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Abstract 
 

An analysis of Pythagoras's Theorem and Fermat's Last Theorem is performed by the 

study of two conditions, termed the Residue and Quotient Condition, which have to 

be satisfied by any possible integer triple solution (a, b, c) to the Diophantine 

Equation a^n + b^n = c^n for prime, exponent n, n >= 2. 

 

The Residue Condition filters out Candidate Pairs of integers b and c that satisfy a 

form of the Generalised Fermat Equation, k*a^n + b^n = c^n, for what we term the 

base 'a'. The Quotient Condition restricts k to unity and should such a triple (a, b, c) 

be found, which satisfies both the Residue and Quotient Conditions, then it would be 

an FLT counter-example. Of course, for exponent n >= 3, no such counter-examples 

exist, Wiles [1]. The Residue Condition necessitates the study of Residue Sequences: 

x^n (mod a^n), 0 <= x < a ^n, in the 'Standard' case; (mod b^n) in the 'Dual' case; and 

(mod c^n) in the 'Skew' case. 

 

The structure of a Residue Sequence, its symmetries and the stringency of the Residue 

and Quotient Conditions offers insight, but not a proof, into why Pythagoras has 

solutions but FLT has none. The two conditions allow us to place several constraints 

on the form of integers a, b and c in any such FLT counter example, were they to 

exist. 

 

We show that all Pythagorean triples can be generated through a symmetry in the 

Residue Sequences which exist by virtue of an even power exponent. For odd 

exponent n >= 3, this symmetry is absent and is replaced by a Skew Symmetry which 

we show is not sufficient to generate FLT solutions. We conclude from this that were 

there to be any FLT solutions for odd exponent they would have to arise through 

another mechanism which we term 'Unity Root Mappings'. In the Standard case, a 

Unity Root u, such that u^n = 1 (mod a^n), a < u < a^n, maps an integer b to integer c 

via the relation c = u*b (mod a^n), a < b < c. This mechanism offers the possibility of 

counter-examples but, in doing so, allows us to place yet more restrictions upon any 

such counter-example (a, b, c). 
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0 Introduction 

0.1 Document Status 

 

0.1.1 History 

 

0.1.1.1 Combined, all sections 1 to 7 

 

All sections were combined into this single volume, Issue 0 Draft D. 

 

18/12/2004 Issue 0. Draft D 

 

0.1.1.2 Sections 1 and 2 

 

29/09/2003 Issue 0. Early unpublished notes 

19/05/2004 Issue 0. Draft 0 

27/08/2004 Issue 0. Draft A 

05/11/2004 Issue 0. Draft B5 

10/11/2004 Issue 0. Draft C2 

11/11/2004 Issue 0. Draft C3 

18/11/2004 Issue 0. Draft C4 

21/11/2004 Issue 0. Draft C5 

 

0.1.1.3 Section 3 

 

28/11/2004 Issue 0. Draft C3 

 

0.1.1.4 Sections 4 to 7 

 

16/11/2004 Issue 0. Draft C3 

 

0.1.2 Formats 

 

Word 2000 format 

 

This document is currently available in electronic form only as an MS Word 2000 

Document. 

 

This documents have been written using the standard ASCII character set for all 

equations and an equation editor has not yet been employed. This is so that a pure-text 
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version can easily be generated. A more standard form incorporating standard 

mathematical symbols, subscripts etc, will be generated at a later date prior to release. 

 

Text format 

 

A single text document, which is converted directly from an amalgamation of the 

three separate Word documents, above is also supplied. 

 

Sections1to7_date.txt 

 

HTML format 

 

An online version will be made available, prior to external review, so that it can be 

made available to a wider audience. 

 

PDF format 

 

Once the document has been externally reviewed and corrected it is anticipated that 

any publishable work resulting from it will be then written with a more approriate 

editor such that it can be made available in Adobe Acrobat, PDF form 

 

0.1.3 Current Status 

 

The document is still in a pre-published form and has not yet been reviewed although 

it is now ready for a preliminary review prior to a full peer review and possible 

submission of parts for publication. 

 

Due to its large size and diversity of topics, should extracts be published, it is likely 

that this document will be broken up into a summary paper and a few minor papers. 

 

0.1.4 TBDs 

 

All current outstanding points, missing cross references, Author references etc. are 

marked by the bracketed three-letter-acronym (TBD) denoting ‘To Be Defined’. In 

some serious cases additional text has been highlighted in yellow. 

 

0.1.5 Originality of Content 

 

The originality of much of the work presented cannot be guaranteed. Indeed several 

Theorems are trivial and well-known, for example those on Pythagoras. In these 

instances they are presented only for completeness. However, we are not claiming a 

Proof of FLT nor claiming originality of all the work. Whilst doing the work during 

2003 and 2004, several aspects have been found to be prior known and published. A 

good example is the Modified Fermat Test (MFST), section (4.5) which is more 

commonly known as The ‘Strong Pseudoprime Test’, ref. Mathworld [4]). Another 

example is the Unity Root Polynomial ‘f(u)n’, section (3.6), which is actually a form 
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of ‘Cyclotomic Polynomial’, ref. Mathworld [4] with well known factor properties 

which are also derived. References to prior published work are welcome and will be 

acknowledged when verified. 

 

0.1.6 Reviewers 

 

Comments will be accepted by any person reading the document. Spelling and 

grammar corrections will also be accepted – we had to disable these word-processing 

features as they caused considerable problems – crashing. 

 

The document is available electronically and electronically embedded comments are 

welcome. Please use some method to differentiate them, such as highlighting in red or 

blue, if using Word. For text only, use multiple asterisks ‘****’ or ‘@@@@’  to 

delineate comments. Return the document electronically, by email, to the principle 

author, see Contact, below. 

 

0.1.7 Contact 

 

Richard J Miller 

richard@microscitech.com 

richard@microscitech.freeserve.co.uk 

 

mailto:richard@microscitech.com
mailto:richard@microscitech.freeserve.co.uk
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0.2 Foreward 

 

This paper is based upon earlier, unpublished work first started in September 2003. 

This early work established the Residue and Quotient Conditions and criteria for 

generating Pythagorean Triples via symmetry in the Residue Sequence. It was this 

initial observation on symmetry that triggered the wider study into FLT. 

 

Absurd as it may seem to study FLT 'after the horse has bolted', i.e. several years after 

a proof has been published, the Wiles 1995 [1] proof is essentially an indirect proof, 

i.e. a proof of the Taniyama Wiles Shimuara' conjecture, and offers no simple, direct 

insights into the difficulty of finding any counter-example to FLT. It is the intention 

of this paper to try and gain some direct insight why counter-examples are non-

existant for exponents n >= 3. Because Pythagoras does have solutions, we use this 

case extensively for a comparative study. 

 

The paper is split into five main sections: 

 

section 1 starts by establishing conditions and imposing constraints upon any possible 

solutions to the FLT equation; 

 

section 2 then analyses the residue mechanism by which these constraints can be 

satisfied, splitting the exponent into even and odd cases since they have an inherently 

different structure in their Residue Sequences, namely symmetric (even exponent) and 

skew-symmetric (odd exponent); 

 

section 3 unifies the symmetric and skew-symmetric concepts in section 2 through the 

study of Unity Roots; 

 

section 4 is a collection of miscellaneous applications arising from concepts presented 

in sections 1, 2 and 3 

 

section 5 summarises all the constraints upon any possible FLT counter-example, 

were there to be any 

 

For some background to FLT we point you to the following two references [2] and 

[3]. For an elementary, under-graduate level text on Number Theory, see reference 

[6]. The online reference [4] is also an excellent source of information on all 

mathematical topics. 

 

It is often stated that a Residue approach to work on an FLT proof is doomed to 

failure since there are ‘local solutions’. [Reference required TBD]. However, although 

the work presented in this paper is based upon a residue approach it does not start 

with a congruential form of the FLT equation such as 

 

 a^n + b^n = c^n (mod A) 

 

Instead, the work starts with the exact FLT equation 

 

 a^n + b^n = c^n 
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and then places Residue Conditions upon possible solutions to this exact equation. 

 

A lot of number theory deals with what the actual values of residues are, for instance, 

the subject of quadratic residues and, in general, n’th order residues. Our work is 

primarily interested in the cases where residues repeat within the [0, a^n) interval 

when studying residues (mod a^n). What their actual values are is of little or no 

relevance. Ultimately we shall see, section (3), that the only residue of real interest is 

+1 and, in particular, the Unity Roots u, u!= 1, where u^n = +1 (mod a^n). 

 

The work presented in this paper is entirely based on congruential arithmetic and 

generally using only positive integers, never really straying into either negative 

numbers or complex numbers. The main reason for this is that every negative integer 

has a positive equivalent in modulo arithmetic, e.g. - x = A - x (mod A) and thus we 

can always use the positive form if so desired. Secondly, and related, any equation of 

the form x^n = -1 (mod A) can also be written x^n = A - 1 (mod A) for which there 

may/may not be solutions in integer arithmetic. If there are no integer solutions then 

this is not of real concern within the scope of this paper. 
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0.3 Conventions 

 

The following will be assumed throughout 

0.3.1 We shall be working with a triple of integer a, b and c, denoted by the ordered 

triple notation (a, b, c), such that it is a solution to the following Diophantine 

equation for integer exponent n, n >= 2. 

 

0.3.1.1 a^n + b^n = c^n 

 

0.3.2 The exponent n is 2 or greater and prime, excepting when n = 4. 

 

0.3.3 The triple (a, b, c) is such that a, b and c are all positive integers and satisfy 

the following inequalities 

 

0.3.3.1 a >2 

0.3.3.2 b >a 

0.3.3.3 c > b 

 

The minimum value of b and c under consideration is thus 3 and 4 respectively. 

0.3.4 The three integer values a, b and c are all ‘co-prime in pairs’. This ensures that 

the solutions to equation (0.3.1.1) have no common factor, i.e. they are 

‘primitve’. 

 

0.3.4.1 GCD(a,b) = 1 

0.3.4.2 GCD(b,c) = 1 

0.3.4.3 GCD(a,c) = 1 

 

0.3.5 The following symbolic, mathematical conventions are employed 

 

0.3.5.1 When referring to the modulus, invariably a^n, b^n or c^n, the base is the un-

exponentiated form, i.e. a, b or c. 

 

a - the ‘Standard Base’, smallest member of (a, b, c). 

b - the ‘Dual Base’, middle value member of (a, b, c) 
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c – the ‘Skew Base’, largest member of (a, b, c) 

 

When we are referring to the Standard Base a, we usually drop the 'Standard' prefix as 

for most terms prefixed with 'Standard' when the context is clear. 

0.3.5.2 Residues, usually symbolised by 'r', are always such that r > 0. When 

negative, they are denoted by -r. The ‘zero residue’ (r = 0) occurs for values 

x = ka (integer k, base a) which is excluded since, if b or c is a multiple of a, 

then the triple (a, b, c) is not co-prime in pairs (0.3.4). 

0.3.5.3 Quotients, usually symbolised by q and p' or p’ and q’, are always such that 

p > 0, q > 0, p’ > 0, q’ > 0. When negative they are denoted by -p and -q 

respectively. 

 

0.3.5.4 Exponentiation takes precedence over multiplication or division. E.g. a^n/n = 

(a^n) / n. Often a bracket will be used for clarity. 

 

0.3.5.5 All variables and constants are assumed positive whole numbers >= 0 unless 

otherwise stated. 

 

0.3.5.6 The three ordered pairs of integers (b,c), (a,c), (a,b) are termed 'Candidate 

Pairs' (they each share a common 'Repeat Residue') 

 

 (b,c) - the 'Standard Candidate Pair', b^n = c^n (mod a^n) 

 

 (a,c) - the 'Dual Candidate Pair', a^n = c^n (mod b^n) 

 

 (a,b) - the 'Skew Candidate Pair', a^n = b^n  (mod c^n) 

 

When we are referring to the Standard Candidate Pair (b,c) we usually drop the 

'Standard' prefix as for most terms prefixed with 'Standard' when the context is clear. 

 

0.3.5.7 Usage of the muliplication symbol * 

 

The multiplication symbol '*' is not always used when multiplication is implied. Such 

instances are 

 

multiplying two bracketed expressions together, e.g. 

 

(c - b)(c + b) = (c - b) * (c + b) 

 

mulitiplication of an alphabetic symbol by a numeric constant, e.g. 

 

2a = 2 * a 

 

commonly used multiples, especially constant multiples of a, b or c and n, e.g. 
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ka = k * a 

 

2ln = 2 * l * n 

 

0.3.5.8 Operator Precedence 

 

We shall assume the usual convention on operator precedence: 

 

Exponention takes precedence over multiplication and division 

 

Multiplication takes precence over addition and subtraction 

 

A bracketed expression is evaluated before any of its left or right operators. Use of 

brackets therefore permits operator precedence to be over-ridden. 

 

Some Examples 

 

2a^n  = 2 * (a^n) 

 

(2a)^n = 2^n * a^n 

 

a^n / 2 = (a^n) / 2 

 

a^(n / 2) = (a^n)^(1 / 2) 

 

2*(c + b) 

 

Generally the precedence rules will be implied and brackets are only used to alter the 

precedence in an expression. However, to improve readability, brackets may be used 

in some cases although their presence may not be strictly necessary. 

 

0.3.5.9 Usage of the term '2ln+1' 

 

This is an extremely frequently used expression and it is defined as 

 

2ln+1 = (2 * l * n ) + 1 

 

0.3.5.10 Non-standard symbols, notation 

 

The readers attention is drawn to our usage of the some non-standard symbols and 

notation 

 

negation symbol '!' 

 

 a != 2 denotes a not equal to 2 
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 2 !| a    denotes 2 does not divide a 

 

nth root 'n_/' 

 

 3_/a     denotes the cubic root of a 

 

 2_/(c - b)    denotes the square root of (c - b) 

 

 2_/c - b  = (2_/c) - b 
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0.4 Acronyms and Symbols 

0.4.1 Acronyms 

 

dp Decimal Place 

FLT Fermat's Last Theorem 

FST Fermat’s Little (‘Small’) Theorem 

GCD Greatest Common Divisor 

GFLT General FLT Equation 

INT Integer function 

LDE Linear Diophantine Equation 

lhs Left-hand side 

MFLT Modified FLT Equation 

MFST Modified FST Test 

MRS Minimal Residue Sequence 

Qg Quotient Gap 

Rg Root Gap 

rhs right hand side 

TBC To Be Confirmed 

TBD To Be Defined 

wrt with respect to 

 

0.4.2 Symbols 

 

For compatibility and simplicity reasons, this document is written in standard 

ASCII text format and can be read with a simple text editor, e.g. notepad. For this 

reason, certain symbols are non-standard 

 

For compatibility and simplicity reasons, this document is written in standard ASCII 

text format and can be read with a simple text editor, e.g. Windows notepad. For this 

reason, certain symbols are non-standard 

 

* denotes multiplication 

^ denotes exponentiation, e.g. X^2 reads X squared. 

! denotes 'not' when immediately followed by '|' or '=', 

 otherwise it denotes factorial as per usual 

n|a denotes 'n divides a', for integers n,a 

n!|a denotes 'n does not divide a', for integers n,a 

n!= a denotes 'n is not equal to a', for integers n,a 

!= denotes 'not congruent to', e.g. X != Y (mod Z) reads X 

 is not congruent to Y (mod Z) 

~=~ denotes approximately equal 

_/ denotes square root, e.g. _/x^2 = x 

n_/ denotes nth root, e.g. 3_/x^3 = x 

_k when appended to an alphabetic letter, e.g. u_k,  

 denotes the k'th element of a sequence or set 
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 e.g. u_k is the k'th Unity Root 

|x| absolute value of x, if x <0, |x| = -x. If x>= 0 |x| = x 

[0,n-1] closed interval of n integer values integers 0 to n- 1 

[0, n) semi-open interval of n integer values integers 0 to n- 1 

(0, n] semi-open interval of n integer values integers 1 to n 

{u_i} set of n Unity Roots, index i, 0 <= i < n - 1 

 

(a,b,c) an ordered triple of integers (a, b, c), 2 < a < b < c 

a Standard Base, lowest member of the triple (a, b, c). 

A generic modulus, one of {a, a^n, b, b^n, c, c^n, P} 

b Dual Base, middle member of the triple (a, b, c) 

(x,y) an ordered pair of integers (x,y), x <y 

Bmax Maximum value of b in an FLT counter-example  

Cmax Maximum value of c in an FLT counter-example 

c  'Skew Base', largest member of the triple (a, b, c) 

f(u)n Unity Root Polynomial Exponent n 

INT Integer truncation. INT(x), for real x, is the largest integer value less than x 

n Exponent 

p quotient, (mod a^n) 

p' Dual quotient, (mod b^n) 

P arbitrary prime base 

q quotient 

q' Dual quotient 

r residue 

u Unity Root 

u(a) Unity Root (mod a^n) 

u(b) Dual Unity Root (mod b^n) 

u_r r'th Unity Root, u_0 = +1, u_1 > 1, 1 <= u_ < A 

U Set of n Unity Roots {u_0, u_1, .. u_(n - 1) } 

U Conjugate Set of n Unity Roots U' = -U 

w Winding number 
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1 Residues and Quotients 
 

In this section we shall start by placing two conditions, termed the Residue and 

Quotient Condition, upon any possible solution triple (a, b, c) to Pythagoras and the 

FLT Equation. We show these two weak conditions are sufficient conditions such 

that, when they are both met, they can be used to generate Pythagorean triples and/or 

FLT counter-examples. A few example Pythagorean Triples confirm this and, indeed, 

by use of the analytic solution to Pythagoras, we can prove all Pythagorean triples 

meet both conditions. We then show that, for arbitrary exponent n, the Residue 

condition can be met for many ‘Candidate Pairs’ (b,c) where b^n = c^n (mod a^n), 

such that (a, b, c) is a solution to a General FLT Equation ‘GFLT’. To meet the 

Quotient Condition we show that the difference between integers b and c, termed the 

‘Root Gap’, of a Candidate Pair (b,c), is constrained to be less than the base if the 

triple (a, b, c) is to have any chance of  being a FLT counter-example. Once again, in 

the Pythagorean case, we can prove this constraint on the Root Gap is satisified by all 

Pythagorean triples. 

 

We also look at what we call the ‘Dual’ case, where the base is b and the modulus 

b^n, and we study Candidate Pairs (a,c) (mod b^n) which have to satisfy similar Dual 

Residue and Quotient Conditions. In combination these Standard and Dual conditions 

place tight constraints on any potential FLT counter-example. 

 

Finally in this section we summarise the various constraints upon any Pythagorean 

Triples and FLT counter-examples solutions that have arisen, so far, in the course of 

the work. 

 

Section (2) proceeds to the study of Residue Sequences, i.e. the residues x^n (mod 

a^n), 0 <= x < a^n and how their symmetry structure, for even exponent, can give rise 

to Pythagorean Triples and the consequent repurcussion for odd exponent. 

 

 

1.1 The FLT and Pythagoras Equations 
 

The work starts by placing constraints on the following Diophantine equation, 

referred to within this paper as the 'FLT Equation'. 

 

1.1.1 a^n + b^n = c^n    (the FLT Equation) 

 

Although (1.1.1) applies to all exponents, n >= 2, the special case when n = 2 is 

termed the 'Pythagoras Equation' 

 

1.1.2 a^2 + b^2 = c^2    (the Pythagoras Equation) 

 

There are no integer solutions (a, b, c) to the FLT Equation (1.1.1) for integer n >2. 

So says Fermat's Last Theorem, finally proved by A Wiles [1]. 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

17 

1.2 The Residue Condition 
 

By taking the residue of (1.1.1) (mod a^n) 

 

1.2.1 a^n (mod a^n) + b^n (mod a^n) = c^n (mod a^n) 

 

and using 

1.2.2 a^n = 0 (mod a^n) 

 

we obtain what is termed herein as the 'Standard Residue Condition' or more simply 

the 'Residue Condition'. 

1.2.3 c^n = b^n (mod a^n)    (the Residue Condition) 

 

This shows that for any pair b and c of a triple (a, b, c) the residue b^n (mod a^n) is 

congruent to the residue c^n (mod a^n). 

 

We term this expression (1.2.3) the Residue Condition since b^n and c^n have 

identical residues (mod a^n). This is a necessary but not sufficient condition upon any 

triple solution (a, b, c). 

 

[Note that there is also a Dual Residue Condition (1.17.1), obtained by taking residues 

of (1.1.1) (mod b^n), and a Skew Residue Condition (2.5.1.18), obtained by taking 

residues of (1.1.1) (mod c^n)]. 

 

1.3 The Quotient Gap 
 

The Residue Condition (1.2.3) implies that b^n and c^n can be written as follows, 

where we term integers p and q 'quotients', 0 <= p < q, and r is the integer residue, 

r >= 0, identical to both. 

 

1.3.1 b^n = p*a^n + r 

 

1.3.2 c^n = q*a^n + r 

 

and we define the 'Quotient Gap' (Qg) as the positive difference of the quotients 

 

1.3.3 Qg = q – p    (the Quotient Gap) 

 

1.4 The Quotient Condition 
 

Substituting for b^n and c^n from (1.3.1) and (1.3.2) into (1.1.1) and cancelling the 

residue r implies that  
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1.4.1 a^n + p*a^n = q*a^n 

 

Dividing throughout by a^n we obtain 

 

1.4.2 q - p = 1 

 

which, comparing with (1.3.3), becomes the 'Quotient Condition' 

 

1.4.3 Qg = 1    (the Quotient Condition) 

 

The Quotient Condition merely states that the Quotient Gap must be 1 for any 

Pythagorean Triple or FLT counter-example. 

 

The Quotient Condition might just seem a restatement of the FLT equation since, by 

re-arrangement of (1.1.1), 

 

1.4.4 c^n - b^n = 1*a^n 

 

Nevertheless, like the Residue Condition, it is not sufficient by itself. A triplet 

satisfying only the Quotient Condition will not necessarily be a solution to (1.1.1). For 

instance, if b and c were of the form b^n = r (mod a^n) and c^n = s (mod a^n), where 

r != s and 0 < r, s < a^n, i.e. b and c do not meet the Residue condition, but are 

defined as follows, 

 

1.4.5 b^n = a^n + r 

 

1.4.6 c^n = 2*a^n + s 

 

then the Quotient Gap is still unity since q = 2, p = 1. However, subtracting (1.4.5) 

from (1.4.6) 

 

1.4.7 c^n - b^n = a^n + (s - r) 

 

and, since s !=  r by definition, the triple (a, b, c) is not a solution to (1.1.1). 

 

 

1.5 Quotient & Residue Sufficiency 
 

In essence, the Residue and Quotient Conditions split the single FLT equation into 

two weaker conditions. The Residue condition is a necessary condition and imposing 

the additional Quotient Condition upon it provides sufficiency. 
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We will see that the Residue Condition can be satisfied for all exponents n >= 2, 

whereas the Wiles Proof [1] confirms that both Residue and Quotient conditions can 

only be simultaneously satisfied when n = 2, i.e. the Pythagorean case. 

 

Sufficiency Assertion 

 

Any integer triple (a, b, c) satisfying both the Quotient and Residue condition is a 

solution to the FLT equation (1.1.1). 

 

Proof 

 

The Residue Condition (1.2.3) implies that b^n and c^n can be written, as given by 

(1.3.1) and (1.3.2) respectively, with quotients p and q and a common, identical 

residue r. 

 

Subtracting (1.3.1) from (1.3.2) to eliminate the residue r we get 

 

1.5.1 c^n - b^n = q*a^n - p*a^n 

 

and rearranging, using (1.3.3) defining Qg, this becomes 

 

1.5.2 c^n = Qg*a^n + b^n 

 

We see from (1.5.2) that if Qg = 1 then we recover the FLT equation (1.1.1). But 

since Qg = 1 is simply the Quotient Condition (1.4.3) then any integer triplet (a, b, c) 

satisfying the Residue Condition (1.2.3) is a Pythagorean triple (n = 2) or FLT 

counter-example (n >2) if it also meets the Quotient Condition. 

 

Since the two conditions are sufficient then, amongst the infinitude of triples (a, b, c) 

that meet the Residue Condition, any that also satisfy the Quotient condition are 

therefore FLT counter-examples. Since there exist solutions to the General FLT 

Equation (1.8) then a proof that the Quotient Condition can never be met for such 

GFLT solutions is equivalent to proof of FLT, i.e. the Quotient Condition becomes a 

restatement of FLT for GFLT. 

 

1.6 Theorem: Pythagoras, Analytic Solution Sufficiency 
 

If a Pythagorean Triple is given by (u^2 - v^2, 2uv, u^2 + v^2), v > 0, integers u and 

v, u > v > 0, GCD(u,v) = 1, then it satisfies both the Residue and Quotient Conditions. 

 

Proof 

 

There are two cases to consider: 1) u^2 - v^2 > 2uv; 2) u^2 - v^2 < 2uv. The equality 

is not considered since it implies u = v which would imply one member of the 

Pythagorean triplet is zero which it is not, by definition. 
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By convention (0.3.3), we take a to be the smallest of the triplet (a, b, c) so that, in 

case 1, a = 2uv and, in case 2, a = u^2 - v^2. 

 

Case 1:    2uv < u^2 - v^2 

 

Let a = 2uv, b = u^2 - v^2, c = u^2 + v^2 then by squaring each term 

 

1.6.1 a^2 = 4u^2*v^2 

 

1.6.2 b^2 = u^4 - 2u^2*v^2 + v^4 

 

1.6.3 c^2 = u^4 + 2u^2*v^2 + v^4 

 

and since 4u^2*v^2 = 0 (mod a^2) by (1.6.1), taking the modulus a^2 of (1.6.2) 

and (1.6.3) gives 

 

1.6.4 b^2 = u^4 + v^4 (mod a^2) 

 

1.6.5 c^2 = u^4 + v^4 (mod a^2) 

 

and hence equating b^2 with c^2 we see that 

 

1.6.6 c^2 = b^2 (mod a^2) 

 

and therefore case 1 satisfies the Residue Condition. 

 

To prove the Quotient Condition, if we subtract (1.6.2) from (1.6.3) 

 

1.6.7 c^2- b^2 = 4u^2*v^2 

 

we see the difference c^2 - b^2 is identical to a^2 as given by (1.6.1). Hence case 1 

satisfies the Quotient Condition. 

 

 

Case 2:    2uv > u^2 - v^2, v > 0, u > v 

 

 

Let a = u^2 - v^2, b = 2uv, c = u^2 + v^2,  

 

 

Rearranging a = u^2 - v^2 for u^2 in terms of a and v^2 
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1.6.8 u^2 = a + v^2 

 

and squaring b 

 

1.6.9 b^2 = 4u^2*v^2 

 

By substituting for u^2 from (1.6.8) into (1.6.9) gives 

 

1.6.10 b^2 = 4a*v^2 + 4v^4 

 

From a = u^2 - v^2 and c = u^2 + v^2 we can write c in terms of a 

 

1.6.11 c = a + 2v^2 

 

and consequently 

 

1.6.12 c^2 = a^2 + 4a*v^2 + 4v^4 

 

Taking the modulus a^2 of c^2 

 

1.6.13 c^2 = (4a*v^2 + 4v^4) (mod a^2) 

 

and hence equating (1.6.10) and (1.6.13) gives 

 

1.6.14 c^2 = b^2 (mod a^2) 

 

and we see that case 2 satisfies the Residue Condition. 

 

To prove the Quotient Condition, if we subtract (1.6.9) from (1.6.12) 

 

1.6.15 c^2 - b^2 = a^2 

 

we see the difference c^2 - b^2 is identical to 1*a^2, i.e. the Quotient Gap is 1 and 

hence case 2 satisfies the Quotient Condition. 

 

1.7 Examples: Pythagorean Triples 
 

Since Pythagorean triples are in abundance it is easy to verify the Residue and 

Quotients conditions with a few examples. 
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1.7.1 The Pythagorean triple (3,4,5) 
 

We see that the Residue Condition is satisfied since 

 

 5^2 = 4^2 (mod 3^2) (25 = 16 mod 9) 

 

And we have the following constructions for 4^2 and 5^2 in terms of 3^2 

 

 4^2 = 1*3^2 + 7  (16 = 1*9 + 7) 

 

 5^2 = 2*3^2 + 7  (25 = 2*9 + 7) 

 

Showing that the quotients p = 1 and q = 2 meet the Quotient Condition. 

 

1.7.2 The Pythagorean triple (8,15,17) 
 

We see that the Residue Condition is satisfied since 

 

 17^2 = 15^2 (mod 8^2) (289 = 225 mod 64) 

 

and we have the following constructions for 15^2 and 17^2 in terms of 8^2 

 

 15^2 = 3*8^2 + 33   (225 = 3*64 + 33) 

 

 17^2 = 4*8^2 + 33   (289 = 4*64 + 33) 

 

showing that the quotients p = 3 and q = 4 meet the Quotient Condition 

 

1.8 The General FLT Equation (GFLT) 

 

For Qg>1 equation (1.6.2), reproduced below, is hereafter referred to as the 'General 

FLT Equation' and abbreviated to GFLT. 

 

1.8.1 c^n = Qg*a^n + b^n    (the General FLT Equation 'GFLT') 

 

We will see that there are an abundance of solutions to GFLT, an infinite number in 

fact, all with Qg > 1. If we have a triple (a, b, c) satisfying GFLT and we make b 

negative, assuming odd n, we can take b^n over to the lhs and add it to c^n giving 

what is known as the 'Generalised Fermat Equation'. 

 

1.8.2 b^n + c^n = Qg*a^n    (the Generalised Fermat Equation) 

 

This form is widely investigated, ref  Mathworld [4], keyword 'Generalized Fermat 

Equation' (note the US spelling of Generalized with a ‘z’). In particular, there are only 

certain integral values Qg can take for a specific exponent. 
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Whilst we have implied the solutions of (1.8.2) have a negative value for b, this is 

merely because of our use of a^n in the modulus. We can obtain positive solutions by 

using a 'Skew' base c and taking residues of the FLT Equation (1.1.1) mod c^n. More 

details about this method and the Generalised Fermat Equation are provided in section 

(2.5.5). However, for now, we will mainly be concerned with GFLT (1.8.1). 

 

The Quotient Gap Qg can legitimately be a perfect power of n, i.e. for some integer l, 

l > 1. 

 

1.8.3 Qg = l^n 

 

In which case, equation (1.8.1) becomes 

 

1.8.4 c^n = (la)^n + b^n 

 

Which shows that (a, b, c) is a triplet solution to GFLT and that (la,b,c) is actually 

also an FLT counter-example, n > 2. For n = 2 there do, of course, exist Pythagorean 

triples (a',b,c) where a' is composite, a' = la. 

 

1.8.5 Pythagorean Example (8,15,17) 

 

As a simple example, the Pythagorean triple (8,15,17) 

 

1.8.5.1 8^2 + 15^2 = 17^2 

 

This triple has a composite value of 8 for the base and equation (1.8.5.1) could be 

alternatively be written in GFLT form. 

 

1.8.5.2  (2^2)*4^2 + 15^2 = 17^2 

 

In this form the triple (4,15,17) will meet the Residue condition (mod 4^2) (a = 4 

here) and will have a Quotient Gap of 2^2. This can be seen from the following 

construction of 15^2 and 17^2 in terms of the modulus 4^2 

 

1.8.5.3 15^2 = 14*4^2 + 1 

 

1.8.5.4 17^2 = 18*4^2 + 1 

 

We see that the Residue Condition is met since 15^2 = 17^2 = 1 (mod 4^2) and that 

the quotients q and p are 18 and 14 respectively, hence Qg = 18 - 14 = 4 = 2^2 as in 

(1.8.5.2). 
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Alternatively, the composite b = 15 could be factored as follows 

 

1.8.5.5 8^2 + (3^3)*(5^2) = 17^2 

 

It can be viewed as a triple (8,5,15) (mod 5^2) that has Qg = 3^2 or, alternatively, as a 

triple (8,3,17) (mod 3^2) that has Qg = 5^2. 

 

These example triples (4,15,17), (8,5,17) and (8,3,17) were actually reverse-

engineered from a known Pythagorean triple (8,15,17) where a and/or b was 

composite. In fact any triple (a, b, c) where the values a or b are composite can be re-

written in a GFLT form since we can just factor out the 'l', equation (1.8.4), from a or 

b. Furthermore, for any Pythagorean triple, since either a or b is always even but not 

both, one of them will always have a factor of 2 and therefore a Pythagorean triple of 

the form (a, 2x, c), here b = 2x, can always be written as a triple (a,x,c) such that 

 

1.8.5.6 a^2 + (2^2)*x^2 = c^2 

 

where the Quotient Gap is 2^2. Of course, this could also be viewed as a triple (a,2,c) 

with a Qg = x^2. 

 

In fact, since the middle value b of a Pythagorean triple is always composite, section 

(1.15), there are at least two GFLT triples for every Pythagorean triple since there are 

always two or more factors in a composite. 

 

1.8.6 GFLT Solutions 

 

For arbitrary n, the GFLT equation (1.8.1) does have an infinite set of solutions. Since 

any residue x^n (mod a^n) repeats at (a^n + x)^n (mod a^n) i.e. 

