0mX (6.3b) 
( 1C ) 

mX  (6.3c) 
 , 

  0
0  

m  P  Q  -R       (10.1a,b) (10.1c) 
0 1 0 0 0 1 1 0.0 0.0 
1 1 -1 1 2 0 2 60.0 70.529 
2 1 -2 2 4 -3 5 78.463 83.621 
4 1 -4 4 8 -15 17 86.628 88.264 
8 1 -8 8 16 -63 65 89.119 89.556 
16 1 -16 16 32 -255 257 89.777 89.888 
32 1 -32 32 64 -1023 1025 89.944 89.972 
64 1 -64 64 128 -4095 4097 89.986 89.993 

 
The remaining two, equivalent tables to (B21) and (B22) in Appendix (B) have not 
been added to this Appendix (C) as unnecessary. They show the same trends as per 
(B21) and (B22). 
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Appendix (D) 
2017 Revision 
 
[2017_1] The connection to angular momentum and spin is firmly established in [IV] 
and [V]. In the former, the dynamical variables RQP ,,  are related to quaternions and 
hence too rotations, whilst in [5] they relate to particle spin. 
 
[2017_2] X+ is invariant under time-domain evolution, parameter m (or t). But latter 
URMT introduces dual eigenvector evolution, which is also as the frequency-domain 
evolution, and in this case it is the vector X- that is invariant, with X+ and X0 
evolving in terms of a frequency parameter. 
 
[2017_3] QPI/SPI 
 
[2017_4] Physical advances have moved on considerably. 
 
[2017_5] Trace-free Generators, Books 4 and 5. 
 
[2017_6] Spin was borne out, books 4 and 5. 
 
[2017_7] 4D and 5D extended in Book 2 and showed Geometric Compactification. 
STR 4D and 5D came in Book 3. 
 
[2017_8] This is basically another form of compactification. 
 