 

1.8.6.1 (a^n + x)^n = x^n (mod a^n) 

 

Although stated without proof, by expanding the lhs of (1.8.6.1) binomially, and 

taking residues (mod a^n), all terms are congruent to zero except the last term x^n]. 

By associating b with x and c with a^n + x in (1.8.6.1) then (a, b, c) is a triple 

satisfying the Residue condition since 

1.8.6.2 c^n = b^n (mod a^n) 

 

As both x and a are arbitrary integers the set of triplet solutions to the GFLT equation 

is infinite. 

 

Any triple given by 

 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

25 

1.8.6.3 (a, x, a^n + x) 

 

will satisfy GFLT. 

 

The triples given by (1.8.6.3) are not the only solutions. There is a more select group 

which might offer hope, false we might add, of finding an FLT counter-example. See, 

for example, section (1.8.9). 

 

Since there are so many GFLT solutions for every exponent it raises the immediate 

question as to why none of the solutions meets the Quotient Condition except when 

n = 2? Whilst it is not difficult to see that Qg >> 1 for a triple given by (1.8.6.3), it is 

not obvious that Qg is not a perfect power as per (1.8.3). In fact, as we shall see in the 

Pythagorean case, none of the solutions originate via the Repeat Residue mechanism 

given by (1.8.6.1). This mechanism merely makes for an easy example but is not 

seriously considered further except in the next example. 

 

1.8.7 Cubic Exponent Example 1 

 

Firstly, a relatively trivial example illustrating (1.8.6.1) and GFLT 

 

The triple (5, 7, 132) has been constructed in accordance with (1.8.6.1) where n = 3, 

the base a = 5 and x = 7, hence a^n + x = 132. 

 

Expanding 7^3 and 132^3 in terms of 5^3 

 

1.8.7.1 7^3 = 2*5^3 + 93 

 

1.8.7.2 132^3 = 18399*5^3 + 93 

 

and hence 7^3 and 132^3 meet the Residue Condition (mod 5^3) since 

 

1.8.7.3 7^3 = 132^3 = 93 (mod 5^3) 

 

Subtracting (1.8.7.1) from (1.8.7.2) we get 

 

1.8.7.4 132^3 - 7^3 = 18397*5^3 

 

and re-arranging gives a GFLT form with a Quotient Gap of 18397 as follows 

 

1.8.7.5 132^3 = 18397*5^3 + 7^3 
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1.8.8 Cubic Exponent Example 2 

 

This next example, the triple (3, 4, 13), n = 3, illustrates a Repeat Residue mechanism 

not given by (1.8.6.1). A summary of mechanisms by which residues repeat is given 

in section (2.2). However, in this example, it should be noted that the exponent n = 3 

divides the base a = 3 and, as a consequence, the Residue Sequence is 'Minimal', see 

(2.1.2.2). Basically, this means the residues repeat at a shorter interval than a^n 

(1.8.6.1). In fact they repeat at a^n / n. In this case, a^n = 3^3 = 27 and hence 

a^n / n = 9. This is why the third value of the triple c = 13 has been constructed from 

c = b + a^n / n = 4 + 9 = 13. 

 

Expanding 4^3 and 13^3 in terms of 3^3 

 

1.8.8.1 4^3 = 2*3^3 + 10 

 

1.8.8.2 13^3 = 81*3^3 + 10 

 

and hence 4 and 13 meet the Residue Condition (mod 3^3) since 

 

1.8.8.3 4^3 = 13^3 = 10 (mod 3^3) 

 

Subtracting (1.8.8.1) from (1.8.8.2) 

 

1.8.8.4 13^3 - 4^3 = 79*3^3 

 

and re-arranging we get a GFLT form with a Quotient Gap of 79 as follows 

 

1.8.8.5 13^3 = 79*3^3 + 4^3 

 

1.8.9 Cubic Exponent Example 3 

 

Lastly, a triple (7, 17, 20), n = 3, whereby the Repeat Residue mechanism is of the 

'2ln+1' form, see section(2.2.5). Basically, the base value a = 7 can be written as twice 

a multiple of the exponent n = 3, plus 1, in this case 7 = 2*3 + 1. This mechanism is 

of major importance in the further study of the FLT equation within this paper, 

essentially it is the only mechanism whereby FLT counter-examples could be (but 

aren't) possible. All other mechanisms, examples 1 and 2 for instance, being rejected. 

A summary of all mechanisms by which a residue can repeat is given in section (2.2). 

 

Expanding 17^3 and 20^3 in terms of 7^3 
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1.8.9.1 17^3 = 14*7^3 + 111 

 

1.8.9.2 20^3 = 23*7^3 + 111 

 

and hence 17 and 20 meet the Residue Condition (mod 7^3) since 

 

1.8.9.3 17^3 = 20^3 = 111 (mod 7^3) 

 

Subtracting (1.8.9.1) from (1.8.9.2) 

 

1.8.9.4 20^3 - 17^3 = 9*7^3 

 

and re-arranging gives a GFLT form with a Quotient Gap of 9 as follows 

 

1.8.9.5 20^3 = 9*7^3 + 17^3 

 

1.9 Definitions: Candidate Pair and Repeat Residues 

 

1.9.1 Definition: Candidate Pair 

 

If b and c meet the Residue condition (1.2.3) then the pair of values is termed a 

'Standard Candidate Pair' and denoted by (b,c). The prefix 'Standard' is usually 

removed when the modulus a^n is implied. 

 

1.9.2 Definition: Repeat Residues 

 

Two integers x and y are termed 'Repeat Residues' if, when raised to an integer 

exponent n and taking residues (mod z^k), integer z, integer exponent k, 0<k<=n, then 

x^n and y^n are congruent mod z^k, i.e. if 

1.9.2.1 x^n = y^n (mod z^k)    (integer k, 0<k<=n) 

 

then x and y are 'Repeat Residues' mod z^n. 

 

Specifically, in this paper, we are only interested in two particular cases where the 

exponent k = 1 or k = n, i.e. the modulus is z or z^n, then we have either 

 

1.9.2.2 x^n = y^n (mod z^n)    ( x and y are termed Repeat Residues mod z^n) 

 

or 
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1.9.2.3 x^n = y^n (mod z)    ( x and y are termed Repeat Residues mod z) 

 

By definition, the values b and c of a Standard Candidate Pair (b,c) are Repeat 

Residues because b^n = c^n (mod a^n) by the definition (1.9.1) of a Candidate pair. 

Similarly, in the Dual case, the values a and c of a Dual Candidate Pair (a,c) are 

Repeat Residues since a^n = c^n (mod b^n), see further, (1.17). 

 

In section (2.5.7) we shall see that residues (mod z), where z is either a, b or c of a 

triple (a, b, c) and the exponent n = 1, play an important part in the development of 

constraints upon possible FLT counter-examples. 

 

1.10 Definition: Standard Root Gap 

 

The Standard Root Gap, denoted by 'Rg' and more commonly referred to simply as 

the Root Gap, is defined as the numeric, positive difference between the values b and 

c of a Candidate Pair (b,c), where it is assumed c > b by convention (0.3.3.3), 

 

1.10.1 Rg = c - b 

 

In GFLT triplet, (1.8.6.3) above, the Root Gap is a^n. However, we will see, by 

Theorem (1.12), it must be much smaller than this for (a, b, c) to be an FLT counter-

example. It is called a 'Root' Gap because b and c are effectively the roots of an 

equation 

 

1.10.2 x^n - r = 0 (mod a^n) 

 

and they share, by the definition of a Candidate Pair (b,c), an identical residue 'r', i.e. 

 

1.10.3 b^n = r (mod a^n) 

 

and 

 

1.10.4 c^n = r (mod a^n) 

 

For example, in the Pythagorean case, equation (1.10.2) is the Quadratic Diophantine 

equation 

 

1.10.5 x^2 - r = 0 (mod a^2) 
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This equation can have no roots, 2 roots or a multiple of 2 roots in the interval 

[0, a^2). There only exist roots when r is a quadratic residue of a, i.e. if r is not a 

quadratic residue of a then there are no roots. 

  

However, excepting Pythagoras, we are chiefly concerned within this paper with odd 

prime exponent, n >= 3 and, as regards roots to (1.10.2), there are either no roots or n 

roots for prime base, Lagrange's Theorem, see (2.2.5.3). 

 

1.11 Definition: Consecutive Identical Residues 

 

If a Candidate Pair (b,c) has a Root Gap of unity such that, by (1.10.1) Rg = 1, and 

therefore 

 

1.11.1 c - b = 1 

 

then the pair of values b and c are termed 'Consecutive Identical Residues', sometimes 

abbreviated to CIR. By the definition of a Candidate Pair the residues will be equal, 

hence 'identical' and, by (1.11.1), the value c is the next 'consecutive' integer after b. 

 

Consecutive Identical Residues are an important concept when the base is prime, 

section (1.14). 

 

1.12 Theorem: Root Gap Constraint 

 

If the Root Gap for a Candidate Pair (b,c) (mod a^n) is greater than or equal to the 

base a then the Quotient Gap is greater than unity for all n > 1, i.e. 

 

If 

Rg >= a 

then 

 Qg > 1 

 

Alternatively stated, if we are to meet the Quotient Condition (1.4.3), then the Root 

Gap must be less than a. 

 

If 

 Qg = 1 

then 

 Rg < a 

 

This is a necessary condition, not a sufficient condition. In general, we shall see that 

the Root Gap has to be a lot less than the base for a unity Quotient Gap. 

 

Proof 

 

By hypothesis, the Root Gap is greater than the base, i.e. 
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1.12.1 c - b >= a 

 

Rearranging and raising to the n'th power we get 

 

1.12.2 c^n >= (a + b)^n 

 

Expanding the rhs by the binomial theorem, where nCr denotes the binomial 

coefficient n! / (n -r)! r!, 

 

1.12.3 c^n >= a^n + nC1*a^(n - 1)*b 

 . 

 . 

           + nCr*a^(n - r)*b^r 

 . 

 . 

    + nC(n - 1)*a*b^(n - 1) 

    + b^n 

 

Now, since a < b by choice, substituting for a in place of b for all terms of order b^(n -

 1) or less, this implies 

 

1.12.4 c^n > a^n + nC1*a^(n - 1)*a 

 . 

 . 

           + nCr*a^(n - r)*a^r 

 . 

 . 

    + nC(n - 1)*a*a^(n - 1) 

    + b^n 

 

 

This inequality is now homogeneous in a^n and, using nC0 = 1, this simplifies to 

 

1.12.5 c^n > (nC0 + nC1 + .. nCr + .. nC(n - 1) )*a^n + b^n 

 

Since the binomial coefficients nC0 to nCn sum to 2^n, then the bracketed sum above, 

which omits the last term nCn (= 1), sums to 2^n - 1 giving: 

 

1.12.6 c^n > b^n + (2^n - 1)*a^n 

 

Comparing (1.12.6) with (1.8.1) the Quotient Gap is seen to be given by 
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1.12.7 Qg = 2^n - 1 

 

We see that if n >1 then 

 

1.12.8 Qg > 1 

 

Thus, for all n >1, if the Root Gap is greater than a, i.e. if c - b > = a then the Quotient 

Gap is greater than unity. 

 

1.12.9 Remarks 

 

Theorem (1.12) says that for any Candidate Pair (b,c) (mod a^n), to meet the Quotient 

Condition (1.4.3), the gap between b and c must be less than the base a. Alternatively 

expressed, any two integers b and c, where c > b > 3, with identical residues such that 

c^n = b^n (mod a^n), for n >= 2, can only be a valid Pythagorean triple or FLT 

counter-example if c - b < a. 

 

Although we have given the proof in the Standard case where the base is a and the 

Candidate Pair is subsequently (b,c), the Theorem is equally valid in the Dual case 

with base b and Candidate Pair (a,c). This is because, in the Standard case, if c - b < a 

then it simply re-arranges to c - a < b and, in the Dual case, the Candidate Pair is (a,c) 

and the Base is b. 

 

Note that Theorem (1.12) does not state that if the Root Gap is less than the base then 

the Quotient Gap will always be unity. It only says that the Quotient Gap will never 

be Unity if the Root Gap is greater than the base. 

 

To emphasize Theorem (1.12) further. 

 

 There are no Pythagorean Triples (a, b, c), 2 < a < b < c such that c - b >= a 

 

 There are no FLT counter-examples (a, b, c), 2< a  < b < c such that c - b >= a 

 

Of course, there are no FLT counter-examples, Wiles [1]. Nevertheless, it is worth 

exploring how Pythagoras succeeds where others fail in the hope that it may offer 

some insights into FLT. 

 

1.13 Pythagoras Root Gap < base 

 

One can verify all Pythagorean triples (a, b, c) have a Root Gap less than the base by 

using the standard analytic solution. 

 

Firstly, defining a, b and c as follows using the standard analytic solution for a 

Pythagorean triple 
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1.13.1 a = 2uv 

 

1.13.2 b = u^2 - v^2 

 

1.13.3 c = u^2 + v^2 

 

Since 

 

1.13.4 b > 0 

 

this implies, using (1.13.2), that 

 

1.13.5 u^2 - v^2 > 0 

 

and since, by convention, a is positive then we have 

 

1.13.6 |u| > |v| 

 

Subtracting b from c using (1.13.2) for b and (1.13.3) for c we get 

 

1.13.7     c - b = 2v^2 

 

and, using inequality (1.13.6), this implies 

 

1.13.8 c - b < 2uv 

 

Substituting for a from (1.13.1) implies 

 

1.13.9     c - b < a 

 

Hence, if a is defined as the even valued member of the triple (a, b, c) as defined by 

(1.13.1), then the Root Gap of a Pythagorean triple is always less than the base 

modulus a. 

 

To prove the case when a and b are swapped, such that b is now the even member of 

the triple and a is the odd member 

 

rearranging (1.13.9) gives 
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1.13.10    c - a < b 

 

If we swap a (1.13.1) with b (1.13.2) such that we now have 

 

1.13.11    b = 2uv 

 

1.13.12    a = u^2 - v^2 

 

then since we have just proven (1.13.9) when using (1.13.1) for a and (1.13.2) for b, 

then with the definition of a and b now swapped, i.e. b now defined by (1.13.11) and a 

now defined by (1.13.12), then (1.13.10) is also proven. Hence the Root Gap (c - b) is 

always less than the modulus a for a Pythagorean Triple. 

 

1.14 Theorem: Prime Base a, Root Gap = 1 

 

If the base a is prime then the Root Gap for a Candidate Pair (b,c) is unity for any 

FLT counter-example or Pythagorean triple. 

 

Proof 

 

Starting with the FLT equation (1.1.1) and re-arranging for a in terms of c and b we 

get 

 

1.14.1 a^n = c^n - b^n 

 

Expanding c^n - b^n binomially and assuming n >= 2 then 

 

1.14.2 a^n = (c- b)( c^(n - 1) + ... + b^(n - 1) ) 

 

By (1.10.1) this can be expressed in terms of the Root Gap, Rg 

 

1.14.3 a^n = Rg*( c^(n - 1) + ... + b^(n - 1) ) 

 

The right hand side of (1.14.3) factors in two terms and, since the base is prime, each 

of these terms must be some power of a with no other factor involved. This implies 

Rg must be of the from a^k for some integer k, k >= 0. 

 

1.14.4 Rg = a^k 

 

But, by Theorem (1.12), if the Root Gap is greater than or equal to the base, then the 

Quotient Gap is greater than unity, i.e. if Rg >= a then Qg > 1. Conversely, if the 
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Quotient Gap is unity, the Root Gap must be less than a, i.e. if Qg = 1, then Rg < a. 

However, by (1.14.4), the only value for Rg less than a is unity since a is prime. 

Hence, if a is prime and the Quotient Gap is unity, then the Root Gap must also be 

unity and k = 0 in (1.14.4). 

 

The consequence of this proof is that the two values b and c must be 'Consecutive 

Identical Residues', section (1.11). That is, if a is prime and Rg = 1 then, by (1.10.1), 

c = b + 1. 

 

Note that Qg cannot be zero since 0 < a < b < c and (b,c) are a Candidate Pair (mod 

a^n). Hence b and c have identical residues and cannot therefore have identical 

quotients q, p such that Qg = q - p = 0 unless b = c which is false since b < c by 

convention. 

 

Alternative Proof 

 

This proof can also be presented without recourse to Theorem (1.12). Let us suppose 

the Root Gap is not unity. The next smallest value it can be is a when k = 1 in 

(1.14.4). 

 

If we let k = 1, then 

 

1.14.5 Rg = a 

 

and therefore, by the definition of the Root Gap (1.10.1), 

 

1.14.6 c = a + b 

 

and substituting for Rg and c into the rhs of (1.14.3) we get, for some integer 

coefficients k1, k2, .. kr > 0, 

 

1.14.7 a^n = a*( a^(n - 1) +  

   k1*a^(n - 2)*b^2 + 

   k2*a^(n - 3)*b^3 + 

   ... + 

   kr*a^(n - r - 1)*b^r + 

   ... + 

   + n*b^(n - 1) ) 

 

Upon multiplying through the rhs bracket by a, the first term is a^n which cancels 

with the lhs a^n leaving 

 

1.14.8   0 = a * ( k1*a^(n - 2)*b^2 + 

   k2*a^(n - 3)*b^3 + 

   ... + 

   kr*a^(n - r - 1)*b^r + 
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   ... + 

   + n*b^(n - 1) ) 

 

This equation can only have a solution if a = 0 or the outer bracket is zero. However, 

since a > 0,and all terms inside the bracket are greater than zero, this equation cannot 

be satisified. Therefore our original assumption that Rg = a is false and we are left 

with the conclusion that either Rg = 1 or Rg > a. However, if we let Rg = a^k, k >1, 

we will arrive at the same contradiction as for (1.14.8) and so the only solution left is 

k = 0, i.e. Rg = 1. Therefore we conclude that if the base a is prime then the Root Gap 

is unity. 

 

Both proofs were given using the expansion in (1.14.2) which assumed n >= 2. Hence 

the Theorem is valid for both Pythagoras and FLT. However, there is a simpler Proof 

for the Pythagorean case, given here for completeness. 

 

Starting with the expansion of (1.14.2) for n = 2 we have 

1.14.9 a^2 = (c + b)(c - b) 

 

and we see that a^2 factors simply into (c+b) and (c- b) 

 

If a is prime then, since a^2 has two factors (c + b) and (c - b), one of them must be 

unity since they cannot both be the same as (c + b) > (c - b) for all c > b > 0 which is 

true by assumption. The unity factor must therefore be the smallest factor of the two, 

namely (c - b) i.e. 

 

1.14.10    c - b = 1 

 

But the lhs of (1.14.10) is the Root Gap (1.10.1) hence, if a is prime, any triple 

(a, b, c) that satisfies the Pythagoras equation has a Root Gap of unity. 

 

Remark 

 

Unfortunately we cannot restrict our studies in this paper to prime base only, we must 

also consider composites. This is because, if we restricted the study to prime base 

only, we would need to observe not just unity Quotient Gaps but also those where the 

Quotient Gap is a perfect power. Conversely, by considering only composite a, we 

can limit ourselves to searching for unity Quotient Gaps only. This is because if there 

is a perfect power, Quotient Gap = l^n, (mod a^n), i.e. 

1.14.11    c^n - b^n = l^n*a^n 

 

then defining 

 

1.14.12    a' = la 

 

equation (1.14.11) can be re-written in unity Quotient Gap form, (mod a'^n). 
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1.14.13    c^n - b^n = a'^n 

 

This shows there is a composite a' = la, such that (a', b, c) is an FLT counter-example. 

That is, any triple (a, b, c), where (b,c) is a Candidate Pair (mod a^n), and such that 

the Quotient Gap is a perfect square, l^n, has a 'normalised' form (la, b, c) such that 

the Candidate Pair (b,c) mod (la)^n has a unity Quotient Gap. 

 

1.15 Theorem: Composite Middle Value 

 

The middle value b of an FLT counter-example is always composite. 

 

Theorem (1.12) proves that if the Quotient Gap for a Candidate Pair (b,c) (mod a^n) is 

unity, i.e. (a, b, c) is an FLT counter-example, then the Root Gap  must be less than 

the base, i.e. if Qg = 1 then Rg < a. Theorem (1.18) then goes further to prove that if 

the base is prime then the Root Gap is always unity. By alternatively studying the 

Dual problem, i.e. the Candidate Pair (a,c) (mod b^n), we can prove that the base b is 

always composite. 

 

The Dual Root Gap, Rg', for a Candidate Pair (a,c) (mod b^n), is defined as 

 

1.15.1 Rg' = c - a 

 

We can re-arrange the inequality of Theorem (1.12) on the Root Gap to give a Dual 

equivalent, Rg' where 

 

1.15.2 Rg' = c - a < b 

 

By rearranging the FLT equation (1.1.1) for b in terms of a and c 

 

1.15.3 b^n = c^n - a^n 

 

and expanding the rhs binomially, assuming n >= 2, then 

 

1.15.4 b^n = (c - a)(c^(n - 1) + ... a^(n - 1)) 

 

we can get a 'Dual' equivalent expression of (1.14.3) linking Rg' and b 

 

1.15.5 b^n = Rg' * (c^(n - 1) + ... a^(n - 1)) 

 

If we assume b is prime then we can conclude that Rg' is unity by the same argument 

as in Theorem (1.14). However since a < b < c and they are all integers, this implies 

c - a > = 2. i.e. Rg' >= 2  which contradicts the assumption that Rg' is unity if b is 

prime. So, we conclude that b cannot be prime and must therefore be composite. 
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Since the binomial expansion (1.15.4) is valid for n >= 2, this Theorem is valid for 

both the Pythaogorean and FLT cases. 

 

1.16 Residue Tables 

 

Fortunately much, if not all, of the findings in this paper can be verified 

experimentally (but not proven) with a computer. The key aid in the study of Repeat 

Residues is the generation of 'Residue Tables'. These allow a relatively quick visual 

inspection of finding Repeat Residues for a specific base and exponent. 

 

A Residue Table is a 5-column table of residues r where x^n = r (mod a^n) for x = 0 

to x = (a^n) - 1. Note that the quotient p is also tabulated.  

 

A Residue Table can be interpreted as either Standard or Dual. Both tables have the 

same structure and are identical except for the modulus and, as a consequence, the 

number of entries. A Standard Table has a modulus a^n, the Dual Table has modulus 

b^n. However, whether a Residue table is Standard or Dual is actually just a matter of  

interpretation. For example, if one generates a table of residues (mod 3^2) and 

identifies elements b = 4, c = 5 as having identical residues (mod 3^2) (as they do) 

then, since the base a = 3 is less than the middle value of the triple b = 4, this table 

could be interpreted as a Standard Residue table with respect to the Pythagorean triple 

(3,4,5). Alternatively, if one was examining a Residue Table (mod 4^2) and identifies 

that elements b = 3, c = 5 as having identical residues (mod 4^2), then since the base 

b = 4 is the middle value of the triple (3,4,5), the table can be regarded as a Dual table 

with respect to the Pythagorean triple (3,4,5). 

 

1.16.1 Standard and Dual Residue Tables 

 

The columns in a Standard (and Dual) Residue Table are as follows: 

 

Column 1: x  (0 <= x < a^n) 

Column 2: x^n 

Column 3: residue r r = x^n (mod a^n) 

Column 4: residue r r = x^n (mod a) 

Column 5: quotient q x^n = p*a^n + r 

 

Strictly speaking, we have used the residue r and quotient p as used for a base a. In the 

dual case, we should write residue r’ and quotient p’ for the dual equivalent residue 

table for base b. However, this is not done and please keep in mind that all residues r, 

r’ and quotients p, p’ (and often a and a’) are all essentially one and the same 

meaning, just different context. 

 

An example Residue Table is shown below for the case a = 5, n = 2 

 
 

      Residue Table a = 5, n = 2 

   x        x^n    residue  residue quotient 
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                 (mod a^n)    mod a         

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          4        4        0  

   3          9          9        4        0  

   4         16         16        1        0  

   5         25          0        0        1  

   6         36         11        1        1  

   7         49         24        4        1  

   8         64         14        4        2  

   9         81          6        1        3  

  10        100          0        0        4  

  11        121         21        1        4  

  12        144         19        4        5  

  13        169         19        4        6  

  14        196         21        1        7  

  15        225          0        0        9  

  16        256          6        1       10  

  17        289         14        4       11  

  18        324         24        4       12  

  19        361         11        1       14  

  20        400          0        0       16  

  21        441         16        1       17  

  22        484          9        4       19  

  23        529          4        4       21  

  24        576          1        1       23  

  25        625          0        0       25  

 

Notes 

 

The residue (mod a), column 4, is also shown in addition to the residue (mod a^n), 

column 3, since it is useful in the study of residues (mod a^n). For  

example, if there are two values x and y such that they are congruent (mod a^n), i.e. 

y^n = x^n (mod a^n), then they are also congruent (mod a), i.e. y^n = x^n (mod a). 

For large a, the identification of x,y with identical residues (Repeat Residues) (mod 

a^n) can be visually identified quicker by first checking those with identical residues 

(mod a). If x and y are such that they do not share an identical residue (mod a), then 

they will not have an identical residue (mod a^n). For small a, very approximately 

a = 100, this is not particularly necessary but it can be useful when a is very large. 

 

As a specific example of Repeat Residues, one can see in the table above that x = 12, 

when squared, has the same residue (19) as for x = 13 when squared, i.e. 

12^2 = 19 (mod 5^2) and 13^2 = 19 (mod 5^2). The pair (12,13) thus form a  

Candidate Pair. Inspection of the quotients reveals that for x = 12, p = 5 

(12^2 = 5*5^2 + 19) and for y= 13, q = 6 (13^2 = 6*25 + 19) and thus q - p = 1 and 

therefore meets the Quotient Condition. Since the Candidate Pair (12,13) meets both 

the Residue and Quotient Conditions we can conclude from the Sufficiency Theorem 

(1.5) that (5,12,13) is a Pythagorean triple. From this we can see that by studying 

Residue tables, (mod a^n), we can identify Pythagorean Triples of the form (a, b, c) 

where (b,c) is a Candidate Pair which meets the Residue Condition, by definition, and 

simultaneously satisfies the Quotient Condition. 

 

The x = 25 (5^2) residue is shown primarily for completeness: 25 = 5^2 = 0 (mod 

5^2), and confirms that, for reasons of computational checking, the x = 25 entry is 
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identical to that for x = 0. Of course, for any integer i, (a^n + i)^n = i^n (mod a^n) so 

that the entire set of residues for 0 <= x < a^n repeat, in the same sequence, for 

a^n <= x <2a^n, 2a^n <= x < 3a^n etc. which is why we need only tabulate the first 

a^n entries, 0 <= x < a^n. 

 

1.17 Dual Residue Condition 

 

So far, most of the focus has been on residues (mod a^n) where a is the smallest of an 

integer triple (a, b, c). However, the FLT equation (1.1.1) is interchangeable in a or b. 

Whilst keeping with the convention, a < b < c, we can effectively double up the 

Quotient and Residue Conditions, (1.2.3) and (1.4.3) respectively and obtain Dual 

equivalents. 

 

The Dual equivalent of the Residue Condition (1.2.3) is 

 

1.17.1 c^n = a^n (mod b^n)    (the 'Dual Residue Condition') 

 

This shows that for any pair (a,c) of a triple (a, b, c), the residue a^n (mod b^n) is 

equal to the residue c^n (mod b^n). 

 

The reciprocal nature of the Residue Conditions (1.2.3) and (1.17.1) are quite 

restrictive. Individually they are easily satisfied for either base a or b and all 

exponents and lead to a GFLT equation, section (1.8). Taken together, they are much 

more restrictive but, nevertheless, give rise to a more general Diophantine equation 

which we have tentatively named the Modified FLT equation ‘MFLT’ 

 

1.17.2 c^n = a^n + b^n + k*a^n*b^n 

 

This does have solutions and is briefly discussed in section (Error! Reference source 

not found.), albeit it is the subject of a separate paper ref. [5]. 

 

1.17.3 Duality of Candidate Pairs (b,c) and (a,c) 

 

If (a, b, c) is an FLT counter-example then both (b,c) (mod a^n) and (a,c) (mod b^n) 

are Candidate Pairs. 

 

This statement is really just a formalisation of the Standard Residue Condition (1.2.3) 

and the Dual Residue Condition (1.17.1). 

 

If (a, b, c) is an FLT counter-example then, by taking residues (mod a^n) of the FLT  

equation (1.1.1), we obtain the Residue Condition (1.2.3). Since this shows that b^n is 

congruent to c^n (mod a^n) they therefore have equal residues and, by definition, 

(b,c) (mod a^n) is thus termed a Candidate Pair. However, equally, we can take 

residues, (mod b^n), of the FLT equation (1.1.1) and obtain (1.17.1). Since this shows 

that a^n is congruent to c^n (mod b^n), they therefore have equal residues and, by 
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definition, (a,c) (mod b^n) is termed a Dual Candidate Pair. Hence both (b,c) (mod 

a^n) and (a,c) (mod b^n) are Candidate Pairs; the Candidate Pair (a,c) (mod b^n) is 

the Dual equivalent of (b,c) (mod a^n). 

 

1.18 Dual Quotient Condition 

 

By analogy with (1.3.1) and (1.3.2) the Dual Residue Condition implies that a^n and 

c^n can be written as follows (the primed values denote Dual): 

 

1.18.1 a^n = p'*b^n + r' 

 

1.18.2 c^n = q'*b^n + r' 

 

where p' and q' are 'quotients' and 'r' is the residue identical to both. 

 

However, before continuing to derive the Dual Quotient Condition, since a < b by 

convention, we see that p' in (1.18.1) is zero when we keep with the convention that r’ 

is zero or positive. Note that a zero residue is of no interest since it implies a and b, or 

b and c, contain a common factor, i.e. they are not co-prime. 

 

Thus, with p' defined as zero, 

 

1.18.3 p'= 0 

 

then (1.18.1) shows that 

 

1.18.4 r' = a^n 

 

and therefore and (1.18.2) can be re-written 

 

1.18.5 c^n = q'*b^n + a^n 

 

Substituting for c^n from (1.18.5) into the FLT equation (1.1.1) and cancelling the 

residue r' ( = a^n) we get 

 

1.18.6 b^n = q'*b^n 

 

and dividing throughout by b^n we obtain a Dual Quotient Condition 
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1.18.7 q' = 1    (the Dual Quotient Condition) 

 

Whereas in the Standard Quotient Condition we have two quotients p, q each greater 

than unity, but with the condition q - p = 1, for this Dual Quotient Condition we must 

have p' identically zero and q’ identically unity. So, if we study a Dual Table, we need 

only look for values c where the quotient q' is unity. At the point x = b then q' = 1 

since x^n = 1*b^n and at the point x = 2b then q' = 2^n since x^n = 2^n*b. Therefore 

somewhere in between x = b and x = 2b the quotient q' becomes greater than unity 

and we can end our search for a value x = c, such that c^n = a^n (mod b^n). 

 

1.19 Bmax 

 

The Quotient Condition places an upper limit on the value of b in a Candidate Pair 

(b,c) (mod a^n). 

 

1.19.1 Theorem 

 

Given a Candidate Pair (b,c) (mod a^n) there exists a value Bmax, in general non-

integral and an element of the Reals such that, for b >= Bmax, the Quotient Condition 

can never be met. 

 

This is equivalent to the following statement upon any FLT counter example: 

 

If (a, b, c) is an FLT counter-example, odd exponent n >= 3, 1 < a < b < c, then the 

middle value b is always less than a value Bmax where Bmax is defined via the 

relation: 

 

 n*Bmax^(n - 1) = 2*a^n 

 

Proof 

 

For a given value of b, Candidate Pair (b,c), to minimise the Quotient Gap, we need to 

minimise the Root Gap. This is almost self-evident since, for any given triple (a, b, c), 

if Rg = k such that c - b = k by (1.10.1), then c^n - b^n = (b + k)^n - b^n = Qg*a^n, 

by (1.8.1), and therefore Qg is minimised if k = 1. The value of k cannot be zero since 

this would imply b = c which is not a valid Candidate Pair (it would mean a = 0).  

 

Thus, if the minimum Root Gap is unity then, by (1.10.1), the values b and c are 

consecutive 

 

1.19.1.1 c = b + 1 

 

In which case b and c are termed 'Consecutive Identical Residues', (1.11). The 

Candidate Pair is thus (b, b + 1) and, by (1.8.1), the Quotient Gap is given by 
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1.19.1.2 Qg*a^n = (b + 1)^n - b^n 

 

Since we wish to disregard all Candidate Pairs for which the Quotient Gap is greater 

than unity, we wish to find a maximum value b, denoted by Bmax, such that for all 

b > Bmax the Quotient Gap satisifies the following condition 

 

1.19.1.3 Qg >= 2 

 

A binomial expansion of the rhs of (1.19.1.2), gives us the following inequality such 

that for all n >= 2, 

 

1.19.1.4 (b + 1)^n - b^n > n*b^(n - 1) 

 

If we choose a value b = Bmax whereby Bmax is defined via the relation 

 

1.19.1.5 n*Bmax^(n - 1) = 2*a^n 

 

where the lhs of (1.19.1.5) purposefully matches the rhs of (1.19.1.4) when b = Bmax, 

then inequality (1.19.1.4) implies 

 

1.19.1.6 (Bmax + 1)^n - Bmax^n > n*Bmax^(n - 1) = 2*a^n 

 

and this implies the Quotient Gap at b = Bmax, by (1.19.1.2), satisifies the inequality 

 

1.19.1.7 Qg*a^n > n*Bmax^(n - 1) = 2*a^n 

 

i.e. if b = Bmax, then Qg > 2 since the a^n factor cancels in (1.19.1.7). 

 

The Bmax value in (1.19.1.5) is generally non-integral and real-valued. For example, 

if a = 7, n = 3, then Bmax is 15.12 to 2dp. We can actually round this down to the 

nearest integer since rounding up, as we shall show below, can only give an even 

larger Quotient Gap. However, doing this means that we must consider values of 

b <= Bmax instead of b < Bmax. We will assume throughout that Bmax is not 

rounded to an integer and, generally, remains real-valued and non-integral. 

 

It remains to show that if b >= Bmax then Qg >= 2 always holds true. 

 

To do this, we have to show that if (b, b + 1) is a Candidate Pair with Quotient Gap 

Qg and (b + k, b + k + 1), integer k, k > 0, is another Candidate Pair with Quotient 

Gap Qg' then the integral Quotient Gap Qg' is greater than or equal to Qg, i.e. the 

Quotient Gap either remains the same or increases as b increases, but never decreases. 

 

Note that for both Candidate Pairs we have only chosen a Root Gap of unity in each 

case. Since we have reasoned (but not rigorously proven) that the minimum Quotient 
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Gap occurs for a minimimum Root Gap of unity then more general Candidate Pairs 

with non-unity Root Gaps need not be considered. 

 

With the Quotient Gap Qg for Candidate Pair (b, b + 1) given by 

 

1.19.1.8  (b + 1)^n - b^n = Qg*a^n 

 

and the Quotient Gap Qg’ for Candidate Pair (b + k, b + k + 1) given by 

 

1.19.1.9  (b + k + 1)^n - (b + k)^n = Qg'*a^n 

 

then we have to show that, for all k > 0, 

 

1.19.1.10 Qg' >= Qg 

 

which, by multiplication by a^n and re-arranging, is equivalent to showing that 

 

1.19.1.11 Qg'*a^n - Qg*a^n >= 0 

 

Without going into the algebra, it can be shown, by the binomial expansion of 

(b + k)^n and (b + k + 1)^n that for all b >= 1, k >= 1, n >= 1, the following inequality 

holds true 

 

1.19.1.12 (b + k + 1)^n - (b + k)^n >= (b + 1)^n - b^n 

 

then, by comparison with (1.19.1.8) and (1.19.1.9), this implies (1.19.1.10) is true for 

all b >= 1, k >= 1, n >= 1, 

 

With 1 < a < b < c by convention (0.3.3), b = 3 is actually the smallest middle value 

under consideration. Similarly, n = 2 is the smallest exponent. The value of k is 

arbitrary but, for the smallest possible Root Gap, as prior stated, k = 1. 

 

Thus we have shown that Qg >= 2 for all b >= Bmax where Bmax is defined  by 

(1.19.1.5), rounded down to the nearest integer. 

 

1.19.2 Notes 

 

What about the other value c in a Candidate Pair (b,c)? Since b must actually be less 

than Bmax the maximum value for c is b + 1 when the Root Gap is minimal, i.e. 

Rg = 1. In terms of Bmax, this value of c is INT(Bmax)+1 where the 'INT' function 

denotes truncation to the nearest integer, see (0.4.2). What we actually have are the 

two conditions: 
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1.19.2.1 b < Bmax 

 

1.19.2.2 c <= INT(Bmax)+1 

 

Which might then beg the question, why not call (1.19.2.2) Cmax and use that instead 

since c > b by convention? Firstly, equation (1.19.1.2) was written in terms of b not c 

hence it would not seem right to then call it Cmax. Secondly, C’max is used for the 

Dual equivalent condition, see (1.20). 

 

Lastly, for the two smallest exponents under consideration, for Pythagoras (n = 2) we 

get for Bmax 

 

1.19.2.3 Bmax = a^2 

 

and for the smallest, odd FLT exponent, n = 3, we get 

 

1.19.2.4 Bmax = _/(2*a^3 / 3)    (where '_/' denotes the square root) 

 

1.19.3 Example 

 

1.19.3.1 n = 3, a = 7 

 

Using (1.19.2.4) for the n = 3, a = 7 case, we get for Bmax 

 

1.19.3.2 Bmax = 15.2 to 1dp. 

 

If we look at the Residue Table for n = 3, a = 7, of which the entries 7 <= x <= 21 are 

reproduced below, we see that the quotient values (last column) from x = INT(Bmax) 

( = 15) onwards are 9, 11, 14, 17, 19, 23, 27 with corresponding Quotient Gaps 

increasing from 2 ( = 11 - 9) to 4 ( = 27 - 23) and therefore always greater than or 

equal to 2. Notice that the Quotient Gap for x < Bmax jumps by 2 (Qg = 5 - 3) for 

x = 11 and x = 12. However, this is a spurious jump and the Quotient Gap between 

x = 14 and x = 15 is back to unity with quotients 8 and 9 respectively. Around Bmax, 

these spurious jumps tend to occur and are due to truncation in integer arithmetic. If 

we worked in real valued quotients the Quotient Gap would increase monotonically. 

 
 

      Residue Table a = 7, n = 3 

   x        x^n    residue  residue quotient 

                 (mod a^n)    mod a         

---- ---------- ---------- -------- -------- 

 

   7        343          0        0        1  

   8        512        169        1        1  

   9        729         43        1        2  
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  10       1000        314        6        2  

  11       1331        302        1        3  

  12       1728         13        6        5  

  13       2197        139        6        6  

  14       2744          0        0        8  

  15       3375        288        1        9  

  16       4096        323        1       11  

  17       4913        111        6       14  

  18       5832          1        1       17  

  19       6859        342        6       19  

  20       8000        111        6       23  

  21       9261          0        0       27  

 

Given that INT(Bmax) = 15 for n = 3 and a = 7 and, coupled with the knowledge that 

b must be composite by Theorem (1.15) and also have one or more factors of the form 

2ln+1, see section(2.2.5), this does not leave much room for a possible value of b. The 

smallest value of 2ln+1 is 7 (hence a = 7), and since b cannot equal a, which is prime 

anyhow, the next smallest composite it can be is 14. But this is a multiple of the base 

a and so has a zero residue. We cannot go any higher than INT(Bmax) = 15 so we 

conclude that there is no Candidate Pair for n = 3, a = 7 and, consequently, no FLT 

counter-example. Of course, this just rules out a = 7, it doesn't dismiss the entire 

n = 3, cubic exponent case. 

 

1.19.4 Theorem: Bmax < a^n / 2 

 

The value Bmax is always less than a^n / 2 for n >= 3, a >= 2. 

 

Proof 

 

Assume this is true then 

 

1.19.4.1 Bmax < a^n / 2 

 

Raising to the (n - 1)’th power and multiplying by n, so as to make the lhs identical to 

(1.19.1.5), we get 

 

1.19.4.2 n*Bmax^(n - 1) < n*(a^n / 2)^(n - 1) 

 

And substituting for n*Bmax^(n - 1) from (1.19.1.5) implies 

 

1.19.4.3 2*a^n < n*(a^n / 2)^(n - 1) 

 

Dividing throughout by a^n we obtain the inequality 

 

1.19.4.4 2 < n*(a / 2)^(n - 2) 
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For n = 2, we see that this leads to a contradiction 2 < 2, so it doesn't hold for n = 2. In 

fact Bmax = a^2 for n = 2, see (1.19.2.3). 

 

For n = 3, we see that 2 < 3*a / 2 which is true for a >= 2. Since a = 2 is the minimum 

value of the base a throughout this paper, Bmax is always less than a^3 / 2 for n = 3. 

[Note that by the '2ln+1' constraint put on the base a, see (2.2.5), a = 7 is actually the 

minimum practical value of a]. 

 

In general, for any exponent, n >= 3, the following inequality is always satisified for 

all a > 0 

 

1.19.4.5 (a / 2)^(n - 2) >= a / 2 

 

Multiplying throughout by n we get 

 

1.19.4.6 n*(a / 2)^(n - 2) >= 3*a / 2 

 

and if we impose the constraint on a that 

 

1.19.4.7 a >= 2 

 

which is satisified by convention (0.3.3.1) then the rhs of (1.19.4.6) is such that 

 

1.19.4.8     3*a / 2 >= 2 

 

and so combining (1.19.4.5) and (1.19.4.8) we get the inequality 

 

1.19.4.9 n * (a / 2)^(n - 2) > 2 

 

which shows that for all n >= 3 and a >= 2, inequality (1.19.4.4) is met and so Bmax 

< a^2 / 2 

 

Almost needless to say, this a^n / 2 value is a poor upper bound for Bmax. It could be 

made much tighter. However, it is not required herein. 

 

1.19.5 Theorem: Bmax > a for n >= 2 

 

The value Bmax is always greater than a for n >= 2 and a of the form 2ln+1. 

 

Proof 
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Rearranging (1.19.1.5) 

 

1.19.5.1 Bmax^(n - 1) = 2*a^(n - 1)*a / n 

 

Taking the (n - 1)'th root of both sides [the symbols '(n - 1)_/' denote the (n - 1)'th 

root] we get 

 

1.19.5.2 Bmax = a*(  (n - 1)_/(2a / n) ) 

 

Therefore, by (1.19.5.2), if the (n - 1)’th root of (2a / n) is greater than unity, then 

Bmax will be greater than the base a. If a is of the following form 

 

1.19.5.3 a = 2ln + 1 

 

then this is easily seen since 

 

1.19.5.4 2a / n = 4l + (2 / n) 

 

and for all n > 2, if l >= 1, then 

 

1.19.5.5 4l + (2 / n) > 1 

 

so that for all n > 2, if l >= 1, (1.19.5.2) becomes 

 

1.19.5.6 Bmax > a 

 

Combining this result with Theorem (1.19.4), we get a range for Bmax, a = 2ln+1, 

n > 2, l >= 1 as 

 

1.19.5.7 a < Bmax < a^n / 2 

 

1.20 C'max 

 

Just as there is an upper limit 'Bmax', section (1.19), on the value b in a Candidate 

Pair (b,c) (mod a^n), so too is there an upper limit on the value c in the Dual 

Candidate Pair (a,c) (mod b^n). 

 

1.20.1 Theorem: C’max 
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Given a Dual Candidate Pair (a,c) (mod b^n), there exists a value C'max, such that for 

c > C'max, the Quotient Condition can never be met. 

 

The proof is actually much simpler than that for the Standard case of Bmax as given 

in Theorem (1.19.1). 

 

Proof 

 

In the dual case it is not the Quotient Gap that has to be unity but simply the absolute 

quotient value q' (1.18.7) which has to be unity. This is because the smaller quotient p' 

(1.18.3) is always zero. Thus to achieve a Dual Quotient Gap of unity we simply set a 

limit on q' as 

 

1.20.2 q' < 2 

 

Inserting this limit into (1.18.5) we get the inequality 

 

1.20.3 c^n < 2*b^n + a^n 

 

Now since a < b and n >= 2, by convention, then 

 

1.20.4 a^n < b^n 

 

and so inequality (1.20.2) is equivalent to 

 

1.20.5 c^n < 3*b^n 

 

Defining C'max as 

 

1.20.6 C'max^n = 3*b^n 

 

then inequality (1.20.5) becomes 

 

1.20.7 c^n < C'max^n 

 

So that for all c < C'max we have an absolute quotient q' such that q' < 2  and the Dual 

Quotient Condition is satisfied. 

 

1.20.8 Notes 
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By (1.34.4) we see that C'max is always less than the n'th root of 3 multiplied by b. As 

a rule of thumb, without accurately computing the value of C'max, a good limit, for 

the two smallest, odd, prime exponents, n = 3 and n = 5 is 

 

1.20.9 n = 3, C’max < (3 / 2)*b 

 

1.20.10n = 5, C’max < (5 / 4)*b 

 

[Note that although it appears C’max < ( n / (n - 1) )*b, this is not so for prime n >= 7. 

Neither is a more lenient C’max < ( (n+1) / n )*b]. For large n they are reasonable 

approximations BUT for an upper bound such that C’max is always below, use 

C’max < (5 / 4)*b, i.e. the n = 5 result]. 

 

This means that in the cubic exponent case (1.20.9), when examining a Dual Residue 

table for Repeat Residues (a,c), we need never look any further than b < c < 3b / 2. 

Contrast this with a Standard Residue Table (mod a^n) where we have to search for 

Repeat Residues up to Bmax which, by (1.19.5.2), can be many times larger than the 

base a, when a is itself large. However, as good as this may seem, it is actually 

illusory in that the absolute value of c is the same in both dual and Standard cases. 

This is because the derivation of Bmax, Theorem (1.19.1), also puts a restriction on 

the value of c in the Candidate Pair (b,c) (mod a^n), see (1.19.2.2). This c value is the 

same 'c' as in the Dual Candidate Pair (a,c) (mod b^n). Hence the value of c is subject 

to both the C'max restriction (1.20.6) and the Bmax restriction (1.19.1.5). If b is its 

largest possible value, b = INT(Bmax), then c can only be equal to INT(Bmax) + 1 if 

the triple (a,b,c) is to be an FLT counter-example. 

 

1.21 Summary of Conditions 

 

A summary of all the conditions and constraints, developed so far, on a triplet (a, b, c) 

were it to be a an FLT counter-example. 

 

1.21.1 The Standard Residue Condition (1.2.3), Candidate Pair (b,c) 

 

b^n = c^n (mod a^n) 

 

1.21.2 The Standard Quotient Condition (1.4.3) 

 

 If (b^n = p*a^n + r) and (c^n = q*a^n + r) then q - p = 1 

 

1.21.3 The Dual Residue Condition (1.17.1), Candidate Pair (a,c) 

  

 a^n = c^n (mod b^n) 
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1.21.4 The Dual Quotient Condition (1.18.7) 

 

 If (c^n = q'*b^n + a^n) then q' = 1 

 

1.21.5 The Root Gap Constraint, Theorem (1.12) 

 

c - b <  a 

 

1.21.6 The Root Gap (1.10.1) is unity if the base is prime, Theorem (1.14) 

 

c - b = 1 

 

1.21.7 The Standard Root Gap (1.10.1) divides the Standard Base 

 

Although not explicitly prior stated, from the factorisation of the FLT equation 

(1.14.2) we can deduce that the Standard Root Gap (c - b) divides the Standard Base 

a, i.e. 

 

(c – b) | a 

 

1.21.8 The Dual Root Gap (1.15.1) divides the Dual base b 

 

As for (1.21.7), we can similarly deduce, by factorisation of the term c^n - a^n ( = 

b^n), that the Dual Root Gap (c - a) divides the Dual Base b, i.e. 

 

(c – a) | b 

 

1.21.9 The Dual base b is always composite, Theorem (1.15) 

 

1.21.10    The Dual Root Gap Rg’ (1.15.1) is always greater than unity 

 

By convention (0.3.3), a < b < c, so that 

 

(c – a) >= 2 

 

1.21.11    There is a value Bmax such that, for all b >= Bmax, the Quotient Gap Qg of 

a Standard Candidate Pair (b,c) mod a^n is always greater than unity, Theorem 

(1.19.1) 

 

For all b >= Bmax, Qg > 1 
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1.21.12    There is a value C'max such that, for all c >= C'max, the Dual Quotient Gap 

Qg' of a Dual Candidate Pair (a,c) mod b^n is always greater than unity, 

Theorem (1.20.1) 

 

For all c >= Cmax, Qg' > 1 
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2 Mechanisms for Repeat Residues 
 

The first section of this paper started with the FLT equation (1.1.1) placing two 

conditions, the Residue and Quotient Condition, upon any possible solution triple 

(a, b, c) for exponents n >= 2. These conditions were proven to be met with respect to 

Pythagorean triples (1.6) and we expanded upon the conditions to impose some 

tighter constraints upon any potential FLT counter-example. 

 

We showed that key to meeting the Residue Condition were Candidate Pairs (b,c) and 

(a,c) where c^n = b^n (mod a^n) and c^n = a^n (mod b^n) respectively. Theorem 

(1.12) constrained these Candidate Pairs and lead us to the study of Residue 

Sequences, i.e. the residues x^n (mod a^n), 0 <= x < a^n, which is where we start the 

work in this section. We are particularly concerned with how residues repeat within a 

narrow range of the base, a in the Standard case, b in the Dual case, and therefore 

generate Candidate Pairs which may also meet, or come close to meeting, the 

Quotient Condition. 

 

We will see that even-exponent Residue Sequences possess the necessary symmetry 

such that integers b and c of a Candidate Pair (b,c) are almost back-to-back, i.e. 

consecutive. Using this symmetry for Pythagoras we proceed to derive the analytic 

solution for Pythagorean triples. We also then look at the quartic case (n = 4) which 

also possesses even exponent symmetry but, of course, no FLT counter-examples. 

 

Since Residue Sequences for odd exponent lack the symmetry of even exponents, we 

can then no longer rely upon such symmetry to guarantee us an abundance of 

Candidate Pairs which have any chance of meeting the Root Gap Constraint, Theorem 

(1.12), and, consequently, the Quotient Condition. We shall see that odd exponent 

Residue Sequences do have a general Skew-symmetry but it is shown this cannot 

produce FLT counter-examples. Instead, we investigate another known ‘2ln+1’ 

mechanism whereby residues can repeat, Candidate Pairs can form, and some may 

even satisfy the Root Gap constraint. All these investigations yield yet more 

constraints which are summarised at the end of the section. 

 

Finally, whilst even and odd exponents are treated separately, it is mentioned, in 

advance, that the two can be unified under a single scheme we term ‘Unity Root 

Mappings'. The subject of Unity Roots and their Mappings is discussed fully in 

section (3). 

 

2.1 Introduction 

 

Before starting, please keep in mind that whilst much of the work throughout this 

paper uses the Standard base a, it could equally be the Dual base b or, as we shall see 

later, the Skew base c. 

 

The simplest form of repetition of residues, equation (1.8.6.1) repeated below, was 

introduced to obtain quick solutions to the General FLT Equation (1.8). 
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2.1.1 (a^n + x)^n = x^n (mod a^n) 

 

This shows that a residue x always repeats at (a^n + x) (mod a^n) for all a and n. 

Theorem (1.12) shows that such repetitions, where the Root Gap is greater than the 

base, can never satisfy the Quotient Condition (1.4.3). 

Since there do exist solutions to the Pythagoras Equation there must be Repeat 

Residues, at least for n = 2 with a Root Gap less than the base, and so mechanism 

(2.1.1) cannot be that responsible for generating Pythagorean triples. 

We consider alternative mechanisms which can produce repetition of residues within 

the [0, a^n) interval and, in some cases, within an interval less than the base for all n, 

and for some specific forms of the base, thereby meeting the Root Gap Constraint 

(1.12). 

 

2.1.2 Definitions 

 

Before continuing, the following definitions are used throughout this paper. 

 

2.1.2.1 Residue Sequence 

 

A Residue Sequence, as defined herein, is a sequence of residues r_i, index i, modulus 

a^n, given by 

 

2.1.2.1.1 r_i = i^n (mod a^n) 

 

for integer i in the range 

 

2.1.2.1.2 0 <= i < a^n if n !| a 

 

or 

 

2.1.2.1.3 0 <= i < a^(n - 1) if n | a 

 

The term ‘Sequence’ is used in preference to ‘Set’ because its members may not not 

all be unique and the ordering is important.  

 

2.1.2.2 Minimal Residue Sequence 

 

A Residue Sequence is termed a ‘Minimal Residue Sequence’ if the exponent divides 

the base as given by (2.1.2.1.3). 
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Such a Residue Sequence is prefixed 'Minimal' because it is the smallest sequence of 

residues that repeats in its entirety, and in the same order, n times within the interval 

[0, a^n). 

 

Thus, for any value x, the equivalent of (2.1.1) is 

 

2.1.2.2.1 (a^(n - 1) + x )^n = x^n (mod a^n) 

 

Because the exponent divides the base, unless the base is identically equally to the 

exponent, i.e. a = n, then the base is composite. 

 

Because this natural repetition of all residues in a sequence is at a Root Gap a^(n - 1), 

rather than a^n, the Quotient Gap of a Candidate Pair (b,c), where b = x, 

c = a^(n - 1) + x, will be smaller than if the Root Gap were a^n, as in (2.1.1). 

Nevertheless, this is still not adequate to meet the Root Gap Constraint. Note that a 

Root Gap of a^(n - 1) would give Rg = a, if the exponent n were to equal to 2, for 

n >= 3 this gives Rg >= a^2. 

2.1.2.2.2 Example 

 

The simplest, non trivial FLT case is the cubic exponent with base a = 3, modulus 

3^3. Here the exponent is equal to the base and so the size of the Minimal Residue 

Sequence is 3^3 / 3 = 3^2, i.e. 9. So the Minimal Residue Sequence comprises 

residues r_i, 0 <=i < 9. 

 

2.1.2.3 Maximal Residue Sequence 

 

A Residue Sequence is termed a ‘Maximal Residue Sequence’ if the exponent n does 

not divide the base, as given by (2.1.2.1.2). 

 

If the base a is prime then all non zero residues are unique and a Maximal Residue 

Sequence is of size a^n. It is termed Maximal since, by (2.1.1), it is the largest 

possible Residue Sequence, (mod a^n), that doesn’t repeat in its entirety. 

 

2.2 Overview of Repeat Residue Mechanisms 

 

2.2.1 Introduction 

 

There are four possible mechanisms such that a residue r for a value b, as given by 

2.2.1.1 b^n = r (mod a^n) 

 

can repeat at a point c, within an interval [0, a^n), whereby 
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2.2.1.2 c^n = r (mod a^n) 

 

When we talk of 'Repeat residues', the zero residue, r = 0, is ignored. Any integer 

multiple k of the base a is such that (ka)^n = 0 (mod a^n) as can be seen in the 

examples in section 13. We could, for example, pick a Candidate Pair (b,c) whereby 

b = ka, c = (k + s)a, integral s, s > 0, which would have the common residue 0. 

However since the modulus is a^n, the common factor of a would cancel, i.e. the 

triple (a, b, c) would be co-prime in pairs which is discounted by convention (0.3.4). 

 

2.2.2 The exponent n divides the base 

 

When the exponent divides the base, i.e. 

 

2.2.2.1 n | a 

 

then the Residue Sequence obtained is a Minimal Residue Sequence (2.1.2.2), and 

residues naturally repeat at a reduced interval of a^(n - 1), rather than a^n, such that 

for a value x, 

2.2.2.2 (a^(n - 1) + x )^n = x^n (mod a^n) 

 

Because this natural repetition of all residues in a sequence is at a Root Gap a^(n - 1), 

the Quotient Gap of a Candidate Pair (b,c), where b = x and c = a^(n - 1) + x in 

(2.2.2.2), will be smaller than if the Root Gap were a^n, as in (2.1.1). Nevertheless, 

this is still not adequate to meet the Root Gap Constraint, Theorem (1.12). Note that a 

Root Gap of a^(n - 1) would give Rg = a if the exponent n were to be equal to 2. For 

n >= 3 this gives Rg >= a^2. 

 

By the arguments in the above paragraph, this mechanism for Repeat Residues is 

insuffcient, by itself, to produce FLT counter examples. However, if the base a (or b 

in the Dual case) were to be composite, such that not only does n | a but a has a factor 

of the 2ln+1 form (section (2.2.5)), then the base could yield possible Candidate Pairs. 

 

With the form of the base a expressed by (2.2.5.10), we see that the factor ‘x’ would 

have to be such that n | x. For FLT, the smallest case under consideration is the cubic 

exponent and the smallest value of (2ln+1) would therfore be 7 (where l = 1, n = 3). 

So the smallest possible composite value for a, with a Minimal Residue Sequence, 

would be a = 21. 

 

2.2.3 The base is composite 

 

Because of reasons expressed at the end of Theorem (1.14), a composite base has to 

be a consideration. Nevertheless we shall show that, whilst it can give Repeat 

Residues within a Maximal Residue Sequence, these occur for the factors of the base 

and do not therefore satisfy co-primality in pairs, convention (0.3.4). 
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We shall assume none of the factors is of the ‘2ln+1’ form. If they are the arguments 

still apply but we also have to consider the ‘2ln+1’ mechanism for Repeat Residues 

given in (2.2.5) which concludes that such composite bases can not then be 

eliminated. 

 

Stated without proof. 

 

Let us define the base a as comprising two factors k and m, i.e. 

 

2.2.3.1 a = k*m 

 

where each factor can either be prime or composite and neither is of the 2ln+1 form. 

Furthermore we will assume the exponent n does not divide the base a, i.e. 

 

2.2.3.2 n !| a 

 

Then, if b is a multiple s, integer s, s>0, of the factor k, i.e. 

 

2.2.3.3 b = s*k 

 

and c is defined as follows for integer t, t>0, 

 

2.2.3.4 c = s*k + t*k*m^n 

 

we assert that c is a Repeat Residue of b and (b,c) is a Candidate Pair, i.e. 

 

2.2.3.5 c^n = b^n (mod a^n) 

 

Of course, we can interchange factors k and m to get a similar result for multiples of 

the factor m. 

 

This assertion is not too difficult to see since, if we re-write c as follows with the 

factor k, 

 

2.2.3.6 c = k*(s + t*m^n) 

 

and raise c to the power n, binomially expanding the rhs bracket and take residues of 

the rhs (mod a^n) ( = mod k^n*m^n) we would get 

 

2.2.3.7 c^n = k^n*s^n mod (km)^n 

 

i.e. 
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2.2.3.8 c^n = (k*s)^n = b^n mod (km)^n = b^n (mod a^n) 

 

The smallest interval of repetition (of the Residue), i.e. the Root Gap (c - b) is now, 

for t = 1 in (2.2.3.4), 

 

2.2.3.9 Rg = k*m^n 

 

We can see this Root Gap is considerably less than the maximum a^n, hence we get 

Repeat Residues within the Maximal Residue Sequence. Before discussing further, we 

have to look at the case where the exponent divides the base, in which case we can 

reduce the Root Gap even further. 

 

Using the same equations as above, except now the exponent n divides the base a  by 

dividing the factor m, i.e. 

 

2.2.3.10 n | m 

 

and with c now defined as 

 

2.2.3.11 c = s*k + t*k*(m^n) / n 

 

then 

 

2.2.3.12 c^n = b^n (mod a^n) 

 

i.e. c is a Repeat Residue of b and (b,c) is a Candidate Pair 

 

We see that, if the exponent divides the factor m, then the smallest interval of 

repetition of the Residue, i.e. the Root Gap, is now, for t = 1 in (2.2.3.11), given by 

 

2.2.3.13 Rg = k*m^(n - 1) 

 

We can see this Root Gap is considerably less than the maximum a^n. Nevertheless, 

before this seems like a good mechanism to try and get a small Root Gap and with it, 

a consequently small Quotient Gap, we should note that we have already exceeded 

our constraint of ‘co-primality in pairs’ (0.3.4) since GCD(b, c) = s. Therefore this 

repetition of residues will not give us true primitive FLT counter-examples. 

 

If this wasn’t enough to eliminate this case, we can see from (2.2.3.13), that even the 

reduced Root Gap (2.2.3.13) cannot be less than or equal to the base a (a = k*m) 

unless the exponent n = 2. Even then the Root Gap is only equal to a and not less than 

a, so the Root Gap Constraint, Theorem (1.12), cannot be met. 
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The conclusion is that, whilst we still consider composites, we are only interested in b 

and c values such that GCD(b, a) = GCD(c, a) = 1. 

 

2.2.4 The exponent is even 

 

Since an even exponent, barring the Pythagorean case, is always composite, we would 

generally dismiss even exponents for FLT, convention (0.3.2). However, the quartic 

case (n = 4) is considered primarily since the symmetry arguments we use in the 

Pythagorean case equally apply to any even exponent. Of course, the quartic case was 

proven by Fermat himself, actually prior to the cubic proof, Euler, 1753. 

 

An even power exponent guarantees, by the symmetry of the Residue Sequence it 

produces, that a residue will repeat at least once within the [0, a^n] interval. 

Furthermore, and key to Pythagoras, this repetition can occur for back-to-back values 

(actually roots, see (1.10.2) and Consecutive Residues (1.11) ) i.e. those values around 

the symmetry point. These residues have a Root Gap of unity giving them a good 

chance of having a unity Quotient Gap. For odd, prime base a there is one such 

symmetry point at (a^2 - 1) / 2 and so there is always at least one Candidate Pair. For 

even base there are additional symmetry points at a^2 / 4 and 3*a^2 / 4 and 

subsequently more Candidate Pairs – something not guaranteed for odd exponent. 

 

Concluding, an even exponent is a very import criteria for repetition of residues and 

its symmetry aspects and consequences are fully detailed in section (2.4). 

 

2.2.5 The base is of the 2ln+1 form 

 

Because an odd exponent does not give a symmetric Residue Sequence as obtained 

with an even exponent, Repeat Residues do not come guaranteed for odd exponents. It 

would be nice if that were the end of the story since we could then conclude, using 

Theorem (1.12), that FLT was true. Of course this is not so. For certain base a, 

modulus a^n, Repeat Residues do occur within the interval [0, a^n) and, indeed, 

within an interval of much smaller size, i.e. within the base a. This is because there 

can be multiple, unique roots to the following congruential equation 

2.2.5.1 x^n = r (mod a^n) 

 

The key point is that if there is a root x = b and another root x = c then they share the 

same residue and hence (b,c) form a Candidate Pair (this has been prior mentioned in 

section (1.10) ). Note that not all bases have multiple roots. For most bases we only 

get a single root and consequently no chance of a Candidate Pair either. However, for 

some bases, which we will now discuss further, multiple roots means Candidate Pairs. 

 

Equation (2.2.5.1) is a special form of the general polynomial congruence, (mod P) 
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2.2.5.2 r_n*x^n + r_n_1*x^(n - 1) + … r_1*x + r_0 = 0 (mod P) 

 

An inportant theorem on integer solutions to this polynomial congruence is that due to 

Lagrange. 

 

2.2.5.3 Lagranges Theorem on Congruences 

 

Lagrange’s Theorem of Congruences states that: 

 

a polynmial congruence (2.2.5.2), degree n, (mod P), where n and P are prime, cannot 

have more than n solutions and, if the modulus P is of the form 

 

2.2.5.3.1 P = k*n + 1 

 

then there are exactly n solutions. 

 

In the case of our Unity Root equation (2.2.5.1) there is always one root for odd, 

prime exponent which is the trivial root +1. For the only prime, even exponent, n = 2, 

there are always two roots for prime modulus and these are +1 and –1. 

 

If we consider odd exponent, n>=3, then, for integer m, m >0, n is of the form 

 

2.2.5.4 n = 2m + 1 

 

so that the base modulus P (2.2.5.3.1) is of the form 

 

2.2.5.5 P = 2k*m + k + 1 

 

If k is odd this would make P even but, since P is prime, then k must be even and 

hence, for some integer l, l > 0, k is of the form 

 

2.2.5.6 k = 2l 

 

Substituting for k in (2.2.5.3.1) we arrive at the form for the modulus P as 

 

2.2.5.7 P = 2ln + 1 

 

Hence, if we are to get multiple roots and therefore Candidate Pairs, for odd, prime 

exponent n, n >= 3, prime modulus P, we require P to be of the ‘2ln+1’ form given by 

(2.2.5.7). A more intuitive approach to the derivation of this form is given in Section 

(2.5.7). 
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That said, in this paper we are interested in modulus a^n (or modulus b^n, c^n in the 

Dual and Skew cases) where the base a, b or c may also be composite. Indeed, by 

Theorem (1.15), the Dual base b is always composite. Fortunately, the extension to 

composite base can be constructed from the work on prime base and some further 

discussion is given in section (2.5.14). However, we state here, without proof, that for 

odd, prime exponent Repeat Residues will occur within the (0, a^n] interval if the 

base is prime of the ‘2ln+1’ form or composite with one or more prime factors of the 

‘2ln+1’ form. Furthermore, unlike any of the other Repeat Residue mechanisms for 

odd exponent, (see (2.2.2) and (2.2.3) ), this mechanism is the only one with the 

potential to generate Repeat Residues with a Root Gap of less than the base, see 

Theorem (1.12), i.e. it is the only mechanism that can generate possible FLT counter-

examples. 

 

We finish this section by introducing two new constraints on the form of the Standard 

base a and Dual base b as concluded from the discussions. 

 

For integers x and k 

 

2.2.5.8 x >= 1 

 

2.2.5.9 k >= 1 

 

The value a is either prime (x = 1) or composite (x > 1) with one or more factors of 

the form (2kn + 1), i.e. 

 

2.2.5.10 a = x*(2kn + 1) 

 

For integers y and l satisfying the following inequalities, 

 

2.2.5.11 y >= 2 

 

2.2.5.12 l >= 1 

 

then, by Dual considerations, we can also constrain b such that it is always composite 

(y > 1, see also Theorem 1.15) with one or more prime factors of the form 2ln+1, i.e. 

b is of the form 

 

2.2.5.13 b = y*(2ln + 1) 
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2.3 Key Mechanisms 

 

Summarising section (2.2), there are only two cases which give rise to Repeat 

Residues such that the Root Gap is less than the base, these are 

 

2.3.1 The exponent n is even, arbitrary base 

 

2.3.2 The exponent n is odd and the base is either prime of the form 2ln+1 or 

composite with one or more prime factors of the form 2ln+1. This applies to 

both the Standard and Dual base, a and b respectively.  

 

2.4 Even Exponent 

 

2.4.1 Introduction 

 

Even power exponents n = 2m, where m is integral, m > 0, produce a symmetric 

sequence of residues since for any x and m we have 

2.4.1.1 x^(2m) = (a^(2m) - x)^(2m) mod a^(2m) 

 

and so the residue at x is identical to that at a^(2m) - x, i.e. there is a symmetry about 

the mid-point a^(2m) / 2. 

 

In particular, for the Pythagorean case, where m = 1, (2.4.1.1) becomes 

 

2.4.1.2 x^2 = (a^2 - x)^2 (mod a^2) 

 

For odd a, the Residue Sequence is Maximal (2.1.2.3), i.e. length a^2, and has a half 

integral mid-point at 

 

2.4.1.3 x = a^2 / 2 

 

Two integers b and c, either side +/-y / 2 (integer y, y > 0) of the midpoint a^2 / 2, and 

given by 

 

2.4.1.4 b = (a^2 - y) / 2 

 

and 
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2.4.1.5 c = (a^2 + y) / 2 

 

form a Candidate Pair (b,c) since 

2.4.1.6 c^2 = b^2 (mod a^2) 

 

Because the Residue Sequence is symmetric, all points +/-y / 2 about the mid-point 

also have the same residue. This gives rise to many such Candidate Pairs with a Root 

Gap, Rg = y, and therefore, by Theorem (1.12), to have any chance of satisfying the 

Quotient Condition we must have y < a. 

 

2.4.2 Examples, n = 2, odd base a 

 

2.4.2.1 a = 3, n = 2 

 

See the Residue table in section (7.1.1). 

 

The Residue Sequence mid-point is (3^2) / 2 = 4.5, the integers either side are b = 4 

and c = 5 and their squares are congruent (mod 3^2), i.e. 4^2 = 5^2 (mod 3^2). 

 

Furthermore, the Residue table shows that 4^2 = 1*3^2 + 7 and 5^2 = 2*3^2 + 7 and 

hence the quotients, p and q, equations (1.3.1) and (1.3.2), are 1 and 2 respectively, 

giving a Quotient Gap of 1. Therefore, the Candidate Pair (4, 5) satisfies the Quotient 

Condition and the triple (3,4,5) is a Pythagorean triple. 

 

Since a is prime we see the Root Gap, Rg = 5 - 4, is unity, confirming Theorem (1.14) 

 

2.4.2.2 a = 5, n = 2 

 

See the Residue table in section (7.1.3). 

 

The Residue Sequence mid-point is (5^2) / 2 = 12.5, the integers either side are b = 12  

and c = 13 and their squares are congruent (mod 5^2), i.e. 12^2 = 13^2 (mod 5^2).  

 

Furthermore, the Residue table shows that 12^2 = 5*5^2 + 19 and 12^2 = 6*5^2 + 19, 

and hence the quotients, p and q, equations (1.3.1) and (1.3.2), are 5 and 6 

respectively, giving a Quotient Gap 1. Therefore the Candidate Pair (12,13) also 

satisfies the Quotient Condition and the triple (5,12,13) is a Pythagorean triple. 

 

Since a is prime (a = 5) we see the Root Gap, Rg = 13 - 12, is unity confirming 

Theorem (1.14). 

 

For even a the Residue Sequence is Minimal, i.e. length a^2 / 2. This is because the 

exponent, n = 2, divides the base. The entire Minimal Residue Sequence is also 

symmetric about its mid-point which is thus at a^2 / 4. It should also be noted that the 

Maximal Residue Sequence, of length a^2, is always itself symmetric about its mid-
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point a^2 / 2. If we concentrate on the Maximal Sequence first, for even n, the mid-

point is integral and the two central values, either side of this mid-point, denoted by b 

and c, are b = (a^2 - 1) / 2 and c = (a^2 + 1) / 2. 

 

2.4.3 Examples, n = 2, even base a 

 

2.4.3.1 a = 4, n = 2 

 

See the Residue table in section (7.1.2). 

 

The Maximal Residue Sequence mid-point is (4^2)/ 2 = 8, the integers either side are 

b = 7 and c = 9 and their squares are congruent (mod 4^2), i.e. 7^2 = 9^2 (mod 4^2). 

The Residue table shows that 7^2 = 3*4^2 +1 and 9^2 = 5*4^2 +1 and hence the 

quotients, p and q, equations (1.3.1) and (1.3.2), are 3 and 5 respectively, giving a 

Quotient Gap of  2. Since the Root Gap is not unity, the Candidate Pair (7,9) does not 

satisfy the Quotient Condition and therefore the triple (4,7,9) is not a Pythagorean 

triple. 

 

In this same example the Minimal Residue Sequence mid-point is (4^2) / 4 = 4 and 

the integers either side are b = 3 and c = 5 and their squares are congruent (mod 4^2), 

i.e. 3^2 = 5^2 (mod 4^2). This case is, of course, the Pythagorean triple (3,4,5) that 

was considered in the Example (0). In that case, however, the base (a = 3) was odd. In 

this case, we are considering the even base (a = 4) and so we are actually looking at 

the Pythagorean triple (3,4,5) in a Dual aspect, whereby the Residue Table base is the 

middle value of the triplet (= 4) rather than the more usual Standard case whereby the 

base is the lowest member of the triple (= 3). 

 

Looking at the Dual Residue table, (mod 4^2), we see the quotient p' for b = 3 is 0, i.e. 

3^2 = 0*4^2 + 3^2, as expected by equation (1.18.3). Similarly, since 

5^2 = 1*4^2 + 3^2, the quotient q' is 1. Therefore the Quotient Gap in this Dual case 

is still unity since q' - p' = 1, q' = 1, p'= 0 and, as expected, the triplet (3,4,5) is a 

Pythagorean triple. 

 

This latter, even base example confirms all the Standard and Dual conditions 

summarised in section (1.21). 

 

2.4.4 Pythagorean Triples - An Analytic Solution via Symmetry 

 

Using the Symmetry present in the Residue Tables, (mod a^2), we can derive the 

analytic equation from which to generate all Pythagorean Triples. 

 

For even base a, modulus a^2, we have a symmetry point a^2 / 4 which is an exact 

integer. Either side of this mid-point +/- y, y integral, y > 0, we have identical 

residues and, consequently, Candidate Pairs (b,c) where b and c are 
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2.4.4.1 b = a^2 / 4 – y 

 

2.4.4.2 c = a^2 / 4 + y 

 

It can be verified that b^2 is congruent to c^2 (mod a^2), i.e. (b,c) are indeed a 

Candidate Pair, since 

 

2.4.4.3 b^2 = a^2 / 4 - 2(a^2 / 4)y + y^2 

 

2.4.4.4 c^2 = a^2 / 4 + 2(a^2 / 4)y + y^2 

 

Defining r' as 

 

2.4.4.5 r' = (a^2 / 4 + y^2) (mod a^2) 

 

and taking the residues of (2.4.4.3) and (2.4.4.4) (mod a^2), we get 

 

2.4.4.6 b^2 = r’ - (a^2 / 2)y (mod a^2) 

 

2.4.4.7 c^2 = r’ + (a^2 / 2)y (mod a^2) 

 

and since, for any integer y, 

  

2.4.4.8  (a^2 / 2)y = - (a^2 / 2)y (mod a^2) 

 

then we see that (2.4.4.6) and (2.4.4.7) are identical, i.e. 

 

2.4.4.9 b^2 = c^2 (mod a^2) 

 

Therefore, for all integer values of y, the values b and c, as defined by (2.4.4.1) and 

(2.4.4.2) respectively, form a Candidate Pair (b,c). 

 

Subtracting (2.4.4.6) from (2.4.4.7) gives 

 

2.4.4.10 c^2 - b^2 = y * a^2 

 

We see that the Quotient Gap is given by y and will not meet the Quotient Condition 

except when y = 1. Therefore, although (b,c) is a Candidate Pair (mod a^2), it would 

seem that it is only a genuine solution, i.e. a Pythagorean triple, if y = 1. However, by 

defining y as a perfect square 
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2.4.4.11 y = k^2 

 

and then transforming a to composite a' defined by 

 

2.4.4.12 a' = ka 

 

Then (2.4.4.10) becomes 

 

2.4.4.13 c^2 - b^2 = a'^2 

 

and we see that (2.4.4.13) has a unity Quotient Gap (mod a'^2) and (a',b,c) is a 

Pythagorean Triple. 

 

The values of b and c, as given in(2.4.4.1) and (2.4.4.2), now become, using (2.4.4.11) 

for y but keeping with a and not a', 

 

2.4.4.14 b = a^2 / 4 - k^2 

 

2.4.4.15 c = a^2 / 4 + k^2 

 

Lastly, the Pythagorean Triple (a',b,c) was generated assuming an even base a. Re-

defining a in terms of integer l, l > 0, where l is odd or even 

 

2.4.4.16 a = 2l 

 

Substituting for a from (2.4.4.16) into (2.4.4.12), (2.4.4.14) and (2.4.4.15) then  a', b 

and c become 

 

2.4.4.17 a' = 2kl 

 

2.4.4.18 b = l^2 - k^2 

 

2.4.4.19 c = l^2 + k^2 

 

And so we finally obtain the standard analytic solution to the Pythagoras Equation 

given by equations (2.4.4.17), (2.4.4.18) and (2.4.4.19), where k and l are integers, 

l > k > 0, with no odd or even restrictions. 

 

Remarks 
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a' is no longer necessarily the smallest member of the triple (a',b,c). This is a labelling 

issue, we could choose to interchange a', b and c so that c > b > a' and then rename 

a' = a. For example, with l = 3, k = 12, equations (2.4.4.17) to (2.4.4.19) give a' = 12, 

b = 5 and c = 13. We see a' is composite and now greater than b. We could arbitrarily 

re-assign a = 5, b = 12 and c = 13. 

 

That the association of y to a perfect square, k^2, was made in (2.4.4.11) shows that 

not every pair, equidistant by y about the symmetry point (a^2 / 4), can be a 

Pythagorean triple. Indeed, only when y is a perfect square is this so. Thus, Candidate 

Pairs appear +/-1, +/-4, +/-9, ... +/-k^2, about the symmetry point and the Pythagorean 

triples are (ka, b, c). Following from this, the Quotient Gap (mod a^2) is only unity if 

k is unity and this gives us only one solution about the symmetry point a^2 / 4. Of 

course, there are many solutions for composite a' = ka, k >1. 

 

For example, if a = 8, the symmetry point is 8^2 / 4 = 16. The two values either side, 

k = +/-1, are b = 15, c = 17 and, indeed, (8, 15, 17) is a Pythagorean Triple (mod 8^2). 

On the other hand, if we let k = +/- 2^2, then the two values, b and c, either side of the 

symmetry point are 12 and 20. Studying the Residue Table (Section 7.1.x TBD), we 

see that the residues are identical since 12^2 = 20^2 = 16 (mod 8^2), as would be 

expected for a Candidate Pair (12, 20), but that the quotients are 2 and 6 respectively, 

giving a Quotient Gap of k^2 = 4, also as expected. Thus, the Candidate Pair (12, 20) 

is not part of a Pythagorean Triple (mod 8^2) but it is (mod a'^2) where a' is the 

composite k*a = 2*8 = 16. 

 

Studying the residue table (mod 16^2) (not supplied in this paper), we observe that the 

pair (12, 20) have identical residues mod 16^2 (12^2 = 16^2 = 144 mod 16^2) and 

that the Quotient Gap is unity so that we have the non-primitive Pythagorean triple 

(12, 16, 20). It is termed non-primitive because each element has a common factor of 

4, i.e. it does not satisfy co-primality in pairs. However, dividing a, b and c by this 

factor gives the primitive triple (3, 4, 5) where a, b and c are now co-prime in pairs. 

 

We know equations (2.4.4.17) to (2.4.4.19) will give us all Pythagorean Triples, see 

for instance ref. [6], subject ‘Diophantine Equations’. However, the derivation above 

started by assuming an even base when we could have used an odd base instead. The 

derivation using an odd base is done in the section (2.4.6). However, on the even-base 

derivation alone, and without recourse to other proofs, could we have been guaranteed 

sufficiency that these three equations will give us all Pythagorean Triples including 

the odd ones? The answer is yes because the derivation was made for all even 

numbers, not just a subset. Suppose (x,y,z) is a Pythagorean triple where x or y is odd, 

then there is a corresponding, improper solution (2x,2y,2z) with a common factor of 

2. Whilst it is a non-primitive solution, it remains valid and both 2x and 2y are now 

even. This solution will always appear for some choice of l and k since the equations 

are valid for all even numbers - either l or k are both odd or both even. Therefore, for 

certain non-primitive even solutions, we can divide throughout by two and obtain all 

the odd solutions. 

 

Because every residue table (mod a^2), where a is odd or even, has at least one 

Pythagorean Triple and since the set of even numbers is infinite then so too is the set 

of Pythagorean triples. This conclusion is reached without any analytic solution. 
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2.4.5 More on Symmetry 

 

For odd a there is only the symmetry point at the half integer value a^2 / 2. For even a 

there are actually three symmetry points, one at the mid-point a^2 / 2, another at 

a^2 / 4 and the third at 3*a^2 / 4. This latter point at 3*a^2 / 4 is the mirror image 

point of the symmetry point at a^2 / 4. 

 

The symmetry point a^2 / 2 for odd a is half-integral. If it were divided again, it 

would give a quarter fraction. In such a case the smallest integer not larger than it 

would be 1 / 4 below the mid-point, and the smallest integer not less than the mid-

point would be 3 / 4 above from the mid-point. These two points would not 

technically be symmetric about a^2 / 4 for odd a. Consequently, we do not see the 

symmetry point a^2 / 4 in the residue tables for odd a that we see for even a. 

 

One might think that for an even value of the base modulus such as a = 2^s, integer s, 

s>2, there might be an even smaller symmetry point at, say, a^2 / 2^s. In fact there are 

symmetry points but only for even x (x^2 (mod a^2), x> 0), consequently, they are 

termed 'partial symmetry points'. About these partial points one can find Candidate 

Pairs which manifest themselves as non-primitive solutions. These pairs do not appear 

to be symmetric about the usual symmetry point about which the entire Residue 

Sequence is symmetric. By studying another residue table to a different and smaller 

base, e.g. a’ = a / 2^t, t > 0, the same Candidate Pair can be found at the more 

familiar, symmetric location, i.e. either side of a symmetry point a^2 / 4. 

 

For example, in the a = 16 table (not supplied), there is a partial symmetry point at 

16^2 / 2^4 = 16. If one looks at the points b = 16 - 4 and c = 16 + 4 one can see that 

they have equal residues and that their Quotient Gap is unity. This is therefore a non-

primitive Pythagorean triple (12,16,20) which is actually just the infamous (3,4,5) 

triple. The (3,4,5) triple can be identified in the Residue table for a = 4 - the proper 

symmetry point being a^2 / 4 = 4 and the corresponding Candidate Pair lying either 

side of the standard a^2 / 4 symmetry point at b = 3, c = 5. 

 

2.4.6 Odd Sequence Pythagorean Triples 

 

We shall show in this section that we can also obtain the standard analytic solution for 

Pythagorean triples by analysis of an odd base a. 

 

By symmetry about the mid-point, for any value x, we have 

 

2.4.6.1 (a^2 - x)^2 = x^2 (mod a^2) 

 

Expanding the lhs and cancelling x^2 from both sides 

 

2.4.6.2 a^2*a^2 - 2a^2*x = 0 (mod a^2) 
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For some integer k this implies 

 

2.4.6.3 a^2*(a^2 - 2x) = k*a^2 

 

let a^2 / 2 > x then k > 0. By cancelling the a^2 term in (2.4.6.3) we get for k 

 

2.4.6.4 a^2 - 2x = k 

 

For a Pythagorean triple, if we let k = 1 and solve for x then 

 

2.4.6.5 x = (a^2 - 1) / 2 

 

This implies a is odd for k = 1 so that a^2 - 1 on the rhs is even and x is integral. If we 

subtract both sides from a^2, we get 

 

2.4.6.6 a^2 - x = (a^2 + 1) / 2 

 

And, identifying b with x in (2.4.6.5) and c with a^2-x in (2.4.6.6), then we have a 

Pythagorean triple for odd a where 

 

2.4.6.7 b = (a^2 - 1) / 2 

 

2.4.6.8 c = (a^2 + 1) / 2 

 

These two points (b,c) lie either side of the midpoint a^2 / 2 of the Residue Sequence 

x^2 (mod a^2), 0 <= x < a. 

 

The smallest, non-trivial, odd value for a is 3 and substituting for a in (2.4.6.7) and 

(2.4.6.8) gives b = 4, c = 5, i.e. (a, b, c) is the (3,4,5) triple. The next smallest odd a is 

5 which, using the same equations, gives the Pythagorean triple (5,12,13), a = 7 gives 

(7,24,25), a = 9 gives (9,40,41), etc. 

 

For the more general solution, odd a, if we let k = l^2, instead of 1, in equation 

(2.4.6.4) above and solve for x 

 

2.4.6.9 x = (a^2 - l^2) / 2 

 

and subtracting both sides from a^2, we get 
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2.4.6.10 a^2 - x = (a^2 + l^2) / 2 

 

Defining a' = la and identifying b with x in (2.4.6.9) and c with a^2 - x in (2.4.6.10), 

then we have a Pythagorean triple (a',b,c) for odd a where 

 

2.4.6.11 a' = la 

 

2.4.6.12 b = (a^2 - l^2) / 2 

 

2.4.6.13 c = (a^2 + 1^2) / 2 

 

These two points (b,c) lie +/-l^2 about the midpoint a^2 / 2 of the Residue Sequence 

x^2 (mod a^2), 0 <= x < a. 

 

In the first derivation of b and c, equations (2.4.6.7) and (2.4.6.8) respectively, the 

value of l, as in (2.4.6.12), was set to 1 and so the base a had to be odd to ensure a^2-

 1 was even, divisible by 2, and therefore give integral values for b and c. We do not 

have this restriction now since we can make l odd or even. If l is odd then a must be 

odd. Alternatively, we can have even l and even a. However, odd a, even l is not 

possible and neither is even a, odd l otherwise b and c are non-integral. 

 

If we let both a and l be even then, for integers u,v > 0, 

 

2.4.6.14 a = 2u 

 

2.4.6.15 l = 2v 

 

and, substituting for a and l in equations (2.4.6.11) to (2.4.6.13), we get 

 

2.4.6.16 a' = 4uv 

 

2.4.6.17 b = 2(u^2 - v^2) 

 

2.4.6.18 c = 2(u^2 + v^2) 

 

We now see this is gives non-primitive triple (a',b,c) because 2 is a common factor of 

a',b and c. Dividing throughout by 2 we finally get the familiar equations 
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2.4.6.19 a' = 2uv 

 

2.4.6.20 b = (u^2 - v^2) 

 

2.4.6.21 c = (u^2 + v^2) 

 

which are identical in form to those obtained from the even series. We can thus get all 

the Pythagorean triples for both even and odd base starting either with an even base 

and deriving an even series or starting with an odd base and deriving an odd series, 

both of which can be transformed to a standard form common to both. All done by 

assuming symmetry about a point a^2 / 4 for even base a, and about a point a^2 / 2 for 

odd base a. 

 

2.4.7 Symmetry a = 2, n = 2 

 

The a = 2 case actually has a trivial solution (0,2,2), i.e. 2^2 = 2^2 + 0^2. One can see 

from the Residue Table below, that the symmetry point a^2 / 4 = 1 2^2 / 4 = 1 does 

exist. However, this means that the points immediately either side are b = 0 and c = 2. 

The zero value for b is essentially trivial and we are left with a = 2, b = 0, c = 2, which 

is trivially a^2 = c^2. Fortunately, this case presents no contradiction or exception to 

any of the conclusions or derivations. 

 
 

      Residue Table a = 2, n = 2 

   x        x^n    residue  residue quotient 

                 (mod a^n)    mod a         

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          0        0        1  

   3          9          1        1        2  

   4         16          0        0        4  

 

Because of its triviality, the a = 2 case is not considered and we are start with the 

lowest non-trivial, primitive Pythagorean triple which is (3,4,5) with a base a = 3. 

 

2.4.8 Even Power Exponent, n = 4 

 

Although even exponent, n >2, is of no real concern to this paper (see below for an 

explanation), it is worth just looking at an example, a = 4, n = 4 to see the same even 

exponent Symmetry in the Residue Sequence as was present in the Pythagorean case. 

If, for no other reason, studying n = 4 might offer an insight into why this symmetry 

alone cannot produce solutions for every even exponent. 

 

The general reason not to consider even power exponents is that they are, of course, 

composite and therefore unnecessary for any work on FLT excepting the case of 
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n = 4. The n = 4 case does require a proof, which Fermat himself supplied. This is 

because, since there are solutions (a, b, c) to the Pythagoras equation, some of these 

solutions may be of the form (s^2, t^2, u^2) and would therefore also be solutions to 

the n = 4 case. With a =s^2, b =t^2, c =u^2 and a^2 + b^2 = c^2 this would also imply 

s^4 + t^4 = u^4, i.e. (s,t,u) is a triple solution to the FLT equation for the quartic 

exponent. 

 

Other exponent powers of the form 2^l, integer l, l >= 3, would be a composite 

exponent of 2^2 and, since Fermat proved there were no solutions for the quartic case, 

there is no need to prove FLT for higher powers of 2 and, indeed, any even exponent 

n >= 4. 

 

2.4.9 Example a = 4, n = 4 

 

Since, in this example, the exponent n divides the base a, i.e. n | a, we know that the 

Residue Sequence is Minimal (2.1.2.2) with a size 4^4 / 4 = 64. Since this Minimal 

Sequence is also symmetric about its mid-point, by virtue that n is even, this gives us 

a symmetry point of 32, i.e., for integer y, y > 0, residues for b = 32 - y and c = 32 + y 

are identical, mirror images of each other,. A look at the Residue table for this case, 

shown below, confirms this. 

 
 

      Residue Table a = 4, n = 4 

   x        x^n    residue  residue quotient 

                 (mod a^n)    mod a         

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2         16         16        0        0  

   3         81         81        1        0  

   4        256          0        0        1  

   5        625        113        1        2  

   6       1296         16        0        5  

   7       2401         97        1        9  

   8       4096          0        0       16  

   9       6561        161        1       25  

  10      10000         16        0       39  

  11      14641         49        1       57  

  12      20736          0        0       81  

  13      28561        145        1      111  

  14      38416         16        0      150  

  15      50625        193        1      197  

  16      65536          0        0      256  

  17      83521         65        1      326  

  18     104976         16        0      410  

  19     130321         17        1      509  

  20     160000          0        0      625  

  21     194481        177        1      759  

  22     234256         16        0      915  

  23     279841         33        1     1093  

  24     331776          0        0     1296  

  25     390625        225        1     1525  

  26     456976         16        0     1785  

  27     531441        241        1     2075  

  28     614656          0        0     2401  
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  29     707281        209        1     2762  

  30     810000         16        0     3164  

  31     923521        129        1     3607  

  32    1048576          0        0     4096 <--- symmetry point x=32 

  33    1185921        129        1     4632  

  34    1336336         16        0     5220  

  35    1500625        209        1     5861  

  36    1679616          0        0     6561  

  37    1874161        241        1     7320  

  38    2085136         16        0     8145  

  39    2313441        225        1     9036  

  40    2560000          0        0    10000  

  41    2825761         33        1    11038  

  42    3111696         16        0    12155  

  43    3418801        177        1    13354  

  44    3748096          0        0    14641  

  45    4100625         17        1    16018  

  46    4477456         16        0    17490  

  47    4879681         65        1    19061  

  48    5308416          0        0    20736  

  49    5764801        193        1    22518  

  50    6250000         16        0    24414  

  51    6765201        145        1    26426  

  52    7311616          0        0    28561  

  53    7890481         49        1    30822  

  54    8503056         16        0    33215  

  55    9150625        161        1    35744  

  56    9834496          0        0    38416  

  57   10556001         97        1    41234  

  58   11316496         16        0    44205  

  59   12117361        113        1    47333  

  60   12960000          0        0    50625  

  61   13845841         81        1    54085  

  62   14776336         16        0    57720  

  63   15752961          1        1    61535  

  64   16777216          0        0    65536  

 

If one looks at the Quotients it can be seen that the Quotient Gap already exceeds 

unity for values of x as small as x = 6, which has a quotient of 5. The x = 5  value has 

a quotient of 2 hence, if b = 5 and c = 6 had identical residues, which they don’t, then 

they wouldn't meet the Quotient Condition and could not be an FLT counter-example. 

 

Computation of Bmax, equation (1.19.1.5) with n = 4 and a = 4, gives, upon rounding 

down to the nearest integer, Bmax = 5. This confirms our findings in the Residue 

Table above and therefore, for all values x > 5, we can rule out any FLT counter-

examples for triples of the form (4, b, c), c > b > 4, i.e. the a = 4, n = 4 case has no 

solutions. Nevertheless, since there are many Candidate Pairs, there are many GFLT 

solutions. 

 

For example, about the symmetry point x = 32, the values b = 31 and c = 33 have an 

identical residues of 129 

 

2.4.9.1 33^4 = 31^4 = 129 (mod 4^4) 

 

and the quotients are 3607 and 4632 respectively since 
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2.4.9.2 31^4 = 3607*4^4 + 129 

 

2.4.9.3 33^4 = 4632*4^4 + 129 

 

subtracting 31^4 from 33^4 and re-arranging gives a GFLT solution 

 

2.4.9.4 33^4 = 1025*4^4 + 31^4 

 

In fact, we can get a smallest possible Quotient Gap of 5 for a = 4 since, by examining 

the Residue Table, we see that the residue of 16 at x = 2 repeats at x = 6, i.e. (2,6) 

form a Candidate Pair (mod 4^4). 

 

2.4.9.5 6^4 = 2^4 = 16 (mod 4^4) 

 

and the quotients are 0 and 5 respectively since 

 

2.4.9.6 2^4 = 0*4^4 + 16 

 

2.4.9.7 6^4 = 5*4^4 + 16 

 

subtracting 2^4 from 6^4 and re-arranging gives a GFLT solution 

 

2.4.9.8 6^4 = 5*4^4 + 2^4 

 

By dividing throughout by the common factor 2^4 we get the relation 

 

2.4.9.9 3^4 = 5*2^4 + 1 

 

which could have been identified from the Residue Table (mod 2^4), i.e. base a = 2, 

and identifying (1,3) as a Candidate Pair mod 2^4. 

 

In the above example for base a = 4, b = 2, c = 6, we noted that all three values a,b 

and c have a common factor 2 and are not co-prime in pairs. Algorithmically 

speaking, it is a waste of time to look at residue values of x that have a common factor 

with the base a. It is more straightforward to look at all x co-prime to a. If a is even 

then we need only look at odd x. We see that the residues x^4 (mod 4^4) are unique 

for odd x, 0 <= x <32, i.e. x below the symmetry point. Whilst it might be thought that 

this is always the case for x co-prime to the base, this is not always true for the case 

where the base is odd and of the ln+1 form (section (2.5.8)). For example, if n = 4, 

a = 5, whilst the symmetry rules remain for odd base, i.e. the Residue Sequence is 
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only symmetric about the point a^4 / 2, the ln+1 mechanism guarantees four roots, 

whereas symmetry for an odd base only gives two. We therefore conclude that 

somewhere there are two other non-symmetric repetitions of the same residue. 

 

The smallest example of this occurs when a = 5, n = 4 and, hence, a = 4l + 1, l = 1. 

For the Candidate Pair (38,41) where we see that 

 

38^4 = 3336*5^4 + 136 

 

and 

 

41^4 = 4521*5^4 + 136 

 

therefore 

 

41^4 = 38^4 + 1185*5^4. 

 

Neither 38 nor 41 lie either side of the only symmetry point 5^4 / 2 and thus they are 

the two, non-symmetric roots of four possible roots. The other two points are easily 

obtained by symmetry about the centre point 5^4 / 2. The point symmetric to 38 is 

587 and the point symmetric to 41 is 584. In all, therefore, we have four roots 38, 41, 

584 and 587 all such that, when raised to the fourth power, they are congruent (mod 

5^4) with resiude 136. 

 

Notice that in the Residue Table the Quotient Gap also rapidly increases with x and 

any chance of a Unity Gap is also hopeless for all x>2. That leaves only x = 0 and 

x = 1 which do not have identical residues. x = 0 is not allowed anyhow since it gives 

the zero residue and, therefore, the a = 2, n = 4 case has no FLT counter-examples. 

This is perhaps not surprising but it is a nice, simple dismissal of the a = 2, n = 4 case. 

 

The growth of the Quotient Gap with increasing exponent should be tempered with 

some caution. The rapid growth is seen above because the base is small relative to the 

exponent. It is possible to choose a value for the base, sufficiently large, that the 

growth in the Quotient Gap is effectively tamed. 

 

2.4.10 An Analytic Solution for n = 4? 

 

Although trying to find an analytic solution for the quartic exponent is doomed to 

failure, using the same technique as in (2.4.4) for the Pythagoras Equation, we can at 

least see the consequences of such an attempt. 

 

For even base a, divisible by 4, i.e. a = 4l, integer l, l > 0, we have a Minimal Residue 

Sequence symmetry point (a^4) / 4 which is an exact integer. Either side of this mid-

point +/-y, y integral, y > 0, we have identical residues and, consequently, Candidate 

Pairs (b,c) (mod a^4). 

 

2.4.10.1 b = (a^4) / 4 – y 
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2.4.10.2 c = (a^4) / 4 + y 

 

Raising b and c to the fourth power and subtracting c^4 - b^4 gives 

 

2.4.10.3 c^4 - b^4 = y*(a^4)*(a^8/64 + y^2) 

 

This is much like the Pythagoras expression, equation (2.4.4.10) and, by comparison, 

we see that the Quotient Gap Qg is given by 

 

2.4.10.4 Qg = y*(a^8/64 + y^2) 

 

We see that Qg is similar to the Quotient Gap for Pythagoras (Qg = y) but with an 

extra factor (a^8/64 + y^2). In the Pythagorean case the Quotient Gap was controlled 

solely by y so we could choose to make it unity. In this case we would have an instant 

Pythagorean triple. Alternatively, we could make y a perfect square, as in (2.4.4.11), 

and obtain a solution for a modified base a', see equation (2.4.4.12). Either way, we 

obtained Pythagorean triples. 

 

The extra factor (a^8/64 + y^2) on the rhs of (2.4.10.4) rules out any hope of making 

the Quotient Gap unity. Even with y = 1, the smallest possible value of the factor is 

(a^8/64 + 1) and Qg = (a^8/64 + 1). If there were to be any analytic solution, we must 

set the factor to a perfect quartic, i.e. 

 

2.4.10.5 k^4 = y*(a^8/64 + y^2) 

 

However, we have seen several times that if, for some base a, we obtain a Candidate 

Pair with a Quotient Gap that is a perfect power, namely a quartic, say l^4 when n = 4, 

then there is always a composite base, a' = la, such that the same Candidate Pair has a 

Quotient Gap of unity when using this new base, modulo (la)^4. 

 

Nevertheless, in moving to a new, composite base a' we have also moved the 

symmetry point from a^4 / 4 to a'^4 / 4 and we no longer have global symmetry of the 

Residue Sequence (mod a’^4) about the original symmetry point a^4, instead it is now 

about a'^4 / 4. This also occurs in the Pythagorean case. Remember that a is an even 

base, hence symmetry at a^4 / 4. If it were odd, the symmetry would be about a^4 / 2. 

 

So, in the quartic case, we have the potential for a Candidate Pair with a Unity 

Quotient Gap if we move to a composite base. However, we then lose the original 

symmetry point. Alternatively, if we keep with symmetry, as above, we still have 

Candidate Pairs but we now have to consider the possibility that they have a non-unity 

Quotient Gap which is a perfect power. This was also the case for Pythagoras. 

 

In summary, it would be nice if we could dismiss n = 4 instantly since, for arbitrary 

base, the Quotient Gap of points about the symmetry points will never be unity. We 

are stifled from this conclusion since the Quotient Gap can quite legitimately be a 

perfect power. 
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Further study of this case, even exponent, n >= 4 remains open. 

 

2.4.11 Summary Even Power Exponent 

 

We have seen that the symmetry in the Residue Sequences for an even exponent 

generates numerous Candidate Pairs (b,c) (mod a^n), whereby b and c are mirror 

image points about the symmetry point: a^n / 2 for odd a; (a^n) / 4 for even a. 

 

In the Pythagorean case, for every base except a = 2, there is at least one Candidate 

Pair (b,c), where b = (a^2 - 1) / 2 and c = (a^2 + 1) / 2 for odd a, and b = a^2 / 4 - 1 

and c = a^2 / 4 + 1 for even a, such that the Candidate Pair (b,c) also meets the 

Quotient Condition and therefore (a, b, c) is a Pythagorean triple. 

 

For all higher, even power exponents, n = 4 and beyond, we know there are no 

solutions (Fermat himself proved n = 4, the remainder indirectly proven by Wiles [1]) 

but, since the symmetry in Residue Sequences exists for all even power exponents, 

there still exists numerous Candidate Pairs (b,c) centred around a symmetry point, 

albeit we can be sure that none of them meets the Quotient Condition. In fact, at least 

intuitively, by studying residue tables for n = 4 we can see that the Quotients for such 

Candidate Pairs (those about symmetry points) grow rapidly and a Quotient Gap of 

unity is impossible. Nevertheless, this is not to say the Quotient Gap cannot be a 

perfect power. With FLT proven this is obviously never the case although that has not 

been proven here. 

 

2.5 Odd Exponent 

 

2.5.1 Skew-Symmetry 

 

For odd power exponents, the point symmetry seen for even exponents is replaced by 

a skew-symmetry. 

 

A Skew-Symmetric sequence of residues is such that any point x, integer x, 

0 <= x <= (a^n) / 2, i.e. x is less than or equal to the mid-point of the Residue 

Sequence, satisfies the relation 

 

2.5.1.1 (a^n - x)^n = -(x^n) (mod a^n) 

 

That is the residues x^n (mod a^n), for x values in the lower half of the Residue 

Sequence, are the negative of those in the upper half. In effect, the residues in the 

upper half are 'conjugate' to those in the lower half and vice versa. 

 

2.5.1.2 Definition: Conjugate 
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The value (a^n - x) is termed 'conjugate' to the value x when it satisfies (2.5.1.1). 

Conversely x is also conjugate to (a^n - x). 

 

Because the residues in one half of the Residue Sequence are conjugate to those in the 

other half they cannot be identical, unlike even exponent residues, except when they 

are zero - which is discounted by convention. Note that for even base the mid-point, 

a^n / 2, is a single point and is effectively identical to itself. 

 

If the residues in the lower half are unique then they are unique in the upper half and 

the entire Residue Sequence is unique. It would seem, therefore, that we cannot obtain 

a single Candidate Pair that will meet the Residue Condition, i.e. if the residues are all 

unique in the lower half then there are no Candidate Pairs (no identical/Repeat 

Residues) and, in one clean sweep, we could prove FLT for odd n! Of course, the 

assumption of unique residues in one half of a Residue Sequence is fallacious. A 

Residue Sequence with a unique set of residues is quite common but, for certain base 

(the '2ln+1' form), Repeat Residues do exist for odd exponent and odd base which can 

also meet the stringent Root Gap Constraint given by Theorem (1.12), namely that the 

Root Gap must be less than the base. However, before discussing this, we shall show 

that skew-symmetry can offer some alternate views on FLT and has links to the 

complex plane. 

 

If we denote the value b with x in (2.5.1.1) and c as its mirror image about the centre-

point, i.e. c = a^n - b, then (2.6.1.1) becomes 

 

2.5.1.3 b^n = - c^n (mod a^n)  

 

We see that this is of the same form as the original Residue Condition (1.2.3) but with 

a negative sign, i.e. the residues are not identical but conjugate to each other. 

 

2.5.1.4 Definition: Skew Candidate Pair 

 

A pair (b,c) that satisfy the congruence (2.5.1.3) is termed a 'Skew Candidate Pair'. 

Rearranging (2.6.1.3) 

 

2.5.1.5 b^n + c^n = 0 (mod a^n) 

 

which implies, for integer k, 

 

2.5.1.6 b^n + c^n = k*a^n    (the Generalised Fermat Equation, section (1.8.2) ) 

 

If k were to equal unity we would have an FLT counter-example (a, b, c). However, 

by convention, a < b and a < c and we will see that k >= 2, as follows. 

 

By expanding b^n and c^n in the quotient, remainder form 
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2.5.1.7 b^n = p*a^n - r 

 

2.5.1.8 c^n = q*a^n + r 

 

and adding b^n and c^n we get 

 

2.5.1.9 b^n + c^n = (q + p)*a^n 

 

Comparing (2.5.1.9) with (2.5.1.6) we see that k is given by 

 

2.5.1.10 k = q + p 

 

By analogy with (1.3.3), which defines a Quotient Gap as the difference of q and p, 

we define a Quotient Sum, 'Qs' as follows 

 

2.5.1.11 Qs = q + p 'Quotient Sum, Qs' 

 

The value k in (2.5.1.10) is thus synonymous with the Quotient Sum 

 

2.5.1.12 Qs = k 

 

If we assume a < b, a < c, which can be made by initial choice of x such that x > a, 

(b = x^n, c = a^n - x in (2.6.1.1)), then the quotients q and p in (2.5.1.7) and (2.5.1.8) 

are such that 

 

2.5.1.13 q >= 1, p >= 1 

 

and therefore the Quotient Sum satisfies the inequality 

 

2.5.1.14 Qs >= 2 

 

That is, the Quotient Sum is always greater than or equal to 2. Alternatively stated, the 

coefficient k in the Generalised Fermat Equation is always greater than or equal to 

two. 

 

Because of this, the triple (a, b, c) is clearly not an FLT counter-example. However, k 

could be a perfect power in a similar fashion to (1.8.3) 
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2.5.1.15 k = l^n 

 

We would then have a triple  (b, c, la) which would be an FLT counter-example, i.e. 

 

2.5.1.16 b^n + c^n = (la)^n 

 

However, we now see that la > b and la >c and we get a new skew-symmetry in the 

residues similar to (2.5.1.3) as follows 

 

2.5.1.17 b^n = - c^n mod (la)^n 

 

If we re-label c with a and la with c, we get the 'Skew Residue Condition' 

 

2.5.1.18 b^n = -a^n (mod c^n)    (the Skew Residue Condition) 

 

And we see that we can achieve the same result by taking residues (mod c^n) of the 

original FLT equation (1.1.1). This Skew Residue Condition completes a trio of 

Residue Conditions, the other two being (1.2.3), (1.17.1) for the moduli a^n and b^n 

respectively. 

 

Reverting to (2.5.1.14), this Quotient Sum Condition shows that a general skew-

symmetry (mod a^n) cannot generate FLT counter-examples. Nevertheless we see 

that from (2.5.1.18) a Candidate Pair (a,b) (mod c^n) does satisfy a skew-symmetry 

condition. We have to conclude from this that Skew Candidate Pair (a,b) (mod c^n), 

must be produced via a different mechanism to that of skew-symmetry about a mid-

point, as given by (2.5.1.1). Indeed, since both a and b are less than c, when taking 

residues a^n (mod c) and b^n (mod c), the residues must be skew-symmetric, i.e. 

satisfy (2.5.1.18), within the interval c. This is effectively a Root Gap condition, 

analogous to that for a standard Candidate Pair (b,c) (mod a^n), see (1.10). Since this 

is not possible via a general skew symmetry of the form (2.5.1.1), the only mechanism 

that can do this is when c is also of the 2ln+1 form. This is quite a big conclusion, 

because we now require all three values a, b and c to be of the 2ln+1 form or have 

prime factors of this form. That is, not only must a and b be of 2ln+1 form, but now c 

too. 

 

2.5.2 Conclusion 

 

From the result in the last section on the form of c we conclude that, for integer m, 

arbitrary integer factor z, z >= 1, c can take the form 

 

2.5.2.1 c = z(2mn + 1) 

 

where the integers m and z are such that a, b and c remain co-prime, according to 

convention (0.3.4), and have the following ranges 
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2.5.2.2 m > 0, n > 0 

 

2.5.3 Summary 

 

Skew-symmetry offers us an alternative view-point. It shows we could possibly arrive 

at an FLT counter-example by studying skew-symmetric Residue Sequences, if we 

keep in mind that the modulus is c^n, as opposed to studying symmetric Residue 

Sequences, (mod a^n) or (mod b^n).We have also seen that there is always a Skew 

Residue Condition (2.5.1.18) equivalent of the Standard (1.2.3) and Dual Residue 

Conditions (1.17.1). 

 

That said, general skew-symmetry about a mid-point, as given by (2.5.1.1), can only 

provide a pointer to a triple (b,c,la) with the largest element 'la', composite, as in 

(2.5.1.16). This triple will then have to satisfy the Residue and Quotient Conditions 

for residues c^n (mod b^n) and (la)^n (mod b^n). We are back to having to be able to 

find Repeat Residues by a non-symmetric mechanism, namely, when the base a is 

prime of the form 2ln+1 or composite with one or more prime factors of the 2ln+1 

form. 

 

It is worth looking back at both odd and even exponents since (2.5.1.18) shows us that 

a skew-symmetry exists for both odd and even exponent if we take residues (mod 

c^n) of the FLT equation (1.1.1). For odd exponent the minus sign in (2.5.1.18) can be 

absorbed into 'a' as follows 

 

2.5.3.1 b^n = (-a)^n (mod c^n)    (odd exponent n) 

 

For even exponent we would have to put in a complex 'i' to achieve the same effect, as 

follows 

 

2.5.3.2 b^n = (ia)^n (mod c^n)    (even exponent n) 

 

In fact we could harmonise both (2.5.3.1) and (2.5.3.2) by using an 'nth root of unity u 

defined by 

 

2.5.3.3 u^n = - 1    (odd or even exponent n) 

 

such that 

 

2.5.3.4 b^n = (ua)^n (mod c^n)    (odd or even exponent n) 

 

It is of interest that the leap to usage of the complex plane and, in particular, the n'th 

roots of unity, seems almost unavoidable when studying FLT.  What is symmetric for 
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even exponent in the integers is skew-symmetric in the complex domain. Conversely,  

what is skew-symmetric for odd exponent in the integers, is skew-symmetric in the 

complex domain. 

 

The full depth of these observations is not discussed further in this paper as an aim of 

this paper, when studying the FLT equation, is to work in integers and integer 

constraints imposed by studying residues. Section (3) examines Unity Roots 'u', where 

u^n = 1 (mod a^n), which are modulo arithmetic equivalents of the complex roots of 

unity. In fact there is an isomorphism between Unity Roots and the complex n'th roots 

of unity. 

 

2.5.4 Theorem: Summation of a Candidate Pair (b,c) 

 

For odd exponent, if c and b are such that, for integer l, l > 0 

 

2.5.4.1 c + b = l*a^n 

 

then 

 

2.5.4.2 c^n + b^n = 0 (mod a^n) 

 

This theorem gives us a very simple method to construct Skew Candidate Pairs (b,c) 

by simply choosing any two numbers b and c that satisfy (2.5.4.1). Note that this is 

not the only method but it is a simple method valid for all odd exponents and arbitrary 

base a. Another method uses the Repeat Residue properties for base a of the 2ln+1 

form. 

 

Proof 

 

Re-arranging (2.5.4.1) for c in terms of b 

 

2.5.4.3 c = l*a^n - b 

 

Raising both sides to the n'th power and taking residues (mod a^n) we find that 

 

2.5.4.4 c^n = (- b)^n (mod a^n) 

 

For odd exponent we can take the minus sign outside of the rhs bracket 

 

2.5.4.5  (- b)^n = -(b^n) 

 

which gives 
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2.5.4.6 c^n = -(b^n) (mod a^n) 

 

And adding b^n to both sides we get 

 

2.5.4.7 c^n + b^n = 0 (mod a^n) 

 

Hence, for some integer l, l > 0 we get 

 

2.5.4.8 c^n + b^n = l*a^n 

 

and so the Theorem is proven. 

 

2.5.5 Generalised Fermat Equation 

 

The Generalised Fermat Equation, mentioned in (1.8.2) and (2.5.1.6) and reproduced 

below, is a much-studied equation in Number Theory. 

 

2.5.5.1 b^n + c^n = k*a^n    (the Generalised Fermat Equation) 

 

For odd n, the skew-symmetry of residues b and c, (mod a^n), as given by (2.5.1.3), 

gives rise to an infinity of solutions. 

 

If b is an arbitrary integer, 0< b < a ^n, and c is defined as its 'conjugate' 

 

2.5.5.2 c = a^n - b 

 

then clearly 

 

2.5.5.3 c^n = - b^n (mod a^n) 

 

and consequently, for some integer k, k > 0, also termed ‘Qs’, the Quotient Sum in 

(2.5.1.11), we can write 

 

2.5.5.4 c^n + b^n = k*a^n 

 

We showed in equation (2.5.1.14) that k (=Qs) was greater than or equal to 2. 

Obviously, if it were 1, we would have an FLT counter-example. 

 

The study of the possible values for k is outside the scope of this paper but a few 

values for n = 3 and n = 5 are given below. The values of k for which there are 

possible solutions can be found at Mathworld, ref [4], keyword 'Generalized Fermat 

Equation' (note the US spelling of Generalized with a ‘z’). 
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For n = 3, the first few published values are 

 

 k ={2, 6, 7, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 

  28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50...} 

 

For n = 5, the first few published values are 

 

 k ={2, 31, 33, 64, 211, 242, 244, 275, 486, 781, 942...} 

 

Since Skew Candidate Pairs (b,c), constructed according to (2.5.4.1), are in 

abundance, we can see that there must be many different values of the Quotient Sum 

k. If a is odd, prime, and not of the 2ln+1 form, there are in fact (a^n - 1) / 2 unique 

pairs (b,c). So, for 0 < b < (a^n - 1) / 2, it is probable that there are also (a^n - 1) / 2 

unique values for k. Of course, we needn't restrict ourselves to 0 < b < a ^n and we 

can construct a pair for any arbitrary value of b. 

 

A general pair (b',c') is constructed for 0 < b < (a^n - 1) / 2, integer l, m >= 0, as 

follows. Let b' and c' be defined as 

 

2.5.5.5 b' = l*a^n + b 

 

2.5.5.6 c' = m*a^n - b 

 

then we see that 

 

2.5.5.7 c'^n = - b'n (mod a^n) 

 

and therefore, for some integer k 

 

2.5.5.8 b'^n + c'n = k*a^n 

 

i.e. the pair (b',c') is a Skew Candidate Pair with a Quotient Sum k. 

 

2.5.5.9 Example 

 

To see how k varies, take a simple example 

 

Let 

 

a = 7, n = 3, l = 0, m = 1 
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then, by varying b from 1 to the mid-point at 171 ( = (7^3 - 1) / 2), i.e. 0 < b < 172, 

we get the following for b', c' and k 

 

b = 1, b' = 1, c' = 342, k = 116623 

b = 2, b' = 2, c' = 341, k = 115603 

b = 3, b' = 3, c' = 340, k = 114589 

 

b = 169, b' = 169, c' = 174, k = 29431 

b = 170, b' = 170, c' = 173, k = 29419 

b = 171, b' = 171, c' = 172, k = 29413 

 

The k value decreases monotonically from a high at b = 1 to a minimum at the mid-

point b = 171. We could see this by some algebraic manipulation of the differences 

( (b + 1)^3 - b) / a^3 ). That aside, it is noticed that k is relatively large, especially 

when looking at the published values for k which start at k =2. This is, of course, the 

lowest possible value k could be without there existing an FLT counter-example. This 

implies that our mechanism, shown above, to construct Skew Candidate Pairs is not 

that which leads to such low values for k. As mentioned, in section (2.2), there are 

several mechanisms for Repeat Residues. Whilst the '2ln+1' form of the base is 

strictly necessary to generate FLT counter-examples, where k = 1, other mechanisms, 

such as the exponent dividing the base, can provide smaller values of k than those 

listed above. Ultimately, however, it has to be the '2ln+1' mechanism that is 

responsible for producing the smallest k values. 

 

When the exponent divides the base a, i.e. n | a, we obtain a Minimal Residue 

Sequence of size n times smaller than a^n, i.e. a^n / n or a^n - 1, see section (2.2.2). 

By definition, consecutive Minimal Residue Sequences repeat n times within the full 

0 <= x < a ^n interval. Hence, Repeat Residues and skew-symmetric residues repeat at 

a much smaller interval. For instance, we can construct much more closely spaced and 

smaller absolute values of b' and c' since a^n in (2.5.5.5) and (2.5.5.6) is replaced by 

a^(n - 1). 

 

To get some smaller k values, let l = 0 and m = 1 then, if n | a,  

 

2.5.5.10 b' = b 

 

2.5.5.11 c' = a^(n - 1) - b 

 

To see how k varies in this case, take a simple example 

 

2.5.5.12 Example a = 6, n = 3 

 

This example shows how a smaller value for k can be obtained when the exponent n 

divides the base a. 

 

let 
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 a = 6, n = 3, l = 0, m = 1 

 

then the Minimal Residue Sequence size is 6^3 / 3 = 72. The midway point is 36 and 

so, repeating example (2.5.5.9), for a few values of b we get 

 

 b = 1, b' = 1, c' = 71, k = 1657 

 b = 2, b' = 2, c' = 70, k = 1588 

 b = 3, b' = 3, c' = 69, k = 1521 

 

 b = 33, b' = 33, c' = 39, k = 441 

 b = 34, b' = 34, c' = 38, k = 436 

 b = 35, b' = 35, c' = 37, k = 433 

 b = 36, b' = 36, c' = 36, k = 452 

 

We see that k is indeed a lot smaller if n | a. 

 

However, we can get even smaller values for k by ensuring that, within the Minimum 

Residue Sequence, there are also Repeat Residues. This we can do by making the base 

composite of form a =n*m where the other factor m is both prime and of the 2ln+1 

form. For n = 3, the smallest such base is a = 3*7 since 3 | 21 and 7 is of the 2ln+1 

form where l = 1. 

 

Using a computer, the following Skew Candidate Pairs have been extracted. Each 

Skew Candidate Pair, in the (b,c) notation, has been tabulated below with the k value 

in the second column. 

 
 (b,c)      k 

 ------- ------ 

 [17,37]    6 

 [28,35]    7 * 

 [54,57]   37 

 [56,70]   56 * 

 [91,98]   183 * 

 

* These Skew Candidate Pairs have a common factor of 7. This tells us, by Theorem 

(TBD) that, in fact, the a = 3, n = 3 case has the following Candidate Pairs, each with 

the same Quotient Gap. 

 
 (b,c)      k 

 ------- ------ 

 [13,14]  183 

 [4,5]    7 

 [8,10]   56 

 

We see that the k value has been considerably reduced to more within the range of 

published values. This was, of course, a one-off example and we might be able to 

identify other published values for other examples of the base. 

 

The first value, k = 6, is actually the second smallest published value for the exponent 

n = 3. The lowest published value is 2. It would be nice to obtain a Skew Candidate 

Pair that gives this k value - something we are working on. 
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Lastly, in the same study, a Candidate Pair (51, 60) was identified that satisfies the 

GFLT equation (1.9.1) and the Quotient Gap is 9, i.e.  

 

 60^3 = 51^3 (mod 21^3) 

 

 60^3 = 51^3 + 9*21^3 

 

It is actually of no coincidence that the pair [51, 60] = 3*[17, 20] since [17, 20] is a 

Candidate Pair for the prime factor 7 and Theorem (TBD) proves that if (b,c) is a 

Candidate Pair (mod s^n) then, for integers s and t, so too is the pair 

(t*b, t*c) (mod (s*t)^n). 

 

2.5.6 Theorem: Standard and Skew Candidate Pair Duality 

 

For every Candidate Pair (b,c), (mod a^n), odd exponent n, that satisfies the GFLT 

equation (1.8.1), there is an equivalent Skew Candidate Pair (b',c), where b' is the 

conjugate of b (mod a^n), such that (a, b', c) satisfies the Generalised Fermat Equation 

(2.5.5.1). 

 

Proof 

 

Since (b,c) are a Candidate Pair then, by definition 

 

2.5.6.1 c^n = b^n (mod a^n) 

 

hence, 

 

2.5.6.2 c^n - b^n = 0 (mod a^n) 

 

For odd exponent, this can be re-written 

 

2.5.6.3 c^n + (- b)^n = 0 (mod a^n) 

 

Defining b' as the conjugate of b 

 

2.5.6.4 b' = a^n + - b 

 

then 

 

2.5.6.5 b' = - b (mod a^n) 

 

and raising both sides to the n'th power gives 
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2.5.6.6 b'^n = (- b)^n (mod a^n) 

 

Substituting for (- b)^n from (2.5.6.6) into (2.5.6.3) we get 

 

2.5.6.7 c^n + b'^n = 0 (mod a^n) 

 

and therefore, for some integer k, k > 0, 

 

2.5.6.8 c^n + b'^n = k*a^n 

 

Taking residues (mod a^n) of (2.5.6.8) gives 

 

2.5.6.9 c^n = -(b'^n) (mod a^n) 

 

and we see that (b',c) form a Skew Candidate Pair and that, by (2.5.6.8), the triple 

(a, b', c) is therefore a solution to the Generalised Fermat Equation (2.5.5.1). 

 

Notes 

 

This Theorem establishes a correspondence between our GFLT Equation (1.8.1) and 

the Generalised Fermat Equation (2.5.5.1) i.e. a solution to one provides a solution to 

the other and any result arising from one can be applied to the other. 

 

It is easier to work with Candidate Pairs (b,c), rather than their skew-symmetric 

counterparts (b',c), because identifying b' entails matching a residue c^n (mod a^n), 

with a conjugate counter-part b', defined by (2.5.6.4). Whereas finding a Candidate 

Pair (b,c) involves simply finding two matching residues without any negation of 

sign, (b to -b in (2.5.6.4)), and then addition of a^n as in a^n + -b - also in(2.5.6.4)). 

 

2.5.6.10 Example 

 

n = 3, a = 7 

 

Let b = 20, c = 17 where, by design, (17, 20) is a Candidate Pair (mod 7^3) and 

therefore satisfies the following congruence relation 

 

 20^3 = 17^3 (mod 7^3) 

 

By (2.6.8.4) we get a value for b' of 326 since 

 

 b' = 7^3 - 17 = 326 

 

Thus, by Theorem (2.5.6), the Skew Candidate Pair (b',c) = (326,20) satisfies the 

congruence relation (2.6.8.9) 

 

 20^3 = -326^3 (mod 7^3) 
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and the triple (7, 326, 20) satisfies the Generalised Fermat Equation (2.5.5.1) where 

the integer k is 101032 

 

 20^3 + 326^3 = 101032*7^3 

 

This completes our discussion on skew-symmetric matters and we revert back to the 

2ln+1 form and a more intuitive discussion on where hence it originates. 

 

2.5.7 Why 2ln+1? 

 

A rigorous proof of the 2ln+1 form comes via Lagrange’s Theorem, see section 

(2.2.5) for a brief background to it. Also see Davenport [6] for a more formal 

explanation. 

 

As a start we will consider prime bases and discuss composite bases later since the 

theory for composites is essentially that of its prime factors. 

 

That the base is prime and of the form 2ln+1, integer l, l > 0, can be thought of as a 

divisibility condition on the base a, i.e. (2ln + 1) | a, that guarantees repetition of non -

zero residues x^n (mod a^n) within an interval 0 <= x < a^n. More importantly, some 

residues may repeat within a much smaller interval less than the base value a. The 

latter, smaller interval of size a allows for the possibility that any Repeat Residues 

may meet the Quotient Condition (1.4.3) by virtue of Theorem (1.12). 

 

For prime a, the number 'm' of unique, non-zero residues 'r', (mod a), as defined by the 

following equation, for integer x, 0 <= x < a, 

 

2.5.7.1 x^n = r (mod a) 

 

and subject to the condition 

 

2.5.7.2 n | (a - 1) 

 

is given by 

 

2.5.7.3 m = (a - 1) / n 

 

Since for every root x, residue r, there is always a conjugate root (a - x), residue -r, the 

condition (2.6.9.3) has to be tightened to 

 

2.5.7.4 2n | (a - 1) 

 

That is, for some integer l, l > 0, the base a must be of the form 
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2.5.7.5 a = 2ln + 1 

 

If n does not divide (a - 1) there are 'a' unique residues for prime a, i.e. if n !| (a - 1), 

then m = a. 

 

In other words, the '2l' of '2ln+1' is the number of unique, non-zero residues, 

x^n (mod a), prime a, 0 < x < a. The residues can be paired off since, for each unique 

residue r, there is a conjugate -r and hence the factor of 2 in '2l'. Each unique, non-

zero residue occurs n times and the +1 accounts for the single zero residue r = 0 at 

x = 0. Lastly, (a - 1) must be divisible by 2n and hence a = 2ln+1 for integer l, l > 0. 

 

2.5.7.6 Example 

 

If a = 7, n = 3, then m = 2 and there are two ( = (7 - 1) / 3) unique, non-zero residues 

(actually +1 and –1 where –1 = 6 (mod 7) ). The zero residue, x = 0, is the third and 

only other residue. 

 

2.5.7.7 Example 

 

If a = 13, n = 3, then m = 4 ( = (13 - 1) / 3) and, including zero, there are five unique 

residues (0, +1, - 1, +8, -8). 

 

2.5.7.8 Example 

 

If a = 5, n = 3 then since 6 !| (5 - 1), m = 5 and, including zero, there are five unique 

residues (0, +1, +2, +3, +4). 

 

2.5.7.9 Example 

 

If a = 11, n = 5 then since 5 | (11 - 1), m = 2 and, including zero, there are the 

minimum three unique residues (0, +1, - 1 where -1 = 10 (mod 11) ). 

 

2.5.8 Odd and Even Exponent Comparison 

 

The '2ln+1' condition applies to odd exponents and, for even exponents, the condition 

is a slightly more relaxed 'ln+1' form. So far we haven't discussed this ln+1 form 

since, in this paper, we really wanted to show that a symmetry argument and not 

Lagrange's Theorem is, in the case of the even exponent, n = 2, the responsible 

mechanism for generating Pythagorean triples. Furthermore, this symmetry argument 

leads to the standard analytic solution for such Pythagorean triples. On the other hand, 

for odd exponent, the symmetry is replaced by  skew-symmetry which can only give 

us solutions to the Generalised Fermat Equation (section (1.8.2)) but not FLT counter-

examples. 
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That there are exactly n solutions for a prime base P is not of particular significance in 

the arguments herein. The only matter of real importance is that there is always more 

than one root. This is so for even power exponents since they always possess at least 

two roots by virtue of symmetry in the Residue Sequence. Two solutions is enough to 

generate Repeat Residues, i.e. a Candidate Pairs. This would also be true for any even 

exponent n >= 4. So whether there are more than two solutions is of little 

consequence to the symmetry arguments presented. Nevertheless, four or more roots 

would only increase the likelihood of more Repeat Residues. Counteracting this bonus 

is the problem that as the exponent grows the Quotient Gap also grows rapidly for 

Candidate Pairs centred upon these symmetry points. Albeit, this hasn’t been 

rigorously proven and this is slightly deviating from the point. 

 

For odd exponent we don't have the point symmetry in the Residue Sequence and we 

do need another mechanism to Repeat Residues within a constrained range, that of the 

base, Theorem (1.12). This other mechanism is possible through the requirement that 

the base is of the '2ln+1' form. 

 

To generate solutions, in the Pythagorean case, the ln+1 form is n = 2l+1 since n = 2. 

That is, any prime, odd base will suffice to give exactly two solutions and hence 

Repeat Residues. Since we know that in all Pythagorean Triples (a, b, c) one member 

of the pair a and b is odd this confirms the ln+1 requirement. For example, with the 

prime base a = 3, we know that (3, 4, 5) is a Pythagorean triple and we know 

4^2 = 5^2 (mod 3^2) i.e. (4, 5) are two solutions which could arise as a consequence 

of the two Unity Roots. This might seem to confirm the ln+1 mechanism as providing 

Repeat Residues. 

 
[Note that in all our work the modulus (the n'th power of the base) is usually a^n, i.e. it is never 

actually prime but composite with a single factor 'a' when a is prime. However, this does not change the 

arguments on the number of roots for prime base. The base can be of the form ln+1 or be composite 

with one or more factors of the ln+1 form. For n = 2, this would only mean the base has one or more 

odd factors]. 

 

However, by duality arguments in section (1.17.1), we could get a similar result for 

the Pythagorean triple (3, 4, 5) using the base b = 4 since 3^2 = 5^2 (mod 4^2). But 

now the base is not of the ln+1 form and neither is its factor 2 of that form. Therefore 

we have Repeat Residues (4, 5) that do not arise by the ln+1 argument but, rather, by 

the symmetry of an even power exponent. The same applies to the Pythagorean triple 

(8, 15, 17) with base a = 8 and, in fact, it applies to any triple with the base a of the 

form a = 2^k, k >= 2 does not adhere to the ln+1 form. Contrast this with a general 

odd exponent, whereby ALL members of the triple (a, b, c) must be of the 2ln+1 

form. We are forced to conclude that the 'ln+1' form, arising from Lagrange's 

Theorem, is not wholly responsible for Pythagorean triples. 

 

If we study the n = 4 case, the smallest base of the ln+1 form is 5. The residue table 

for n = 4, a = 5 confirm there are four Unity Root solutions (see (7.2.2)) and we can 

find all other Repeat Residues in sets of four. Hence, any pair out of the four repeats 

could be a potential Candidate Pair. Nevertheless, Fermat himself proved that there 

are no solutions for the n = 4 case and we therefore know that we won't find any 

candidate Pairs that meet the Quotient Condition. It is slightly sad that solutions stop 

at n = 2! It would be nice if they stopped at n = 4 since we might be able to confirm 
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symmetry arguments for any solutions. On the other hand, if there were solutions, it is 

unlikely that FLT would have remained unproven for such a long time. 

 

In concluding, the ln+1 form, that produces n roots and therefore more than one 

Repeat Residue for n >= 2, is valid for odd and even exponents. But, at least for n = 2, 

it would not seem able to explain ALL Pythagorean triples. In particular those where 

the base is of the form 2^s, s > 1 and hence have no odd factors of the 2l+1 form. On 

the other hand, all Pythagorean solutions can be explained by symmetry in a Residue 

Sequence arising from an even power exponent. 

 

We thus conclude tht it is a symmetry in the residue sequence that generates 

Pythagorean Triples and that Lagrange's Theorem is not the responsible mechanism 

for all solutions. 

 

2.5.9 Repeat residues (mod a) 

 

To re-cap, by Theorem (1.12), it is a necessity that for any FLT counter example 

(a, b, c) the residues for a Candidate Pair (b,c) repeat within an interval, termed the 

'Root Gap', section (1.10), of size less than the base a, i.e. 0 < Rg < a. Dual arguments 

also apply for the Candidate Pair (a,c) (mod b^n). For even exponent this is an easy 

requirement since the residues are symmetric about a mid-point. In particular, those 

immediately either side of the mid-point are essentially back-to-back with a Root Gap 

of 1 for odd base a and 2 for even base a. Such Candidate Pairs are numerous for 

Pythagoras and such pairs also meet the Quotient Condition, hence there are 

numerous Pythagorean Triples. For even exponent n >2, i.e. n = 4 etc, the symmetry 

is still present and there are also numerous Candidate Pairs. Nevertheless, such pairs 

no longer meet the Quotient Condition since the exponent causes the quotients to 

grow rapidly. On the other hand, such a large Quotient Gap could still be a perfect 

square. 

 

For odd n, there is no longer an automatic supply of Repeat Residues since the 

symmetry is no longer present. Nevertheless, there is the ‘2ln+1’ mechanism to give 

Repeat Residues (mod a) and, consequently, also the possibility they may repeat 

(mod a^n) within the Root Gap interval 0 < Rg < a. Thus, also providing a Candidate 

Pair (b,c) that satisfies the Quotient Condition and which might, ultimately, be an FLT 

counter-example. 

 

If a residue repeats (mod a^n) it always repeats (mod a^(n - 1)), (mod a^(n -2)) etc 

down to (mod a), i.e. if (b,c) is a Candidate Pair then b and c also have identical 

residues (mod a^(n - 1)), (mod a^(n -2)) etc. all the way down to (mod a). 

 

This is easily seen since, given that b and c are a Candidate Pair (b,c), where 

 

2.5.9.1 b^n = r (mod a^n) 

 

and 
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2.5.9.2 c^n = r (mod a^n) 

 

then, expressed in the quotient, remainder form b^n, and c^n are 

 

2.5.9.3 b^n = p*a^n + r 

 

2.5.9.4 c^n = q*a^n + r 

 

and, by rearranging the quotients, we see that 

 

2.5.9.5 b^n = (p*a)*a^(n - 1) + r 

 

2.5.9.6 c^n = (q*a)*a^(n - 1) + r 

 

and so 

 

2.5.9.7 b^n = r mod a^(n - 1) 

 

2.5.9.8 c^n = r mod a^(n - 1) 

 

Thus, b and c are congruent (mod a^(n - 1)), i.e. 

 

2.5.9.9 b^n = c^n mod a^(n - 1) 

 

and therefore form a Candidate Pair mod a^(n - 1). 

 

We can continue in this way down to n = 1, i.e. (mod a), such that 

 

2.5.9.10 b^n = c^n (mod a) 

 

and hence b and c also form a Candidate Pair (mod a). 

 

All Candidate Pairs (b,c) (mod a^n) are therefore also Repeat Residues (mod a). The 

converse is rarely true, i.e. most Repeat Residues (mod a) are not Candidate Pairs 

(mod a^n). Nevertheless, if a residue does not repeat (mod a) it will not repeat (mod 

a^n). Thus, we do need repetition of residues (mod a) as a starting point to find 

residues (mod a^n). Alternatively stated, if the residues x^n (mod a) are all unique, 

which they are if condition (2.5.7.4) is false, i.e. (a - 1) is not divisible by 2n, then 

there will be no Repeat Residues x^n (mod a^n) within an interval of size a. 

Consequently, there will be no Candidate Pairs (b,c) (mod a^n) such that the Root 
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Gap is less than a and, by Theorem (1.12), the Quotient Condition will never be met 

for any Candidate Pair (mod a^n). 

 

We now look in more detail at the repetition of residues (mod a), where a is prime. 

 

Considering the residues r for values of x, 0 <= x < a, given by the following 

 

2.5.9.11 x^n = r (mod a) 

 

Firstly, for any n, odd or even, and any base, composite or prime, there is always a 

zero and unity residue since, for x = 0 and x = 1, 

 

2.5.9.12 0^n = 0 (mod a) 

 

2.5.9.13 1^n = 1 (mod a) 

 

Additionally, for odd n, there is always a negative Unity Root since 

 

2.5.9.14 -1^n = - 1 (mod a) 

 

Thus, for odd n, n >= 3, the minimum number of unique residues (mod a) is 3 and 

they are - 1, 0 and +1. 

 

The zero residue occurs only once and is its own conjugate, i.e. -0 = +0. On the other 

hand, for each occurrence of residue +1, there is a corresponding 'conjugate' residue -

1 since if 

 

2.5.9.15 x^n = 1 (mod a) 

 

then 

 

2.5.9.16  (a - 1)^n = -1 (mod a) 

 

The values of x which have a unity residue +1 are given by solving the following 

Diophantine equation 

 

2.5.9.17 x^n = 1 (mod a) 

 

Obviously x = 1 is always a solution as in (2.5.9.13). If (2.5.9.17) were an algebraic 

polynomial x^n = 1 it would, by the Fundamental Theorem (ref TBD) have n roots. 

For such a polynomial, these Unity Roots are termed the nth roots of unity. For odd n, 

n - 1 of these n roots are complex and one is real, namely x = 1. 
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In the case of the Diophantine polynomial (2.5.9.17), where we want unique integer 

solutions, there are not always n of them for arbitrary a. If, however, there is a Unity 

Root other than x = 1, then there will be n of them. In other words, there is either one 

or n Unity Roots for certain values of a. Similarly, if there is a negative Unity Root 

other than x =- 1 then there will be n of them. For prime a there will also be a single 

solitary zero root (mod a) and so we have thus accounted for 2n+1 residues. Since 

there can at most be 'a' residues (mod a), unique or otherwise, the 2n+1 residues must 

fit into this set. As a minimum then, a must be of size 2n+1 for odd n. 

 

Thus, for any odd, prime base of the form 2n+1 there will always be 2n values of x 

which have a residue of +1 or -1 and a single zero root. This leaves no room for any 

other residues and the only n'th order residues (mod a) are {0, +1, -1}. 

 

The smallest odd exponent under consideration is n = 3 and, if a = 7, hence 2n+1= 7, 

we will only get the residues 0, +1 and -1 and no others. Looking at the first seven 

entries in the Residue table for a = 7, n = 3 (fourth column in the table below) 

confirms this. Note that -1 = 6 (mod 7) hence the appearance of 6 and not -1 in 

column 4. 

 
 

      Residue Table a = 7, n = 3 

   x        x^n    residue  residue quotient 

                 (mod a^n)    mod a         

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          8          8        1        0  

   3         27         27        6        0  

   4         64         64        1        0  

   5        125        125        6        0  

   6        216        216        6        0  

 

Notes 

 

Although the residues (mod a) repeat within the interval 0 <= x < a, the residues (mod 

a^n) do not repeat. In fact, residues x^n (mod a), prime a, 0 <= x < a will not repeat 

since x^n < a^n. This applies to all a, prime or composite, arbitrary exponent n. Hence 

there are never Repeat Residues (mod a^n) in any interval where 

k*a^n <= x < (k*a^n) + a, integer k, k >= 0, i.e. they are all unique. One consequently 

would not look for Candidate Pairs (b,c) within this particular interval. Furthermore, 

the minimum gap between repetition of a residue (mod a) is therefore a. In such a 

case, by Theorem (1.12), any Repeat Residues (mod a) cannot meet the Quotient 

Condition and, hence, a unique Residue Sequence (mod a) is of no consequence re 

possible FLT counter-examples. 

  

The case a = 7, n = 3 is one of an infinite set of cases where there are only three 

unique residues 0, +1 and -1. a = 7 is the smallest possible prime value. If a = 3 or 5, 

the Residue Sequence is unique - for a = 3 it is {0, 1, 2} and, for a = 5, the sequence is 

{0, 1, 3, 2, 4}. This is also the case for any prime that is not of the 2ln+1 form.  In the 

case a = 7 the integer 'l' in (2.5.7.5) is 1. We can see from (2.5.7.5) that for any case 

where a = 2n + 1, i.e. l = 1, there will only be three unique residues (mod a). The fact 
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that, for any x, prime base a, 0 < x < a, it's residue x^n (mod a) will be either +1 or -1 

can form the basis of a primality test ‘MFST’ which we have detailed in section (4.5). 

MFST is an abbreviation of 'Modified Fermat's Small (Little) Theorem'. However, it 

is basically the more commonly known 'Strong Pesudo-Prime Test'. 

 

To quickly recap, if a is prime and of the 2n+1 form then there are guaranteed n Unity 

Roots such that x^n = 1 (mod a) and also n conjugate Unity Roots such that x^n = - 1 

(mod a). Additionally, there is the single zero root x = 0. The entire set of residues 

x^n (mod a), 0 <= x < a, is {0, +1, -1}. Since there are multiple roots for each non-

zero residue, each residue effectively repeats (mod a) and, from the discussion 

following (2.5.9.10), this may mean that there are some Repeat Residues (mod a^n) 

which might meet the Quotient Condition and hence would be FLT counter-examples. 

 

So far we have restricted ourselves to the residues 0, +1 and - 1. If a is of the 2ln + 1 

form where l >1, then there will be other residues r, equation (2.5.9.11) where |r|>1, 

which also repeat. For instance, if a = 13, n = 3, then l = 2 and, of the 13 possible 

residues, one will be zero, three will be +1, three will be minus –1. This leaves six 

possible non-zero, non-unity residues remaining. In fact, there are only two other 

unique residues for a = 13, n = 3 since they too will repeat three times each and thus  

account for the remaining six. These two residues are 5 and 8 and the residue 8 is 

actually conjugate to 5 (mod 13) and vice versa, i.e. -5 = +8 (mod 13). The entire 

residue set is thus {0, +1, -1, +5, -5}. Note that in the language of n'th order residues, 

+1, +5, -1 and -5 are cubic residues of 13. For even exponent, n = 2, this is the much-

studied subject of 'Quadratic Residues', see ref [6] for more details on the subject. 

 

The first 13 entries x^n (mod a), 0 <= x <13, are shown in the residue table below, 

fourth column. Note that 12 = -1 (mod 13) hence the residue value 12 is shown 

instead of -1. 

 
 

      Residue Table a = 13, n = 3 

   x        x^n    residue  residue quotient 

                 (mod a^n)    mod a         

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          8          8        8        0  

   3         27         27        1        0  

   4         64         64       12        0  

   5        125        125        8        0  

   6        216        216        8        0  

   7        343        343        5        0  

   8        512        512        5        0  

   9        729        729        1        0  

  10       1000       1000       12        0  

  11       1331       1331        5        0  

  12       1728       1728       12        0  

  13       2197          0        0        1  

 

The key point here is not the specific value of the extra, unique residues 5 and 8 but 

that they also repeat n times where n = 3. In other words, we have yet more Repeat 

Residues (mod a) in addition to the +1 and - 1 residues that might also repeat (mod 

a^n). A glance at the table above shows that not only do they repeat but, for example 
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in the case of r = 8, we see that the repeats occur for consecutive values of x = 5 and 

x = 6. This gives a unity Root Gap and, should this repetition also occur (mod 13^3), 

then we would have a Candidate Pair (5,6) with a Root Gap of unity that would have a 

good (ish) chance of meeting the Quotient Condition. Of course, as shown above, 

x = 5 and x = 6 are NOT such that 5^3 = 6^3 (mod 13^3) so (5, 6) is not a Candidate 

Pair (mod 13^3). However, since all residues x^n (mod a) repeat at 

(x + k*a)^n (mod a), we know that the residue for x = 5 will repeat at 5 + k*13, 

similarly the residue at x = 6 will repeat at 6 + k*13 and maybe, therefore, there exists 

some integer k such that (5 + k*13)^3 = (6 + k*13)^3 (mod 13^3) in which case the 

pair (5 + k*13, 6 + k*13) is a Candidate Pair (mod 13^3). In a dream-world of FLT 

counter-examples, such a pair might meet the Quotient Condition! 

 

That the other unique, non-zero residues (mod a) also repeat n times when a is prime 

is basically because, for certain residues r, there are n integer roots to the equation 

(2.5.9.11). Since each root has a conjugate there are n roots for r and always n roots 

for -r, each residue pair r and -r consumes 2n roots. If we started with the basic 

residue set {0,+1,- 1}, prime a, a = 2n+1 and then added another root for residue r, the 

residue set would then be {0, +1, -1, +r, -r} and we would have to accommodate 

another 2n values of x, hence a grows from 2n + 1 to a = (2n + 1) + 2n, i.e. 

a = (2*2n) + 1. Any value of a between 2n + 1 and 4n + 1 would not be able to fit 

enough integer roots. We can therefore see that if we keep incrementing the base by 

2n and, ensuring it remains prime, it will always be of the 2ln+1 form and will 

provide multiple (copious) Repeat Residues. 

 

2.5.10 Repeat residues (mod a^n) 

 

The previous section (2.5.9) discussed Repeat Residues (mod a). However, that is a 

stepping stone to what is really required namely, Repeat Residues (mod a^n). 

 

The transition from residues (mod a) to (mod a^n) is actually very simple. This is 

because we have not actually changed the degree of the Diophantine equation, only 

the modulus from a to a^n. If we can handle all values of a then amongst them would 

be those where a was a perfect nth power, e.g. a = k^n. 

 

The condition that the base is prime, of the form 2ln+1, remains for now as regards 

derivation of some equations. A discussion on composites is deferred to Sections 

(2.5.14) and (3.9.2). Nevertheless we shall assume the results can be extended to 

composites and will often refer to the base as either prime of the 2ln+1 form, or 

composite of 2ln+1 form. 

 

To meet the Root Gap Constraint (1.12) we require, by necessity, that residues repeat 

within an interval of size a and this can only occur if the residues repeat (mod a). For 

repetition of residues, therefore, the value of the base remains constrained to prime of 

the form 2ln+1 or composite with one or more prime factors of form 2ln+1. 

 

Considering the residues x^n (mod a^n), 0 <= x < a^n. 
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2.5.10.1 x^n = r (mod a^n) 

 

As for section (2.5.9), we know that for odd n, and any base, composite or prime, the 

0, +1 and -1 residues are always present. 

 

2.5.10.2 0^n = 0 (mod a^n) 

 

2.5.10.3 1^n = 1 (mod a^n) 

 

2.5.10.4 -1^n = -1 (mod a^n) 

 

Since the modulus a^n is effectively composite, with the single factor a repeated n 

times, we now have multiple zero residues at integer multiples of k (mod a^n), i.e. for 

integer k, k >= 0, (k*a)^n = 0 (mod a^n). Since zero residues now occur at intervals of 

a throughout the entire range 0 <= x < a^n, the number of zero residues 'Nz' is now 

given by 

 

2.5.10.5 Nz = a^n / a 

 

and we have a^(n - 1) of them 

 

2.5.10.6 Nz = a^(n - 1) 

 

This leaves the number of available non-zero residues 'Nnz' as 

 

2.5.10.7 Nnz = a^n - Nz 

 

Substituting for Nz from (2.5.10.6) into (2.5.10.7) gives 

 

2.5.10.8 Nnz = a^(n-1) * (a - 1) 

 

and substituting for a from (2.5.7.5) into (2.5.10.8) gives 

 

2.5.10.9 Nnz = a^(n-1) * 2ln 

 

The number of non-zero residues is consequently a multiple of 2n which is a 

requirement for repeat residues (mod a^n). 

 

As for (mod a), there can be n Unity Roots, (mod a^n), given by solving the following 

Diophantine equation 
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2.5.10.10 x^n = +1 (mod a^n) 

 

and, for each occurrence of the residue +1 at root x, there is a corresponding 

'conjugate' residue '-1' (mod a^n) at root (a^n - x), hence there are also n conjugate 

roots 

2.5.10.11 x^n = -1 (mod a^n) 

 

Similarly, and more generally, if there is a root x such that 

 

2.5.10.12 x^n = +r (mod a) 

 

then there are n of them and there will also be n conjugate roots (a^n - x) where 

2.5.10.13 (a^n - x)^n = -r (mod a^n) 

 

Exactly as for the (mod a) case, we see that a root and its conjugate occupy 2n values. 

Since we make no distinction on the non-zero residue r, (2.5.10.12), all pairs of roots 

x, -x for residues r, -r respectively, will occupy some multiple of 2n and thus we 

require the number of non-zero residues to be a multiple of 2n. Indeed equation 

(2.5.10.9) shows us this is the case if the base is of the form 2ln+1. 

 
[Note that 2ln+1 could actually be composite here. However, referring right back to Lagrange's 

Theorem and in particular, equation (2.2.5.7), the base used in that derivation is assumed prime. We 

require the primality condition for the case (mod a) and we will keep with it for this (mod a^n) 

discussion. In fact, the base can be composite of 2ln+1 form but only if it also has one or more factors 

of 2ln+1 form. If it is composite of 2ln+1 form but has no factors of this form then it will not produce 

the desired repetition of residues and we therefore reject those cases since they will not produce repeat 

residues with an interval of the base, see the previous section (2.5.9). For example, if n=3 then a=25 is 

composite of 2ln+1 form but has a repeat factor of 5 which is clearly not of 2ln+1 form. We would 

therefore reject this case since all the residues x^3 mod 5, 0 <= x < 5 will not repeat.] 

 

Returning to the main discussion, we see that, for every non-zero residue r which is an 

nth order residue (mod a^n), there will be n roots if the base is prime of the form 

2ln+1 or composite with at least one prime factor of the form 2ln+1. 

 

Conversely, if the base is not of the desired form then each residue r is unique and 

occurs once only if the base is prime. Alternatively, if the base is composite, with no 

factors of the form 2ln+1 and/or it is not divisible by the exponent n, Repeat Residues 

can occur but not within the Root Gap requirement, and these cases have been prior 

rejected, see section (2.2). For composites, with a prime factor of the form 2ln+1, we 

are only interested in values of x which are co-prime to the base for the reason of 'co-

primality in pairs' (0.3.4). 

 

Notes 

 

The 'Unity Root' equation (2.5.10.10) is of key importance in the further development 

of this work, primarily on unifying all the mechanisms for repetition of residues for 

both odd and even exponent. This subject is discussed extensively in section (3). 
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2.5.10.14 Exponent n = 3, base a = 5 

 

The base a = 5 is the smallest value for a such that it is neither composite nor is it 

divisble by the exponent. Since it is not of the form 2ln+1 then, from what has been 

said prior in this section, all its non-zero residues x^n (mod a^n) should be unique in 

the 0 <= x < 5^3 interval. The residue table, section (7.1.4), confirms this. For each x, 

where x is not a multiple of 5, there is a unique, non-zero residue r. 

 

2.5.10.15 Exponent n = 3, base a = 7 

 

This is the smallest case for both the base and odd exponent, which permits Repeat 

Residues within the constraints of the Quotient Condition. The Residue Table is given 

in section (7.1.5). 

 

The first and, as we shall see later, most important residue is r = 1 for which the Unity 

Roots are found by inspection to be 1, 18 and 324. That 324 = 18^2 is actually no 

surprise since Unity Roots are cyclic. This is fully discussed in Section (3). 

 

If we look at the residue r = 8 as an example of a non-unity residue, we see this 

residue repeats three times at x = 2, x = 36 and and x = 305. Indeed, those residues 

that do repeat repeat three times, as expected, since the exponent n = 3. This can be 

verified by picking a value for x at random, except where x is a multiple of 7 and 

therefore has a zero residue, and checking the repetition of its residue (mod a^n) 

occurs three times, including its first occurence at x. 

 

Since a = 7, n = 3 has Repeat Residues, do any residues repeat within an interval of 

size a? The answer is yes - the smallest x for which this occurs is x = 17, r = 111 

which repeats again at x = 20 and x = 306. Therefore, assigning b = 17 and c = 20, the 

pair (17, 20) is a Candidate Pair (mod 7^3) with a Root Gap, Rg = 3 (= 20 - 17). Not 

surprisingly, the Quotient Gap is not unity but 9 (= 23 - 14) since the quotients are 

p = 14 and q = 23 for b = 17 and c = 20 respectively, see column 5. Because the pair 

(17, 20) do have identical residues they are a solution to the GFLT equation, see 

Example (1.8.8). 

 

Actually, the Candidate Pair (17, 20) (mod 7^3) could be rejected immediately, 

without recourse to checking the Quotient Condition, for three separate reasons a) to 

c) outlined as follows: 

 

a) Theorem (1.15) asserts that the middle value 'b' of the triple (a, b, c) is always 

composite. Here the middle value of the triple (7, 17, 20) is 17 which is prime so we 

can reject it immediately. Note that even if b were composite, the Dual Residue 

Condition (1.17.1) implies that the middle value must have one or more prime factors 

of the form 2ln+1. 

 

b) By the Dual Residue Condition (1.17.1), the pair (7, 20) (mod 17^3) is not a Dual 

Candidate Pair since 7^3 != 20^3 (mod 17^3). 

 

c) By Theorem (1.14) since a is prime, the Root Gap must be unity but, since the Root 

Gap here is 3 (= 20 - 17), we can reject (17, 20). 
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Including the Quotient Condition, and reasons a) to c) above, we have four reasons to 

reject (17, 20) as a potential FLT counter-example. Even without any reference to 

other published FLT work, that Candidate Pairs such as (17, 20), with a Root Gap less 

than the base, appear nowhere near in abundance to those for even exponent would 

hopefully make one appreciate the scarcity of any potential FLT counter-examples. 

 

For each Candidate Pair there is always a conjugate Candidate Pair since every x, has 

a conjugate a^n - x. Thus the Candidate Pair conjugate to (17, 20) is (323, 326) which 

shares the residue r = 232. 

 

By Theorem (1.14) we could reject this pair (323, 326) immediately since it has the 

same, non-Unity Root Gap as (17, 20) and will not therefore meet the Quotient 

Condition. 

 

The residue r = 232 (above) is conjugate to the residue r = 111, common to (17, 20). 

However, as x becomes much larger than the base, here x = 323, the quotients are 

growing rapidly for each increment in x. The quotient p for b = 323 is 98245 and the 

quotient q for c = 326 is 101008 and so the Quotient Gap is 2763 - nowhere near 

unity. This emphasizes that even for the smallest of exponents any Candidate Pair 

must be found near the start of the table. 

  

However, all is not quite lost yet. With a = 7, n = 3. The pair (17, 20) is not the only 

Candidate Pair with a Root Gap less than the base. In fact, there is always at least two 

'Consecutive Identical Residues', see sections (1.11) and (4.2). 

 

The residue r = 309 at x = 120, repeats at x = 121. Thus (120, 121) is a Candidate Pair 

with a Root Gap of unity. So too is the Conjugate pair (222, 223) whereby 

222 = 7^3 - 121 and 223 = 7^3 - 120. However, it is evident that even at x = 120, the 

Quotient Gap is 127 (= 5164 - 5037). Furthermore, b = 120 is far geater than Bmax 

which is 18.5, to 1 dp, for a base a = 7, see Example (1.19.3). 

 

This simple example highlights the numerous tests that can be applied to any 

Candidate Pair. Firstly one has to identify a Candidate Pair (b,c). The Root Gap has to 

be unity for prime base, i.e. the pair (b,c) must be consecutive (c = b + 1); by the Dual 

Residue Condition, the pair (a,c) must also be a Candidate Pair (mod b^n). 

Furthermore, both a and b must be of the 2ln+1 form and b must also be composite. 

By the Skew Residue Condition, the pair (a,b) must be a Skew Candidate Pair and c 

must also be of the 2ln+1 form. 

 

We can put an upper bound 'Bmax' (1.19) on the value b, above which the Quotient 

Gap between consecutive x, i.e. x and x + 1, is always two or greater, i.e. any 

Candidate Pair cannot meet the Quotient Condition. Hence, if b >= Bmax, the 

Candidate Pair can be rejected. Similarly, for the Dual Residue table, we can put an 

upper bound on the value of c (C’max, section (1.20)) for the Candidate Pair (a,c) 

(mod b^n) such that the absolute value of the quotient, q' is always two or greater. 

 

This concludes our discussion on the repetition of residues (mod a^n) and we now 

make a quick digression into Conjugate Candidate Pairs. Section (2.5.14) returns to a 
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short discussion on composite base and Section (2.5.15), following it, discusses the 

Dual base b. [Note that we shall re-order the sections in a later issue of this work.] 

 

2.5.11 Theorem: Conjugate Candidate Pairs 

 

If (b,c) is a Candidate Pair (mod a^n), then the Conjugate Pair (a^n - c, a^n - b) is also 

a Candidate Pair (mod a^n). 

 

Proof 

 

By the arithmetic of congruences, the Conjugate Candidate Pair satisifies the 

following relation 

 

2.5.11.1 (a^n - b)^n = - b^n (mod a^n) 

 

2.5.11.2 (a^n - c)^n = - c^n (mod a^n) 

 

But since (b, c) are, by definition, a Candidate Pair then 

 

2.5.11.3 b^n = c^n (mod a^n) 

 

And so equations (2.5.11.1) and (2.5.11.2) imply that 

 

2.5.11.4  (a^n - b)^n = (a^n - c)^n (mod a^n) 

 

Hence (a^n - b)^n and (a^n - c)^n are congruent (mod a^n) and are therefore a 

Candidate Pair (mod a^n). 

 

2.5.12 Theorem: Conjugate Pair Root Gap 

 

The Candidate Pair (b,c) (mod a^n), odd exponent n, has the same Root Gap as the 

Conjugate Candidate Pair (a^n - c, a^n - b). 

 

Proof 

 

Since b < c by definition then 

 

2.5.12.1 a^n - c < a^n - b 

 

and since, by Theorem (2.5.11), a^n - c and a^n - b are a Conjugate Candidate Pair 

then the Root Gap is, by analogy with (1.10.1), given by 
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2.5.12.2 Rg = (a^n - b) - (a^n - c) 

 

which reduces to 

 

2.5.12.3 Rg = c - b. 

 

But, by (1.10.1), the Root Gap of the Candidate Pair (b,c) is also (c - b) and hence the 

Root Gap of a Candidate Pair is the same as that of the Conjugate Pair. 

 

2.5.13 Theorem: Conjugate Pair Bmax 

 

If (b,c) (mod a^n) is a Candidate Pair, odd exponent n, such that b < Bmax, then the 

Conjugate Candidate Pair (b',c') (mod a^n), where b' = a^n - b and c' = a^n - c, cannot 

meet the Quotient Condition. 

 

Proof 

 

If b < a^n / 2 then the conjugate value, b' = a^n - b, is such that b' >= a^n / 2. But for 

all n >=3, if 

 

2.5.13.1 b < Bmax 

 

and, using (1.19.1.5), 

 

2.5.13.2 Bmax < (a^n) / 2 

 

then (2.5.13.1) implies 

 

2.5.13.3 b < (a^n) / 2 

 

The conjugate value b' is defined as 

 

2.5.13.4 b' = (a^n) - b 

 

Using inequality (2.5.13.3) this implies 

 

2.5.13.5 b' > a^n / 2 

 

and, using (2.5.13.2), we have 

 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

103 

2.5.13.6 b' > Bmax 

 

Hence if b < Bmax then the conjugate value b' is such that b' > Bmax and therefore, 

by Theorem (1.19.1), any Conjugate Candidate Pair (b',c') has a Quotient Gap greater 

than unity. 

 

The practical side of this result is that we need not investigate a Conjugate Candidate 

Pair (b',c') (mod a^n) if we have rejected the Candidate Pair (b,c) (mod a^n) where 

b < Bmax. This can be extended for b >= Bmax. Defining the Quotient Gap of the 

pair (b,c) as Qg, and that of the conjugate pair (b',c') as Qg' then, if b' > c', by the same 

arguments in the proof of Theorem (1.19.1), Qg' > Qg. 

 

2.5.14 Composite Base 

 

The Remark at the end of Section (1.14) states that we have to consider composite 

base if we wish to restrict ourselves to unity Quotient Gaps. This is a shame but, if we 

were to restrict ourselves exclusively to prime a, we would have to widen our 

investigations to accommodate Quotient Gaps that are a perfect power. 

 

That said, the transition from prime base to composite is minimal. Instead of the base 

being prime, of form 2ln+1, the only requirement for composite base is that it has one 

or more prime factors of the form 2ln+1. 

 

Examining a residue table for prime base a, a of the 2ln+1 form, will show each and 

every residue repeats n times. If we look at a simple composite 2a, then the residue 

table mod (2a)^n will still have all the original residues (mod a^n), albeit multiplied 

by 2^n. For example x^n (mod a^n) maps to (2x)^n (mod (2a)^n). Although the 

residue value changes from r to (2^n)*r, any Repeat Residue y^n (mod a^n), such that 

x^n = y^n (mod a^n) will still be a Repeat Residue (mod (2a)^n) such that 

(2x)^n = (2y)^n (mod (2a)^n). In essence, a Candidate Pair (mod a^n) is also a 

Candidate Pair (mod (2a)^n). That said, even in this simple composite example, 

Candidate Pairs such as (2x, 2y) (mod (2a)^n) have a common factor '2' giving the 

triple (2x, 2y, 2a) a common factor of 2, i.e. co-primality in pairs is lost. We would 

then be better off reverting to studying the residues (mod a^n) where a is the original 

prime factor. We could, of course, study the prime factor 2^n too. It would be nice to 

dismiss all composites so easily. However, what we really have to consider, for a  

composite like 2a are those values of x that are co-prime to 2a, i.e. GCD(x, 2a) = 1. 

Such co-prime x do have Repeat Residues too when the composite base has a factor 

of the form 2ln+1. In brief, we needn't have prior stressed primality of the base, 

merely co-primality between all three member a, b or c, regardless of which one is the 

base.  

 

However, returning to composites, although no proof is supplied here we can at least 

reason as per section (2.5.7) why Repeat Residues still occur for x, co-prime to the 

composite base. Reverting to the simple example of the composite 2a, where a is 

prime of the form 2ln+1. From what has been said in the prior paragraph, half of the 

sequence of residues x^n (mod (2a)^n), 0 <= x <2a, (all the even values x) are 

basically the same as in the (mod a^n) case but multiplied by a factor 2^2. 

Consequently, if two even values (b,c) repeat (mod a^n), they repeat (mod (2a)^n). 
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We are not interested in these values because they contain a common factor of 2 

shared with the base and therefore any potential FLT counter-example triple (b, c, 2a) 

is not co-prime in pairs - we may as well revert to studying residues (mod a^n). 

 

The even half of the residue sequence is of size 2ln+1 and so too, not surprisingly, is 

the odd half x since if a = 2ln+1, then 2a = 2*(2ln + 1) and 0 <= x < 2a. For odd x 

(not divisible by prime a either), there is a residue r such that x^n = r (mod (2a)^n). 

This is an nth order Diophantine equation and, for x co-prime to the base, has n 

solutions. Similarly, there will be a conjugate residue -r with n conjugate solutions -x, 

where (-x)^n = -r (mod (2a)^n). For each residue r and -r, there are n values for x and 

n values for -x and we can see that by identical arguments to those used in (2.6.9), we 

can accommodate, without gaps, an integral number of them in the 2ln+1, odd half of 

the Residue Sequence, allowing for the zeros, (mod a^n). If the odd half, and 

therefore also the even half, were not of the 2ln+1 form then there might be n roots for 

some residues and only say 2 or 3 roots for others. This would leave a rather 

asymmetric pattern and beg the question, why favour some residues and not others? In 

fact, it is a case of all or nothing. For an arbitrary value r there are either n solutions x, 

such that x^n = r (mod (2a)^n), or there are none when r is not an n’th order residue of 

the modulus. Obviously, not every integer value 0 <= r <2a can have a solution since 

there simply wouldn't be enough space if any one residue repeated more than once. 

The only other acceptable scheme occurs if a is NOT of the 2ln+1 form. In which case 

every x has a unique residue r and vice versa, excepting the zero residues occurring 

for any x^n divisible by (2a)^n. 

 

2.5.15 Dual Case (mod b^n) 

 

So far most discussion has been on Repeat Residues (mod a) or (mod a^n). However, 

the same arguments apply equally in the Dual case of Repeat Residues (mod b) or 

(mod b^n). 

 

Thereom (1.15) asserts that the middle value 'b' of a triple (a, b, c) is always 

composite and, since the modulus of a Dual Residue Table is b^n, this implies the 

modulus is consequently composite. From discussions in (2.5.7) and (2.5.14), if there 

are to be any Repeat Residues a and c such that the Dual Candidate Pair (a,c) (mod 

b^n) can meet the Quotient Condition, the base b must have a prime factor of 2ln+1 

form. However, since a is either prime of the form 2ln+1 or is composite with a prime 

factor of the form 2ln+1, the 2ln+1 factor cannot be the same for both a and b 

otherwise they would not be co-prime. 

 

Section (1.20) discusses the upper limit C’max on the value of c in a Dual Candidate 

Pair (a,c). Notably that this limit, relative to the base b, is much less than that for a 

standard table where the base is a. This is because in a Dual Residue Table one need 

not look for a value of c beyond C'max. In a standard Residue table, (mod a^n), the 

value of Bmax, which is an upper limit on the middle value b, is many times greater 

than the base a, see Theorem (1.19.1). Nevertheless, the value of c is the same in each 

Candidate Pair (a,c) and (b,c) and so the absolute search range for Repeat Residues is 

the same in both Standard and Dual residue tables. 
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2.6 Summary of Conditions 

 

This section is a summary of all the conditions and constraints developed in this 

section and placed upon a triplet (a, b, c) were it to be an FLT counter-example. 

 

For integers x and k 

 

2.6.1 x>= 1 

 

2.6.2 k >= 1 

 

the value a is either prime (x = 1) or composite (x > 1) with one or more factors of the 

form (2kn + 1), i.e. 

 

2.6.3 a = x(2kn + 1) 

 

For integers y and l 

 

2.6.4 y >= 2 

 

2.6.5 l >= 1 

 

the value b always composite with one or more prime factors of the form 2ln+1, i.e. 

 

2.6.6 b = y(2ln + 1) 

 

For integers z and m 

 

2.6.7 z >= 1 

 

2.6.8 m >= 1 

 

the value c is either prime (z = 1) or composite (z > 1) with one or more factors of the 

form (2mn+1), i.e. 

 

2.6.9 c = z(2mn + 1) 
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The Skew Residue Condition (2.5.1.18), Candidate Pair (a,b) (mod c^n) 

 

2.6.10 b^n = -a^n (mod c^n) 
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3 Unity Roots 
 

Sections (1) and (2) focussed on the study of Residue Sequences x^n (mod a^n), 

0 <= x < a^n, in the pursuit of Candidate Pairs (b,c) where b^n = c^n (mod a^n) or 

Dual Candidate Pairs (a,c) where a^n = c^n (mod b^n), which could possible meet the 

Root Gap constraint (c - b < a) imposed by Theorem (1.12). Of principal study in the 

previous section was how residues repeat within a sequence. For even exponents the 

repetition was attributed to symmetry and, for odd exponents, the repetition was 

attributed to the ‘2ln + 1’ mechanism. Perhaps unsurprisingly, by Lagrange’s 

Theorem (2.2.5.3), both mechanisms are shown in this section to be unified by the 

concept of Unity Roots u, where u^n = 1 (mod a^n) or (mod b^n). In particular, 

Candidate Pairs can be generated through a mapping mechanism c = u*b (mod a^n). 

 

The pursuit of Unity Roots (mod a^n) also leads to Unity Roots (mod a) and the study 

of the Unity Root Polynomial, exponent n, denoted by ‘f(u)n’, which is a cyclotomic 

polynomial with many of its own interesting properties. These properties are explored 

in this section as a digression from the main theme of this Paper. In particular, the 

factor properties of f(u)n and applications in such areas as Mersenne Numbers. 

 

Although analytically unsolved, we present an algorithm to obtain Unity Roots (mod 

a^n), given the roots (mod a). We also detail how to obtain Unity Roots for 

composites given those of its prime factors. 

 

Of key note in this paper is the observation that the even exponent symmetry, which 

we used to generate Pythagorean triples in section (2.4.4), can be viewed as a negative 

Unity Root mapping and therefore a ‘flip’ about the symmetry point. 

 

Lastly, as for all previous sections, we summarise all the latest constraints upon any 

potential FLT counter-examples that have arisen in this section. 

 

3.1 Definition: Unity Root 

 

A Unity Root is defined as an integer u, u > 0, such that for all a > 0, n > 0 

 

3.1.1 u^n  =  1 (mod a^n) 

 

Obviously u = 1 is a Unity Root for all a and n and is termed the 'trivial root'. 

Normally we are more interested in the non-trivial roots, u > 1. 

 

3.2 Introduction 

 

As mentioned prior in section (2.6), but without any explanation, Unity Roots are 

fundamental to the repetition of all residues. 
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Section (2) split the analysis of the FLT equation (1.1.1) into two distinct cases 

whereby the exponent was either odd or even. For the even case this was primarily 

Pythagoras. The Pythagorean case makes a good example since it does have solutions, 

i.e. Pythagorean Triples, in which to test the Residue and Quotient Conditions and 

advance the work further. Nevertheless, Repeat Residues in both the two cases, even 

and odd exponents (2.4) and (2.5), can be unified under one scheme, namely 'Unity 

Root Mappings'. 

 

3.2.1 For odd prime exponent n, prime base a, modulus a^n, the set U of Unity 

Roots may comprise either a single Unity Root (+1) or n roots. For composite 

base a, the number of Unity Roots is an integral power s of n, i.e. n^s where s 

is the number of prime factors with n Unity Roots. This holds for all s >= 0.. 

 

3.2.2 For even exponent n, arbitrary base a, there may either be two Unity Roots 

U = {+1, -1} or the number of Unity Roots is a multiple of 2. The exact 

number depends upon the composition of the base a. The only case or real 

interest herein is Pythagoras for which the number of roots is discussed in 

section (3.5). The main point to note is that, unlike odd exponent, there are 

always at least two Unity Roots for n = 2, arbitrary base and that the -1 root, 

not always present for arbitrary odd exponent, is the key to all the repeat 

residues. See section (3.4) on Unity Root Mappings and (3.9) on such 

mappings and Pythagoras. 

 

3.2.3 A set of n Unity Root's is denoted by upper case U where U = {u_0, u_1, u_2, 

... u_(n-1) }, u_0 is the trivial root +1 and u_1 is the smallest non-trivial root, 

usually shortened to the single letter ‘u’. 

 

3.3 Properties 

 

3.3.1 The n Unity Roots are cyclic. Thus, all roots can be generated from the 

primitve Unity Root u, i.e. u is a generator. 

 

 u_0 = u^0 = 1 

 u_1 = u^1 = u 

 u_2 = u^2 

 . 

 . 

 u_k = u^k 

 . 

 . 

 u_(n-1) = u^(n - 1) 
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3.3.2 The Unity Roots form an n'th order cyclic group under multiplication, modulo 

a^n. The n'th roots of unity, which are generally complex, also form a cyclic 

group of order n and, consequently, the two groups are isomorphic. 

 

This is as near as this paper gets to complex numbers from where most work in 

Diophantine equations usually proceeds onward to the algebraic extension of the 

rationals to complex numbers. 

 

Because of this isomorphism there are analogues between the work presented here 

and that of algebraic number theory. In particular, the Unity Root Polynomial 'f(u)n', 

which is discussed extensively in section (3.6) of this paper is, for prime exponent n, 

more generally known as a 'Cyclotomic Polynomial'. Secondly, polynomial 

factorisation into complex n'th roots of unity also has an analogue in congruential 

arithmetic, section (4.1). 

 

3.3.3 The smallest non-unity, 'primitive' Unity Root is designated 'u', or 'u_1'. This 

is a generator of the cyclic group and, unless otherwise stated, when we refer 

to a Unity Root u we mean this smallest root u_1. 

 

3.3.4 With u as the generator the complete set of Unity Roots is 

 

3.3.4.1 U = {u^0, u^1, u^2, ... u^(n - 1) } 

 

with the first two cases written simply as 

 

3.3.4.2 u^0 = 1 

 

3.3.4.3 u^1 = u 

 

then the set (3.3.4.1) becomes 

 

3.3.4.4 U = {1, u, u^2, ... u^(n - 1) } 

 

3.3.5 Theorem: Unity Root > Base 

 

The non-trivial, Unity Root u is always greater than the base a 

 

Proof 

 

A Unity Root is defined as a solution to the congruence 
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3.3.5.1 u^n - 1  =  0 (mod a^n) 

 

which implies that, for some integer k 

 

3.3.5.2 u^n - 1 = k*a^n 

 

and re-arranging this we get 

 

3.3.5.3 u^n = 1 + k*a^n 

 

Since u > 1 for the generator root, we see that (3.3.5.3) implies 

 

3.3.5.4 u^n > k*a^n 

 

The value of k cannot be zero since this would imply u = 0. So, for positive u, 

 

3.3.5.5 k >= 1 

 

which implies 

 

3.3.5.6 k*a^n >= a^n 

 

and inequality (3.3.5.4) becomes 

 

3.3.5.7 u^n > a^n 

 

Taking n'th roots, we see that 

 

3.3.5.8 u > a 

 

and hence the smallest integer value u can take is (a + 1) and we conclude that the 

Unity Root is always greater than the base. 

 

3.4 Unity Root Mappings 

 

Taking the defining equation for a Unity Root (3.1.1) and multiplying throughout by 

b^n, where b is an arbitrary integer, 1 < b < a^n 

 

3.4.1 u^n*b^n  =  b^n (mod a^n) 
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If we define a second integer c 

 

3.4.2 c  =  u*b (mod a^n) 

 

then we see that (3.4.1) can be written in terms of c as follows 

 

3.4.3 c^n  =  b^n (mod a^n) 

 

But this result shows that c^n and b^n are congruent (mod a^n), hence they have 

identical residues (mod a^n) and thus form a Candidate Pair (b,c), i.e. c is a repeat 

residue of b when defined by (3.4.2). 

 

Alternatively expressed, we say that 'c is a Unity Root mapping of b (mod a^n)’, i.e. b 

maps to c under the Unity Root u (mod a^n). 

 

If there was only the single Unity Root, u = 1, c would actually be identical to b and 

the result would be trivial. However, for certain base and exponent, as prior stated in 

(2.2.5), there can be n or more Unity Roots. Thus, if there are at least n Unity Roots, 

u_k, 0 <= k < n, there are at least n repeat residues of b^n (mod a^n) at location 

c = u_k*b, in accordance with (3.4.2). Since b is arbritrary, if we know all the Unity 

Roots, we can obtain all the repeat residues for any value b. The problem of finding 

Candidate Pairs (b,c), where c is defined by (3.4.2), is really just one of finding the 

Unity Roots x^n (mod a^n). Furthermore, these conclusions were made with no 

reference to a specific form of the exponent n, it can be odd or even. We therefore 

have a unified approach to finding Candidate Pairs (b,c) (mod a^n) or their Dual 

counter-part pairs (a,c) (mod b^n) by determination of the Unity Roots for the 

modulus, a^n or b^n respectively. 

 

The problem seemingly becomes a lot simpler. It certainly is a lot simpler in that, with 

a unified approach, we only have to identify the Unity Roots to generate Candidate 

Pairs instead of visual inspection of a residue tables search for values with identical 

residues. Better still, because the Unity Roots form a cyclic group, we only need to 

find one of them in order to be able to generate all n. In other words, a single Unity 

Root (mod a^n), will allow us to determine the repetition of every residue (mod a^n) 

known to occur. What we cannot do, however, is determine the initial set of residues, 

we can only determine their repeat occurences.  Whilst it would seem that 

determination of a single Unity Root will unlock the secrets of Repeat Residues and 

Candidate Pairs, the determination of Unity Roots is not trivial and, currently, we 

have no analytic solution for an arbitrary exponent. Fortunately, an algorithmic 

method to find the roots does exist and is detailed in section (3.7.3) 

 

Since FLT is true, we can see that there must be one or more properties of the Unity 

Roots that constrain the value of c in (3.4.2) such that the Candidate Pair (b,c) can 

never satisfy the Quotient Condition. The reality is that, whatever the value for u, it 

always generates a value c such that either the Root Gap (1.10.1) is greater than a or, 

when the Root Gap is smaller than a, e.g. for Consecutive Identical Residues, the 

value of c is still beyond Bmax+1, Section (1.19), Theorem (1.19.1)  and 

consequently the Quotient Gap is larger than unity. Ultimately, by studying Unity 
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Roots, we might be able to gain insight into why Candidate Pairs never meet the 

Quotient Condition and why there are no FLT counter-examples, i.e. why FLT holds 

true. 

 

Although for general exponents, n > 2, we currently have no consistent explanation 

for Unity Root values, we do nevertheless have one, non-trival case (n != 1) to 

examine, namely Pythagoras. This does have solutions and it does have Unity Roots. 

It is discussed again in section (3.9). 

 

3.4.4 Definition: Winding Number 

 

By definition (3.4.2), the Unity Root mapping of b on to c, (mod a^n), produces a 

value c such that 

 

3.4.4.1 c  =  u*b (mod a^n) 

 

which implies for some integer w, w >= 0, termed the 'Winding Number' 

 

3.4.4.2 u*b = w*a^n + c 

 

If w = 0 we term it the Zero Winding Number and, if w > 0, we term it a non-Zero 

Winding Number. We shall see that if the Candidate Pair (b,c) has a Zero Winding 

number it cannot be an FLT counter-example. 

 

3.4.5 Definition: Wrapover 

 

If the Winding Number w, defined by (3.4.4.2), has a value greater than zero then the 

mapping (3.4.4.1) is said to 'Wrapover'. 

 

The winding number is effectively the same as a quotient and generally it is the 

context that differentiates their usage. The term 'quotient' is used when talking about 

any arbitrary value x^n written in quotient, remainder form, e.g. x^n = q*a^n + r, 

where q is the quotient and r is the remainder. Winding number is currently used 

exclusively for Unity Root mappings defined by the integer w in (3.4.4.2). 

 

3.4.6 Theorem: Winding Number & Root Gap 

 

A Candidate pair (b,c) (mod a^n) cannot be an FLT Counter-example if the Unity 

Root mapping of b on to c has a zero Winding Number. 

 

Alternatively stated, if the Unity Root mapping of b on to c, (mod a^n), produces a 

value c = u*b less than the modulus a^n, i.e. c a^n and has a Zero Winding Number 

(3.4.4), then the Root Gap is always such that Rg >= a^2 and hence, by Theorem 

(1.12), the Quotient Condition can never be met. 
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Proof 

 

Using (3.4.2) for the value c in the Candidate Pair (b,c), the Root Gap (1.10.1) is 

given by 

 

3.4.6.1 Rg = u*b (mod a^n) - b 

 

If the value of u and b is such that the product u*b is less than the modulus, i.e. zero 

winding, then 

 

3.4.6.2 u*b < a^n 

 

and the Root Gap expression (3.4.6.1) becomes 

 

3.4.6.3 Rg = (u - 1)*b 

 

Now, by Theorem (3.3.5), the Unity Root is greater than the base a, which for integers 

implies 

 

3.4.6.4 u >= a + 1 

 

hence 

 

3.4.6.5 u - 1 >= a 

 

and, multiplying throughout by b, we get 

 

3.4.6.6 (u - 1)*b >= a*b 

 

Therefore, by  comparison with (3.4.6.1), we can see that for a zero Winding Number 

the Root Gap satisfies the following inequality: 

 

3.4.6.7 Rg >= a*b 

 

Since, by convention, b is chosen such that 

 

3.4.6.8 b > a 

 

then we see that the Root Gap satisifies the inequality 
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3.4.6.9 Rg >= a^2 

 

And hence is is greater than the base a. Consequently, by Theorem (1.12), the 

Quotient Condition can never be met. 

 

 

To drive the point home, we can also say that a Candidate Pair must wrapover to be a 

potential FLT counter-example, i.e. it must have a non-zero Winding Number, w > 0 

in (3.4.4.2). 

 

3.5 Counting Unity Roots 

 

For completely arbitrary exponent and base the number of Unity Roots can be 

numerous and even multiples of the exponent. Nevertheless, we are primarily 

interested only in odd, prime exponents and the singular, even prime exponent case 

n = 2, for which the rules are relatively simple for either prime or composite base. 

Unity Roots for composite base a can be determined from the prime factors and it is 

therefore the determination of Unity Roots for primes that is the real issue and 

difficulty. 

 

3.5.1 If n is an odd prime, a is prime and not of the 2ln + 1 form and n != a, then 

there is one Unity Root in the interval [0, a^n) and that is u = +1. 

 

3.5.1.1 Examples 

 

 n = 3, a = 2, U = {1} 

 n = 3, a = 5, U = {1} 

 n = 3, a = 11, U = {1} 

 

3.5.2 If n is odd, prime, a is prime of the 2ln + 1 form, then there are n Unity Roots, 

u_0, u_1, u_2, ..u_(n-1) in the interval [0, a^n). 

 

3.5.2.1 Examples 

 

 n = 3, a = 7, U = {1,18,324} 

 

 n = 3, a = 13, U = {1,1036,1160} 

 

 n = 5, a = 11, U = {1, 37101, 46709, 104450, 133835} 

 

 n = 5, a = 31, U = {1, 13801549, 13979094, 15561847, 28629152} 
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3.5.3 If n is odd, prime and n = a, there are n Unity Roots, u_0, u_1, u_2, ..u_(n-1) 

in the interval [0, a^n) but there is only one Unity Root in the Minimal 

Residue Sequence [0, a^(n - 1)), since n | a, see section (2.1.2.2). Of course, if 

n = a, then a cannot be of the 2ln + 1 form. 

 

3.5.3.1 Examples 

 

 n = 3, a = 3, U = {1, 10, 19} 

 

Here the Minimal Residue Sequence size is 3^3 / 3= 9 and the second root, u = 10, is 

actually = 1 + 1*3^2, similarly, 19 = 1 + 2*3^2. 

 

 n = 5, a = 5, U = {1, 626, 1251, 1876, 2501} 

 

Here the Minimal Residue Sequence is of size 5^5 / 5 = 625 and the roots can be 

written in terms of multiples of this value as follows: 

 

 626 = 1 + 1*625 

 1251 = 1 + 2*625 

 1876 = 1 + 3*625 

 2501 = 1 + 5*625 

 

3.5.4 If n is an odd prime and a is composite with one or more factors of the 2ln + 1 

form then there are n Unity Roots for each prime factor of form 2ln + 1 in the 

interval [0, a^n) or in the interval [0, a^(n - 1)) according as to whether n !| a 

or n | a respectively. 

 

3.5.4.1 n = 3, a = 14, U = {1,361, 1353} 

 

Here a = 14 has the two factors 2 and 7, only the factor 7 is of the 2ln + 1 form and so 

there are three roots 

 

3.5.4.2 n = 3, a = 21, U = {1,361, 667} 

 

Here a = 21 has only two unique factors, the factor 7 is of the form 2ln + 1, the other 

factor is 3 and since n divides the factor there are 3 Unity Roots for the factor 7 within 

the interval [0, 21^3 / 3). 

 

In the Maximal interval, 21^3, within which the residue sequence for 

0 <= x < 21^3 / 3 repeats three times, there are, as expected, repeats of these Unity 

Roots at 

 

U = {3088, 3448, 3754, 6175, 6535, 6841} 

 

Since the exponent divides the base, with a Minimal Residue Sequence size of 

21^3 / 3 = 3087, the repeated roots can be expressed as 
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U = {1+3087, 361+3087, 667+3087, 

1 + 2*3087, 361 + 2*3087, 67 + 2*3087}. 

 

3.5.4.3 n = 3, a = 49, U = {1, 34967, 82681} 

 

Here a = 49 has only one unique factor, of the 2ln + 1 form, i.e. 7, and so there are 

only three roots. 

 

3.5.4.4 n = 3, a = 91 

 U = {1, 9948, 59320, 69267, 244903, 304222, 439401, 449348, 684303} 

 

Here a comprises two unique factors 7 and 13, each of the form 2ln + 1, hence there 

are 9 (= 3*3) Unity Roots in the Maximal Residue Sequence of size 91^3. 

 

3.5.5 If n is an odd prime and a is composite, with no prime factors of the 2ln + 1 

form then there is one Unity Root, U = {+1}, in the interval [0, a^n) if n !| a or 

one Unity Root, U = {+1} in the interval [0, a^(n - 1)) if n | a. 

 

3.5.5.1 Examples 

 

 n !| a 

 

3.5.5.2 n = 3, a = 4, U = {1} 

3.5.5.3 n = 3, a = 8, U = {1} 

3.5.5.4 n = 3, a = 10, U = {1} 

3.5.5.5 n = 3, a = 16, U = {1} 

3.5.5.6 n = 3, a = 20, U = {1} 

 

 n | a 

 

3.5.5.7 n = 3, a = 3, U = {1} 

3.5.5.8 n = 3, a = 9, U = {1} 

3.5.5.9 n = 3, a = 15, U = {1} 
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3.5.6 If n = 2 and a is an odd prime then there are two and only two Unity Roots 

U = {+1, -1} within the interval [0, a^n). 

 

3.5.6.1 Examples 

 

3.5.6.2 n = 2, a = 3, U = {1, 8} 

3.5.6.3 n = 2, a = 5, U = {1, 25} 

3.5.6.4 n = 2, a = 7, U = {1, 48} 

 

3.5.7 If n = 2 and a is an odd composite then there are two Unity Roots per odd, 

unique prime factor within the interval [0, a^n). 

 

3.5.7.1 Examples 

 

3.5.7.2 n = 2, a = 9, U = {1, 80} 

3.5.7.3 n = 2, a = 15, U = {1, 26, 199, 224} 

3.5.7.4 n = 2, a = 21, U = {1, 197, 244, 440} 

3.5.7.5 n = 2, a = 25, U = {1, 624} 

3.5.7.6 n = 2, a = 105, U = {1, 1126, 1324, 2449, 8576, 9701, 9899, 11025} 

 

Here a factors into 3, 5 and 7 and each factor has two Unity Roots so there are 8 Unity 

Roots in total. 

 

3.5.8 If n = 2 and a is even then n | a and so the Minimal Residue Sequence is half 

of the Maximal, namely a^2 / 2. Within this interval the number of roots is 

dependant upon the composition of a. For each unique, prime factor of a / 2, 

there are two roots. 

 

The specific case n = 2, a = 2 is slightly anomalous: since n = 2 and a is even, a / 2 = 1 

and there is only one root in the interval 0 < u < 2^2 / 2, namely u = {+1}. In this case 

the root u = 1 is equivalent to the u = -1 root and there is only a single root in the 

Minimal Residue Sequence. Nevertheless, in the Maximal  Sequence 0 < u < a^2, 

there are two unique roots +1 and +3 (3 = -1 mod 2^2). This is the only case where a 

is even but only has one root in the interval 0 < u < 2^2 / 2. Since we know 

Pythagoras has no solutions for a <= 2 it is of no consequence. 
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3.5.8.1 Examples 

 

3.5.8.2 n = 2, a = 4, U = {1, 7} 

 

Here a / 2 has one,unique prime factor 2 hence there are only two Unity Roots within 

the interval [0, 4^2 / 2). 

 

3.5.8.3 n = 2, a = 6, U = {1, 17} 

 

Here a / 2 has one, unique prime factor 3 hence there are only two Unity Roots within 

the interval [0, 6^2 / 2). 

 

3.5.8.4 n = 2, a = 8, U = {1, 31} 

 

Here a / 2 has one, unique prime factor 2 hence there are only two Unity Roots within 

the interval [0, 8^2 / 2). 

 

3.5.8.5 n = 2, a = 10, u = {1, 49} 

 

Here a / 2 has one, unique prime factor 5 hence there are only two Unity Roots within 

the interval [0, 10^2 / 2). 

 

3.5.8.6 n = 2, a = 12, U = {1, 17, 55, 71} 

 

Here a / 2 has two, unique prime factors 2 and 3 hence there are four Unity Roots. In 

fact, this is the smallest value for a to have 4 roots in the Minimal Residue Sequence, 

[0, 12^2 / 2). 

 

3.5.8.7 n = 2, a = 14, U = {1, 97} 

 

Here a / 2 has one, unique prime factor 7 hence there are only two Unity Roots within 

the interval [0, 14^2 / 2). 

 

3.5.8.8 n = 2, a = 16, U = {1, 127} 

 

Here a / 2 has one, unique prime factor 2 hence there are only two Unity Roots within 

the interval [0, 16^2 / 2). 

 

3.5.8.9 n = 2, a = 18, U = {1, 161} 
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Here a / 2 has one unique, prime factor 3 hence there are only two Unity Roots within 

the interval [0,18^2 / 2). 

 

3.5.8.10 n = 2, a = 60, U = {1, 199,  449, 649, 1151, 1351, 1601, 1799} 

 

Here a / 2 has three, unique prime factors 2, 3 and 5 hence there are eight Unity Roots 

within the interval [0, 60^2 / 2). In fact, this is the smallest value for a to have 8 roots 

in the Minimal Residue Sequence. To get 16 roots, we have to go as far as a = 420, 

since a / 2 factors into the four prime factors 2, 3, 5 and 7. 

 

3.6 The Unity Root Polynomial 

 

Returning to the defining equation for a Unity Root (3.1.1), we can re-arrange it to 

become a problem in the determination of zero roots for the congruence 

 

3.6.1 u^n - 1  =  0 (mod a^n) 

 

This is the modular arithmetic analogue of the algebraic polynomial equation 

 

3.6.2 u^n - 1 = 0 

 

It is no surprise that both equations have the single root u = 1 and we can factor the 

left-hand side of the expressions as follows 

 

3.6.3 u^n - 1 = (u - 1)(1 + u + u^2 + .. u^(n - 1) ) 

 

3.6.4 Definition: Unity Root Polynomial 

 

The 'Unity Root Polynomial', exponent n, denoted by f(u)n, is defined as 

 

 f(u)n = (1 + u + u^2 + .. u^(n - 1) ) 

 

[Note that f(u)n is the sum of a geometric progression with n terms, the first term is 1 

and the common ratio is u. We sometimes drop the suffix ‘n’ leaving just f(u) when it 

is obvious as to its usage, i.e. when the exponent is obviously n]. 

 

Factoring (3.6.1) as per (3.6.3) and substituting for the Unity Root Polynomial f(u)n, 

as defined by (3.6.4), we get 

 

3.6.5 (u - 1)*f(u)n  =  0 (mod a^n) 

 

At this stage we could solve the congruence for each separate bracket. 
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3.6.6 (u - 1)  =  0 (mod a^n) 

 

3.6.7 f(u)n  =  0 (mod a^n) 

 

Or we can solve the combined congruence (3.6.5) assuming neither bracket is 

congruent to zero (mod a^n). This situation has no analogue in the solution of 

polynomials f(x). It is possible in modulo arithmetic to have solutions to the following 

congruence equation where neither A nor B is zero but the product is congruent to 

zero (mod C). 

 

3.6.8 A*B  =  0 (mod C) 

 

For now, we will remain with the solutions to (3.6.6) and (3.6.7). Examination of the 

case (3.6.8) is (TBD). 

 

With u = 1 as the primitive solution to (3.6.6), the remaining (n - 1) solutions are 

given by solving the following equation, for prime a (see further below), 

 

3.6.9 f(u)n  =  0 (mod a^n) 

 

This equation is a Diophantine equation of order (n -1 ) which, as prior mentioned, 

doesn't always have integer solutions. In fact, from section (2.5.7), only if a is of form 

2ln + 1 or composite with one or more factors of the 2ln + 1 form does (3.6.9) have 

integer solutions. 

 

Note that if we treat f(u)n as a standard polynomial then its roots are the n'th roots of 

unity, excepting u = 1 which has been factored out. In this case, the polynomial 

always has n - 1 roots in the complex field. 

 

Returning to equation (3.6.5). For some integer l, l >= 0, this equation can be written 

as 

 

3.6.10 (u - 1)*f(u)n = l*a^n 

 

If (u - 1) and a are co-prime, then (u - 1) | l which implies that, for some integer m 

m > 0, 

 

3.6.11 (u - 1) = m * l 

 

and, for some integer s, s > 0, 
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3.6.12 f(u)n = s*a^n 

 

3.6.13 Theorem 

 

With f(u)n defined by (3.6.4) then u is a Unity Root (mod f(u)) and u is a Unity Root 

(mod (u - 1)). 

 

Proof 

 

By (3.6.3) 

 

3.6.13.1 u^n - 1 = (u - 1)*f(u)n 

 

and, taking residues (mod f(u)n), 

 

3.6.13.2 u^n - 1  =  0 (mod f(u)n) 

 

which can be alternatively expressed as 

 

3.6.13.3 u^n  =  1 (mod f(u)n) 

 

and hence u is a Unity Root (mod f(u)n). 

 

Similarly, by taking residues (mod (u - 1)), 

 

3.6.13.4 u^n - 1  =  0 (mod (u - 1)) 

 

alternatively expressed 

 

3.6.13.5 u^n  =  1 (mod (u - 1)) 

 

and hence u^n is a Unity Root (mod (u - 1)). 

 

3.6.14 Theorem: Unity Root Sum  =  0 (mod a^n) 

 

The sum of the Unity Roots for prime base a is congruent to zero (mod a^n). 

 

This is the modulo arithmetic analogue to the summation of the n'th roots of unity, 

which always sums to zero. 

 

Proof 
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Considering the positive, Unity Roots, 0 < u < a^n, modulus a^n, then, using (3.3.4.4), 

if we sum these roots we get 

 

3.6.14.1 Sum(U) = 1 + u + u^2 + ... u^(n - 1) 

 

But by (3.6.4) we see that the rhs of this sum is identical to the Unity Root 

Polynomial f(u)n, i.e. 

 

3.6.14.2 Sum(u) = f(u)n 

 

Hence, by (3.6.7) 

 

3.6.14.3 Sum(u)  =  0 (mod a^n) 

 

and we see the sum of the Unity Roots, (mod a^n), is congruent to zero (mod a^n). 

 

Notes 

 

Since all roots u are such that 0 < u < a^n, equation (3.6.14.3) implies that for some 

integer k, k > 0 

 

3.6.14.4 Sum(u) = k*a^n 

 

For the n = 3 case we can be more specific and deduce that k = 1 in (3.6.14.4) if we 

keep with positive roots, by convention (0.3.5.5), i.e. 

 

3.6.14.5 Sum(u) = a^3 

 

Writing the sum out in full 

 

3.6.14.6 1 + u + u^2 = a^3 

 

We know that there are three roots, one of which is 1.  For certain a, the other two are 

unique. The very largest they can be, when all positive, are a^3 - 2 and a^3 - 1 within 

the range 0 < u < a^3. If we sum all three we get 2*a^3 - 2 and therefore, by 

(3.6.14.4), k has to be 1 since the largest sum is still 2 short of 2*a^3. 

 

If we express some Unity Roots in the positive form and others in the negative form 

then we can get k = 0 and we then have an identical, analogous result to summing the 

n'th roots of unity, which sum to zero. In the case of a cubic, where we have to solve a 

quadratic to get the roots, see example (3.6.10) below, we automatically get one 

positive and one negative solution, see (3.6.10.11) and (3.6.10.12) which, together 

with the root u = 1, sum directly to zero. 
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Since the left-hand side of (3.6.14.6) is f(u)3, we can substitute back for f(u)3 into 

(3.6.10) to give 

 

3.6.14.7 (u - 1)*a^3 = l*a^3 

 

which, upon cancelling a^n from both sides, implies 

 

3.6.14.8 (u - 1) = l 

 

We see from this that the value of the factor l for a cubic exponent, prime base a, is in 

fact one less than the Unity Root. 

 

3.6.15 Conjecture: Umin 

 

The smallest, non trivial value of a Unity Root, Umin, is conjectured as satisfying the 

inequality 

 

3.6.15.1 Umin > (n - 1)_/(a^n - 1)   (the term '(n - 1)_/' denotes the n-1'th root) 

 

This is a conjecture and not a rigorously proved theorem since a proper analytic study 

of the error term has not been performed but taken from a reasonable estimate, 

verified by computer. 

 

Reasoning 

 

Considering only positive, primitive Unity Roots, 0 < u < a^n, modulus a^n. 

 

Using the sum of the roots, sum(u) as defined in (3.6.14.1), equation (3.6.14.4), for 

some integer k, k > 0, gives 

 

3.6.15.2 1 + u + u^2 + .. u^(n - 1) = k*a^n 

 

Since we are considering only positive, primitive Unity Roots, 0 < u < a^n, the 

smallest value for integer k is 1 so we can place the following inequality on the lhs 

sum(u) as follows 

 

3.6.15.3 1 + u + u^2 + .. u^(n - 1) >= a^n 

 

For n > 2, u > 2, the largest term in the sum on the lhs will be u^(n - 1) and, for 

increasing a, since u > a by (3.3.5), this term will becomes more dominant as a 

increases. Therefore a first approximation to u, which is an over-estimate, can be 

obtained by neglecting the first n - 1 terms on the lhs to leave 
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3.6.15.4 u^(n - 1) ~=~ >= a^n    (the '~=~' term denotes approximately) 

 

The approximation is actually good for the numbers of interest. The smallest value of 

a is 7 and the smallest exponent is 3. In this case, approximating u by the square root 

of 7 gives u = 18.5 to 1dp. The actual value of u is 18. 

 

If we denote the over-estimated error by e, the inequality can be re-written 

 

3.6.15.5 u^(n - 1) >= a^n - e 

 

As n and u become larger the approximation gets better, i.e. the over-estimated error 

term e becomes smaller. In fact it can be shown that the error is approximately given 

by 

 

3.6.15.6 e ~=~ 1 / (n - 1) 

 

For example, for n = 3, the error is approximately 1 / 2 and the error decreases as n 

grows larger. This is actually a very good approximation of the error and computer 

analysis reveals it is always less than 0.5203 for the worst case of n = 3. Thus, by 

giving the maximum error of 1, we can conjecture that the minimum Unity Root value 

'Umin' is given by the expression 

 

3.6.15.7 Umin = (n - 1)_/(a^n - 1) 

 

As a consequence of this conjecture, it can also be shown that Umin > Bmax (see 

(1.19) for Bmax) and so two Unity Roots can never form an FLT counter-example 

since the minimum Unity Root exceeds the maximum permitted value of b in a 

candidate Pair (b,c). 

 

Lastly, a computer analysis of Umin and the error term for various u and n verifies 

these findings at least for small base and exponent. 

 

3.6.16 f(u) Factor properties 

 

The factor properties of the unity Root Polynomial f(u)n are quite extensive and allow 

us to say many things about the type and number of factors of f(u)n. 

 

It has been prior mentioned that, for prime exponent n, f(u)n is what is known in the 

subject of Number Theory as a 'Cyclotomic Polynomial', reference Mathworld [4], 

keword 'Cyclotomic Polynomial'. Some of the Properties of f(u)n presented here may 

have analogous properties in the subject of Cyclotomic Polynomials, albeit a rigorous 

cross check has not been performed. 
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3.6.16.1 If f(u)n is prime then it is of the form 2ln + 1 if u > 1. 

 

Since, by Theorem (3.6.13), u is a Unity Root (mod f(u)n) and, since u != 1 + k*f(u), 

integer k, k >= 0 then, by the arguments in sections (2.5.7) and (2.5.9), f(u)n must be 

of the 2ln + 1 form since it has a Unity Root other than the trivial u = +1. Note that 

since f(u)n is prime, by definition, then n !| f(u) unless n = f(u) and n is prime. 

However, it is not possible that n = f(u)n simply by the construction of f(u) except if 

u = 1. If u = 1, then f(u) = n see property (3.6.16.4) and this Unity Root is always 

present for any base a ( = n = f(u)n), not just those of the 2ln + 1 form. Hence the 

caveat on the u = 1 case. 

 

3.6.16.2 If f(u)n is composite and u is not of the form 1 + k*n (see below) then every 

factor is of the form 2ln + 1 

 

The reason we put in the caveat 'not of the form 1 + k*n' is because, as we shall see, 

there can be one other legitimate factor equal to the exponent n, at locations 1 + k*n. 

This arises by consideration of the next two properties. 

 

Suppose f(u)n factors into two prime factors k and m 

 

3.6.16.2.1 f(u)n = k*m 

 

then by (3.7.5.1) 

 

3.6.16.2.2 u^n  =  1 (mod k*m) 

 

and thus 

 

3.6.16.2.3 u^n  =  1 (mod k) 

 

and 

 

3.6.16.2.4 u^n  =  1 (mod m) 

 

That is, we see that if u is a Unity Root for composite base f(u)n, then it is also a 

Unity Root u^n of the prime factors k and m of f(u)n. If u is not of the form 1 + k*n, 

then u is a non-unity, Unity Root of the primes k and m. But by property (3.6.16.1) we 

see that with primes k and m as base in (3.6.16.2.3) and (3.6.16.2.4), they must 

therefore also be of the form 2ln + 1. This argument can be extended for when f(u)n is 

composite with any number of prime factors and thus every one of the prime factors 

must also be of the form 2ln + 1 if u is not of the form 1 + k*n 
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3.6.16.3 If P is a prime factor of f(u)n, i.e. P | f(u)n, then at a point u', where 

u' = u + k*P, for some integer k, k > 0, then a | f(u')n. 

For example, if n = 3, u = 3, then f(3)3 = 13. Let P = 13, i.e. the one and only prime 

factor of 13, then at any point 3 + k*13, then 13 | f(3 + k*13)3. If k = 1, u' = 16 and, 

indeed, we see f(16)3 = 273 which factors as 3*7*13. 

 

Proof of this comes from the general property of a polynomial f(x), degree n, with 

rational coefficients c0, c1, .. cn as given by, 

 

3.6.16.3.1     f(x) = c0 + c1*x + c2*x^2 + .. cn*x^n 

 

such that if, for some value x = u, arbitrary modulus A, 

 

3.6.16.3.2     f(u)  =  r (mod A) 

 

then, for some integer k, k >= 0 

 

3.6.16.3.3     f(u + k*A)  =  r (mod A) 

 

This is proven by showing that it is true for each term in (3.6.16.3.1), e.g. for the 

general term l. 

 

If 

 

3.6.16.3.4     cl*u^l  =  r (mod A) 

 

then 

 

3.6.16.3.5     cl*(u + k*A)^l  =  r (mod A) 

 

If we expand the term (u + k*A)^l by the binomial theorem we will see that all terms 

have a factor of A and hence are congruent to 0 (mod a). This leaves only the single 

term u^n, hence 

 

3.6.16.3.6     cl*(u + k*A)^l  =  cl*u^l (mod A) 

 

and, by comparison with (3.6.16.3.4), 

 

3.6.16.3.7     cl*(u + k*A)^l  =  r (mod a) 
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3.6.16.4 The value of f(u)n for u = 1 is always n since, by the definition of f(u)n 

(3.6.4), it is simply a series sum of n terms where each term is unity when 

u = 1. Hence the total sum is n, i.e. f(1)n = n for all exponent n. 

 

This property shows us that f(1) is always divisible by the exponent and hence n | f(1). 

In addition, property (3.6.16.3) shows that if n | f(1)n, then n | f(1 + k*n )n for all 

integer k, k >= 0. We can thus arrive at the following factor property. 

 

3.6.16.5 If f(u)n is composite and u is of the form 1 + k*n, then every factor is either 

of the form n or 2ln + 1. 

 

Proof (TBD) 

 

3.6.16.6 Any factor of f(u) of the form 2ln + 1 appears n times within the region 

0 <= x < u. 

 

Proof (TBD) 

 

3.6.16.7 Any factor of f(u) of the form n appears once and only once within the 

region 0 <= x < u. 

 

Proof (TBD) 

 

3.6.16.8 The value of f(u) is composite for any u if the exponent is even. 

 

Let the exponent n be even, of the form 

 

3.6.16.8.1     n = 2m 

 

then, by the definition of f(u), equation (3.6.4) 

 

3.6.16.8.2     u^(2m) - 1 = (u - 1)*f(u)2m 

 

the left-hand side factors as 

 

3.6.16.8.3     u^(2m) - 1 = (u^m - 1)*(u^m + 1) 

 

and we can factor the term (u^m - 1) as 

 

3.6.16.8.4     u^m - 1 = (u - 1)*f(u)m 
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Substituting for (u^m - 1) from (3.6.16.8.4) into (3.6.16.8.3) gives 

 

3.6.16.8.5     u^(2m) - 1 = (u - 1)*f(u)m*(u^m + 1) 

 

Equating (3.6.16.8.2) and (3.6.16.8.5) we get 

 

3.6.16.8.6      (u - 1)*f(u)m*(u^m + 1) = (u - 1)*f(u)2m 

 

Upon cancelling the (u - 1) term this leaves us with the relation 

 

3.6.16.8.7 f(u)m*(u^m + 1) = f(u)2m 

 

which shows us that f(u)2m factors into two terms f(u)m and (u^m + 1) hence, for any 

even exponent, the value of f(u) is composite. 

 

With regard to primality of f(u)n, this property (3.6.16.8) disposes of all even 

composite exponents. The next property eliminates odd composite exponents. 

 

3.6.16.9 The value of f(u) is composite for any u if the exponent is odd composite. 

 

Suppose the exponent n is composite with two odd, prime factors k and m, i.e. 

 

3.6.16.9.1     n = km 

 

Let u be any arbitrary value then, by the definition of f(u)km 

 

3.6.16.9.2     u^(km)  =  1 (mod f(u)km) 

 

which implies that 

 

3.6.16.9.3     u^(km) - 1 = (u - 1)*f(u)km 

 

But since u^(km) can also be written as either 

 

3.6.16.9.4     u^(km) = (u^k)^m 

 

or 

3.6.16.9.5     u^(km) = (u^m)^k 
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then u^k is also an m'th Unity Root of f(u)m, and u^m is also a k'th Unity Root of 

f(u)k such that 

 

3.6.16.9.6     (u^k)^m  =  1 (mod f(u)m) 

 

and 

 

3.6.16.9.7     (u^m)^k  =  1 (mod f(u)k) 

 

Substituting u^k for u in equation (3.6.16.8.4) gives 

 

3.6.16.9.8     (u^k)^m - 1 = (u^k - 1)*f(u^k)m 

 

Swapping the label m for k in (3.6.16.8.4) and substituting the term u^m for u in the 

same equation gives 

3.6.16.9.9      (u^m)^k - 1 = (u^m - 1)*f(u^m)k 

 

All three equations (3.6.16.9.8), (3.6.16.9.9) and (3.6.16.9.3) have identical left hand 

sides and can be equated so that 

 

3.6.16.9.10  (u^k - 1)*f(u^k)m = (u^m - 1)*f(u^m)k = (u - 1)*f(u)km 

 

Since both k and m are odd, by definition, we can factor the terms in (u^k - 1) and 

(u^m - 1) above, using the definiton (3.6.4) of f(u), we get 

 

3.6.16.9.11 (u^k - 1) = (u - 1)*f(u)k 

 

3.6.16.9.12 (u^m - 1) = (u - 1)*f(u)m 

 

And, upon substituting for (u^k - 1) and (u^m - 1) into (3.6.16.9.10) and cancelling 

the common factor of (u - 1) we finally arrive at 

 

3.6.16.9.13 f(u)km = f(u)k * f(u^k)m = f(u)m * f(u^m)k 

 

We see f(u)km is composite, comprising at least two factors and it also gives us a nice 

identity from which to compute the value of any composite, f(u)km. 

 

Notice that (3.6.16.9.13) is symmetric upon interchange of k and m, as would be 

expected. Furthermore, if m and k are equal, we get 

 

3.6.16.9.14 f(u)m * f(u^m)m = f(u)m^2 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

130 

 

If u = 1, we know that  

 

 f(1)m = m 

 f(1^m)m = m 

 f(1)m^2 = m^2 

 

and we see that (3.6.16.9.14) correctly verifies as 

 

 m*m = m^2 

 

If u = 2, we know that  

 

 f(2)k = 2^m - 1 

 f(2)m = 2^k - 1 

 

and inserting for f(2)k and f(2)m into (3.6.16.9.13), we get 

 

 (2^m - 1) * f(2^m)k = 2^km - 1 

 (2^k - 1) * f(2^k)m = 2^km - 1 

 

Since m and k are unique, the only way the rhs can factor in two ways, as above, is if, 

for some integer d, 2^km - 1 is of the form 

 

 (2^m - 1)*(2k - 1)*d = 2^km - 1 

 

For example, if m = 3, k = 5, we find d= 151, since 

 

 (2^3 - 1)*(2^5 - 1)*d = 2^15 - 1 

 

 7*31*151 = 3276 

 

The u = 2 case provides us with an instant factoring of the commonly factored number 

2^n - 1, known as a Mersenne Number, see below. We can conclude from this 

composite exponent property (3.6.16.9) that, if n is composite, 2^n - 1 has at least two 

factors. Conversely, if we wish to test to see whether 2^n - 1 is prime then we only 

need consider values for which n is prime. 

 

Numbers of the form 2^n - 1 are known as Mersenne Numbers and the result, just 

mentioned, is a well known result on the subject, see Section (4.4). 

 

3.6.16.9.15 Example 

 

The smallest, odd, composite exponent occurs when k = m = 3 and thus n = km = 9. 

 

 u = 2, k = 3, m = 3, n = km = 9 

 

 f(2)3 = 7 (prime) 

 f(2^3)3 = f(8)3 = 73 (prime) 
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 f(2)9 = 511 = 7*73 

 

Hence 

 

 f(2)3 * f(2^3)3 = f(2)9 

 

Repeating for u = 3, we get 

 

 u = 3, k = 3, m = 3, n = km = 9 

 

 f(3)3 = 13 (prime) 

 f(3^3)3 = f(27)3 = 757 (prime) 

 f(3)9 = 9841 = 13*757 

 

Hence 

 

 f(3)3 * f(3^3)3 = f(3)9 

 

 

If we go back to the derivation of the Unity Root function f(u), section (3.6.4), then 

back substituting for f(u) into (3.6.3), we get an expression for the factorisation of 

u^n - 1 as 

 

3.6.16.9.16 u^n - 1 = (u - 1)*f(u) 

 

The expression (u^n - 1) is quite a commonly seen function in mathematics and, since 

we know the form of factors for f(u), we see from (3.6.16.9.16) this also gives us the 

form of factors for u^n - 1. In the special case that u = 2, we get the Mersenne 

numbers Mn = 2^n - 1. Since the factor (u - 1) is 1 for u = 2, the factorisation of 

Mersenne numbers is one of factorising the Unity Root function when 2 is the Unity 

Root of some base f(2). This particular case is discussed in more detail in Section 

(4.4). 

 

3.6.16.9.17 Every number f(u) is equivalent to a number comprising only n unity 

digits when expressed in base u, i.e. f(u) base u is 1111...1. 

 

For example, if u = 10, i.e. decimal base 10, all the numbers f(u) are of the form 1, 11, 

111, etc for exponents n = 1, 2, 3. A quick glance at table (3.7.7) confirms that all row 

entries for u = 10 are indeed, 1, 11, 111 etc. 

 

This is not difficult to show since, substituting for u = 10 in f((u) 

 

 f(10) = 1 + 10 + 10^2 + ... 

i.e. 

 f(10) = 1 + 1*10 + 1*100 + ... 

 

 f(10) = 111... 
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This also tells us that for a binary base, u = 2, all the digits are one, and hence 

numbers of the form 2^n-1 have all their bits set. 

 

3.6.16.10 Conjugate Unity Root function f'(u') 

 

If the exponent is odd then, for every Unity Root u, 

 

3.6.16.10.1 u^n  =  1 (mod a^n) 

 

there is a conjugate root u' 

 

3.6.16.10.2 u' = -u 

 

such that 

 

3.6.16.10.3 u'^n  =  -1 (mod a^n) 

 

Therefore, if there are n Unity Roots (mod a^n), there are also n conjugate Unity 

Roots. If U is the set of Unity Roots (mod a^n) 

 

3.6.16.10.4 U = {u_0, u_1, ... u_(n-1) } 

 

then the set of conjugate Unity Roots, U', is simply the negation of the positive Unity 

Roots. 

 

3.6.16.10.5 U' = {-u_0, -u_1, ... -u_(n-1) } 

 

Generally, throughout this paper, we choose to work with the positive form of Unity 

Roots. Nevertheless, many results and theorems for Unity Roots also apply to the 

conjugate forms. 

 

Of interest with regard to factoring, see further below, is the conjugate Unity Root 

function f'(u') which we define by analogy with its Unity Root counterpart f(u), 

equation (3.6.4).  

 

Rearranging (3.6.16.10.3) 

 

3.6.16.10.6 u'^n + 1  =  0 (mod a^n) 

 

This is the modular arithmetic analogue of the algebraic polynomial 
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3.6.16.10.7 u^n + 1 = 0 

 

We can factor the left-hand side of the expressions as follows 

 

3.6.16.10.8 u'^n + 1 = (u' + 1)*(1 - u' + ... (-1)^ru'^r + ... u'^(n - 1)) 

 

and thus define the 'Conjugate Unity Root Polynomial' f'(u')n as follows 

 

3.6.16.10.9 f'(u')n = (1 - u' + ... (-1)^ru'^r + ... u'^(n - 1)) 

 

This polynomial is an oscillating sum, valid for odd exponents only. 

 

If we substitute for u' in terms of u from (3.6.16.10.2) into (3.6.16.10.9), we see the 

two Unity Roots functions f(u) and f'(u') are, related  

 

3.6.16.10.10 f'(-u)n = f(u)n 

 

Because there is a 1:1 correspondence between Unity Roots and their conjugates, we 

can assert that, if the base a is of the 2ln + 1 form, there are n conjugate Unity Roots, 

as given by the set U' in equation (3.6.16.10.5). Furthermore, since the factor 

properties of the Unity Root function f(u) were derived by consideration of Unity 

Root properties we conclude the same factor properties must also apply to the 

conjugate Unity Root function. In particular, it shows us that the factors of f'(u')n are 

limited to the exponent n itself, or factors of the form 2ln + 1. Unlike f(u)n, valid for 

odd and even exponents, we have strictly only defined f'(u')n for odd exponent. 

 

Lastly, if we can make statements about the factors of f'(u')n, then we can make 

statements about the frequently used function u'^n + 1, where n is odd. 

 

Back substituting for f'(u')n from equation (3.6.16.10.9) into (3.6.16.10.8), we get an 

expression for the factorisation of u'^n + 1 as 

 

3.6.16.10.11 (u'^n + 1) = (u' + 1)*f'(u')n 

 

Thus, we see the factors of u'^n + 1 are (u' + 1) and f'(u')n when n is odd. 

 

It would be nice, but unfortunately flawed, to think that we could use (3.6.16.10.11) to 

make claims on the factors of Fermat numbers Fn defined via 

 

3.6.16.10.12 Fn = 2^(2^n) + 1 

 

Unfortunately f'(u')n was defined exclusively for odd exponents and we see that the 

exponent for Fn is always even, of the form 2^n. 
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Examples 

 

3.6.16.10.13 u' = 2, n = 3 

 

  2^3 + 1 = 3*3 

 

Here u' + 1 = 3 and also the exponent, n = 3, divides f'(2)3 = 3 

 

3.6.16.10.14 u' = 2, n = 5 

 

 2^5 + 1 = 3*11 

 

Here u' + 1 = 3 and the other factor 11 divides f'(2)5. The factor 11 is of the form 

2ln + 1, n = 5, l = 1. 

 

3.6.16.10.15 u' = 3, n = 3 

 

 3^3 + 1 = 4*7 

 

Here u' + 1 = 4 and the other factor 7 divides (equals) f'(3)3. The factor 7 is of the 

form 2ln + 1, n = 3, l = 1. 

 

3.6.16.10.16 u' = 3, n = 5 

 

 3^5 + 1 = 4*61 

 

Here u' + 1 = 4 and the other factor 61 divides (equals) f'(3)5. The factor 61 is of the 

form 2ln + 1, n = 5, l = 6. 

 

3.6.16.10.17 u' = 5, n = 3 

 

 5^3 + 1 = 6*3*7 

 

Here u' + 1 = 6 and the other factors 3 and 7 divide f'(5)3. The factor 3 is the same as 

the exponent, and the other factor 7 is of the form 2ln + 1, l = 1, n = 3. 

 

3.6.16.11 Primality Testing 

 

Because we can make many statements on the factors of f(u), section (3.6.16), it 

suggests we can deduce the composition or primality of f(u)n for various u and n. The 

key properties in Section (3.6.16), with respect to factorisation, are summarised as 

follows. 
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3.6.16.11.1 If n is composite, then f(u)n is composite. 

 

3.6.16.11.2 If x is a prime factor of f(u)n it is either of the form x = n or 

x = 2ln + 1, integer l, l >= 1. 

 

3.6.16.11.3 If x is a prime factor of f(u)n and x = n then x is always a factor of 

f(u)n at locations u = 1 + k*n, integer k, k >= 0. 

 

3.6.16.11.4 If x is a prime factor of f(u)n and x = n then there is only one 

occurence of the factor x = n in the interval 0 <= u < x and that is at u = 1. 

 

3.6.16.11.5 If x is a prime factor of f(u)n and x = 2ln + 1, integer l, l >= 1, then it 

will repeat n - 1 times in the interval 0 <= u < x. 

 

3.6.16.11.6 If x is a prime factor of f(u)n and x = 2ln + 1, integer l, l >= 1, then it 

will be located at the Unity Root locations in the interval 0 <= u < x, 

u^n = 1 (mod x). 

 

 

From these factor properties we can make the following assertion 

 

For any number P = f(u)n, prime exponent n, to test the primality of P we only need to 

perform trial division on P for all prime numbers of the form 2ln + 1 less than the 

square root of P. 

 

The key point is that primes numbers of the form 2ln + 1 are rarer than ordinary 

primes because, of course, not every integer is of the 2ln+1 form.  Therefore any 

primality test using trial division will not have to perform nearly as many trial 

divisions when testing prime candidates f(u)n, as would have to be performed for any 

arbitrary prime candidate, i.e. the trial division only divides by numbers of the 2ln+1 

form. 

 

In the smallest exponent case, n = 3, there are 11 primes less than 100 of the form 

6l+1  

 

{7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97} 

 

This is actually quite a lot but it is still less than the total of 26 primes, the primes not 

of the form 6l+1, less than 100 which are 

 

{2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 61, 71, 83, 89} 

 

For larger exponent n, they become more scarce as, of course, do all primes. 
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Primality testing of very large numbers, e.g. 1000 plus digits, cannot be exhaustively 

performed by trial division since there are far too many primes and computational 

capability is not sufficient to do all the necessary trial divisions in any reasonable time 

span. Nevertheless trial division, using say the first million primes, is a good start to 

quickly eliminate composites. If we pick a prime candidate of the form f(u)n then, 

from what has just been said, we can go much further with the trial division, i.e. we 

can start with a larger prime candidate than might ordinarily be chosen since the first 

million primes, of the form 2ln + 1, will reach to a much larger trial divisor than the 

millionth prime. 

 

Example 

 

Let n = 1009 (prime) 

 

The first 17 primes of the form 2l*1009 + 1 are, for l = 1 to 99, 

 

{10091, 12109, 30271, 40361, 42379, 64577, 72649, 88793, 94847, 121081, 125117, 

131171, 149333, 155387, 163549, 179603, 199783} 

 

If we over-estimated the density of these primes and said there were 20 in the range 0-

200000 we would have 1 prime every 10000. If we kept with this density we could 

reasonably estimate that the first million primes of 2l*1009 + 1 form would stretch all 

the way to 10^10. Thus, if we had a number of 20 digits, i.e. a maximum value of 

10^20 - 1, and hence a square root < 10^10, then this tentative list of the first million 

primes would be sufficient to provide an exhaustive divisibilty test for a number 

constructed from f(u)1009. In fact, since the prime density decreases as the density of 

ordinary primes decreases with increasing number size, this is a pessimistic argument 

and the first million primes of the 2l*1009 + 1 form would arguably stretch well 

beyond 10^10. That said, we have to keep in mind that any prime candidate we test 

must be of the form f(u)1009, which has a term u^1008 in the f(u) polynomial, and so 

the prime candidate will not be a small number. Nevertheless, our first million trial 

divisions will stretch to prime factors at least of size 10^10, whereas the first million 

ordinary primes are of order 10^7 (TBD - needs some verfification work - there are 

about 6.6 million, use ln(n) / n etc.) 

 

The smallest prime candidate we can pick for f(u)1009 is when u = 2. In which case 

we have the Mersenne number 'M1009', f(2)1009 = 2^1009 - 1 which has about 300 

digits. 

 

[Mersenne Primes are discussed again in more detail in section (4.4)]. 

 

If we wanted to perform an exhaustive prime divisibility test we would have to divide 

by all primes of the form 2l*1009 + 1 all the way up to approx 10^150. Obviously, 

this is not possible. Nevertheless, as a trial division, we could start by dividing M1009 

by the 17 primes given above. Similarly for f(3)1009 and any number f(u)1009. 

 

All that said, trial division is only a first stage and even for special numbers f(u)n, 

with their considerably reduced number of prime factors, it will not currently suffice 

for 1000 digit plus numbers. 
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Following trial division, a second stage of primality testing, for example a Fermat 

type test using MFST, Section (4.5), could then be employed to eliminate virtually all 

composites. However, since the MFST test is Monte-Carlo based, and therefore some 

composites could pass as primes, a more advanced primality testing algorithm has to 

be employed to conclusively prove primality or otherwise. See (ref TBD) for more 

details. 

 

3.7 Determination of Unity Roots 

 

3.7.1 Introduction 

 

The determination of Unity Roots u, equation (3.1.1) is a problem in solving an (n -

 1)'th order Diophantine equation for which, at least to the authors knowledge, there 

appears to be no general analytic solution. 

 

For the n = 3 case, see the example below, the problem reduces to the solution, in 

integers, of a Quadratic. Similarly, for n = 4, the problem reduces to the solution, 

again in integers, of a cubic. Since the quadratic solution is almost trivial we shall 

give an example of a cubic Unity Root problem. 

 

3.7.2 Example  n = 3 

 

For the n = 3 case the Unity Root Polynomial is a quadratic so we can apply some 

standard techniques. 

 

By (3.6.4) the Unity Root Polynomial f(u)3 is 

 

3.7.2.1 f(u)3 = 1 + u + u^2 

 

And, by (3.6.7), the Unity Roots, (mod a^3) are obtained by solving 

 

3.7.2.2 1 + u + u^2  =  0 (mod a^3) 

 

This can be re-written in an algebraic form for some integer k, k > 0 

 

3.7.2.3 1 + u + u^2 = k*a^3 

 

And, in principle, we can solve this using the analytic solution for a quadratic 

equation, albeit we do not know the value of integer k. 

 

Comparing (3.7.2.3) with a standard quadratic equation 
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3.7.2.4 Ax^2 + Bx + C = 0 

 

we get for the coefficients A,B and C 

 

3.7.2.5 A = 1, B = 1, C = 1 - k*a^3 

 

The quadratic discriminant D is defined by, 

 

3.7.2.6 D = B^2 - 4AC 

 

which, upon substituting for A, B and C from (3.7.2.5), gives 

 

3.7.2.7 D = 4k*a^3 - 3 

 

and, for non-complex solutions, this must satisfy 

 

3.7.2.8 D >= 0 

 

and therefore, by (3.7.2.7), 

 

3.7.2.9 4k*a^3 - 3 >= 0 

 

This is clearly true for all a > 0, k > 0. 

 

For integer solutions the discriminant must also be a perfect square as the general 

solution is: 

 

3.7.2.10 u = [ -B +/- _/D ] / 2A 

 

with the two solutions in positive and negative form 

 

3.7.2.11 u = (-B + _/D ) / 2A 

 

3.7.2.12 u = (-B - _/D ) / 2A 

 

Therefore we must have, for some integer l, l >0, 

 

3.7.2.13 D = l^2 

 

using (3.7.2.7) this implies 
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3.7.2.14 (4k*a^3 - 3) = l^2 

 

To complete this cubic example, if we look at the specific case of a = 7 we see that if 

k = 1 then (3.7.2.14) gives us an integer solution for l = 37 since 

 

3.7.2.15  (4*7^3 - 3) = 37^2 

 

It seems remarkably fortuitous that the first value of k to try, i.e. k = 1, immediately 

gives a perfect square result. This certainly isn't the case for a = 13, n = 3, (a = 13 is 

the next ‘2ln + 1’ prime after a = 7) we find that k = 489 and this gives u = 1036 or 

-1037. 

 

The significance of this good fortune, if there is any, currently eludes the authors. 

Nevertheless, continuing with the solution for n = 3, a = 7, with l = 37, i.e. D= 37^2, 

we get for the Unity Roots u, using (3.7.2.11) and (3.7.2.12),  

 

3.7.2.16 U = {18, -19} 

 

Since -19 = 324 (mod 7^3), the complete set of Unity Roots a = 7, n = 3, in positive 

primitive form, is  

 

3.7.2.17 U = {1, 18, 324} 

 

Notice that 324 = 18^2. From the properties (3.3.1) and (3.3.2), the roots are cyclic 

and, with the generator u = 18, the other roots are u^2 and u^0, i.e. 324 and 1 

respectively. 

 

With u = 18 the sum of the roots, as given by (3.6.14.4), is confirmed to be exactly 

7^3, i.e. 343. 

 

3.7.2.18     1 + 18 + 18^2 = 343 

 

Note that if we use u = 18^2, i.e. 324, the sum becomes 

 

3.7.2.19     1 + 324 + 324^2 = 307*343 

 

which is also seen to be a multiple of the modulus, 7^3. 

 

3.7.3 Algorithmic Determination 
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Although we do not have an analytic solution to determine Unity Roots for an 

arbitrary base and exponent we can, by an algorithmic method, obtain one or more of 

the Unity Roots (mod a^n) given the Unity Roots (mod a). Due to the cyclic group 

properties of the roots all other roots can be then be generated from a single root. 

 

An analytic solution for the determination of Unity Roots (mod a), for arbitrary 

exponent, is a separate problem for which we also do not have an analytic solution. 

For small base they are not too hard to find and a method based upon the Unity Root 

polynomial is given following in section (3.7.5) 

 

The algorithm to determine Unity Roots (mod a^n) works on the principle that the 

Unity Roots, u^n (mod a^n), are also Unity Roots u^n (mod a^(n - 1)), 

u^n (mod a^(n - 1)) etc. down to u^n (mod a). 

 

Algebraically expressed, if 

 

3.7.3.1 u^n  =  1 (mod a^n) 

 

then 

 

3.7.3.2 u^n  =  1 (mod a^(n - 1)) 

 

3.7.3.3 u^n  =  1 (mod a^(n-2)) 

 

etc. down to (mod a), i.e. 

 

3.7.3.4 u^n  =  1 (mod a) 

 

To use the method we have to first locate the Unity Roots for equation (3.7.3.4) 

 

If we know a Unity Root ‘u1’ (mod a) such that u1 is in the region 1 < u1 < a, then we 

know that a Unity Root (mod a^2) must lie at some location u1 + s1*a for some to-be-

determined integer s1, s1>= 0, since, from what has been said above, if u1 is a Unity 

Root (mod a^2), it must also be a Unity Root (mod a). 

 

[Note that here ‘u1’ denotes a non-trivial root (mod a^1), ‘u2’ denotes a non-trivial 

root (mod a^2), etc.]. 

 

u1 is thus defined by the usual congruence 

 

3.7.3.5 u1^n  =  1 (mod a) 

 

and, for some integer s1, s1>= 0, we know that 
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3.7.3.6  (u1 + s1*a^1)^n  =  1 (mod a^2) 

 

We now have to find the integer s1. If we expand the lhs and take residues (mod a^2) 

then the only term that remains is linear in the constant integer s1 and we get 

 

3.7.3.7 u1^n + n * s1 * a * u1^(n - 1)  =  1 (mod a^2) 

 

This can easily be re-written as a Linear Diophantine equation in unknowns s1 and t1. 

 

3.7.3.8 n * s1 * a * u1^(n - 1) + t1 * a^2  =  1 - u1^n 

  

This does have solutions which can be determined as per Euler’s Algorithm. We 

know there must exist a solution, without recourse to any of the usual GCD 

considerations of the coefficients of s1 and t1, because if a is of the 2ln + 1 form there 

must be Unity Roots (mod a^n) and hence Unity Roots for all exponents from n to 1 

as per (3.7.3.1) to (3.7.3.4). 

 

Of the two solutions to (3.7.3.8) only s1 is of use and t1 can be junked. With s1 

determined, we can now define an integer u2 

 

3.7.3.9 u2 = u1 + s1*a^1 

 

such that, by (3.7.3.6), 

 

3.7.3.10 u2^n  =  1 (mod a^2) 

 

And, since we now have a Unity Root u2, (mod a^2), where u2 is in the region 

1 < u2 < a^2, then we know that a Unity Root (mod a^3) must lie at some location 

u2 + s2*a^2 for some to-be-determined integer s2, s2 >= 0. This is because, from 

what has been said above, if u is a Unity Root (mod a^3), it must also be a Unity Root 

(mod a^2). 

 

So, for some integer s2, s2 >= 0, we know that 

 

3.7.3.11 (u2 + s2*a^2)^n  =  1 (mod a^3) 

 

We now have to find the integer s2. If we expand the lhs of (3.7.3.9) and take residues 

(mod a^3) the only term that remains is linear in the constant integer s2 and we get 

 

3.7.3.12 u2^n + n * s2 * a^2 * u2^(n - 1)  =  1 (mod a^3) 

 

Which can be written as a LDE in unknown’s s2, and t2. 
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3.7.3.13 n * s2 * a^2 * u2^(n - 1) + t2 * a^3  =  1 - u2^n 

 

Once again, this does have solutions for s2 and t2 and, of the two solutions, only s2 is 

of use and t2 can be junked. 

 

In this way we continue the whole process to get a Unity Root (mod a^n). 

 

In general, with the r-1'th Unity Root 'ur_1' determined such that 

 

3.7.3.14  (ur_1)^n  =  1 (mod a^(r-1))  

 

then for some, to-be-determined integer sr_1, sr_1 >= 0, the r'th Unity Root ur is 

located at 

 

3.7.3.15 ur = (ur_1) + sr_1*a^(r-1) 

 

such that 

 

3.7.3.16 ur^n  =  1 (mod a^r) 

 

And, substituting for ur using (3.7.3.15) into (3.7.3.16), expanding and taking residues 

(mod a^r), we get the following LDE in the unknowns 'sr_1' and integer, 'tr_1' (sr_1 is 

the (r-1)'th. iterate of constant s, similarly for tr_1). 

 

3.7.3.17 n*sr_1*a^r*(ur_1)^(n - 1) + tr_1*a^r = 1 - (ur_1)^n 

 

This LDE can be solved for sr_1 to give the r'th Unity Root ur. The process repeating 

to determine the (r+1)'th Unity Root etc. until r = n when we get the desired n'th order 

Unity Root u given by 

 

3.7.3.18 u = un_1 + sn_1*a^n 

 

The integer unknown 'sn_1' (the n-1'th iterate of s) is obtained by substituting for u 

from (3.7.3.18) into 

 

3.7.3.19 u^n  =  1 (mod a^n) 

 

and solving the resulting LDE. 

 

This method, although laborious, is ideally suited for a computer. 

  

The limitation with this method is that we do need to know a Unity Root (mod a) 

other than the trivial u = 1. In some cases this is not too difficult to obtain. 
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3.7.4 Example: Unity Roots (mod 7^3) 

 

Find the Unity Roots u (mod 7^3), 

 

3.7.4.1 u^3  =  1 (mod 7^3) 

 

Suppose u1 is a Unity Root to the (mod 7) problem 

 

3.7.4.2 u1^3  =  1 (mod 7) 

 

then the solution set U1 of Unity Roots to (3.7.4.2) is, by simple hand-calculation, 

 

3.7.4.3 U1 = {2, 4} 

 

Let us use the lowest of these two roots 

 

3.7.4.4 u1 = 2 

 

then, by (3.7.3.9), we know the Unity Root (mod 7^2) is of the form 

 

3.7.4.5 u2 = 2 + 7*s1 

 

and we must now solve for s1 

 

3.7.4.6 u2^3  =  1 (mod 7^2) 

 

Substituting for u2 from (3.7.4.5) into (3.7.4.6) and eliminating terms in 7^2 and 

higher, since they are congruent to 0 mod 7^2, we get 

 

3.7.4.7 2^3 + 3 * 2^2 * 7 * s1  =  1 (mod 7^2) 

 

Factoring 2^2 this becomes 

 

3.7.4.8 4 * (2 + 3 * 7 * s1)  =  1 (mod 7^2) 

 

Defining x as 
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3.7.4.9 x = (2 + 3 * 7 * s1) 

 

then (3.7.4.8) can be re-written 

 

3.7.4.10     4x  =  1 (mod 7^2) 

 

which can be expressed as a LDE in unknowns x and y 

 

3.7.4.11     4x - 49y = 1 

 

and has solutions, for arbitrary integer t, 

 

3.7.4.12     x = -12 + 49t 

 

3.7.4.13     y = -1 + 4t 

 

We only require the solution for x. Substituting for x back into (3.7.4.9), and tidying-

up, we now get a LDE in s1 and t as follows 

  

3.7.4.14     7t - 3*s1 = 2 

 

which has solutions, for arbitrary integer w, 

 

3.7.4.15     s1 = 4 + 7w 

 

3.7.4.16     t = 2 + 3w 

 

and so we now have a solution for s1. Substituting for s1 into (3.7.4.5) we get a 

solution for u2 that satisfies (3.7.4.6), i.e. 

 

3.7.4.17     u2 = 2 + 7*(4 + 7w) 

 

which simplifies to 

 

3.7.4.18     u2 = 30 + 7^2 * w 

 

For w = 0, we get the primitive, positive root u2 = 30 and verifying 

3.7.4.19     30^3  =  1 (mod 7^2) 
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So far, so good. Now we finally have to determine the Unity Root (mod 7^3). 

Defining u3 as follows, for some unknown integer s2, 

 

3.7.4.20     u3 = 30 + 7^2 * s2 

 

we must now solve for s2 by substituting for u3 into the Unity Root equation 

 

3.7.4.21     u3^3  =  1 (mod 7^3) 

 

and solving as a LDE. 

 

We could, at this stage guess u3 since in its most primitive form we know it is in the 

range 1 < u3 < 7^3. If we tried s2 = 0, 1, 2, 3, 4, 5, 6 then, by trial and error, one of 

these seven values would satisfy u3^3 = 1 (mod 7^3). Nevertheless this is only 

practical for small bases. Secondly, it would not constitute a general algorithmic 

method. For those impatient, the correct value for s2 is 6 which gives u3 = 324. 

However, let us go through the algorithmic process to verify this. 

 

Substituting for u3 from (3.7.4.20) into (3.7.4.21) and eliminating terms in 7^3 and 

higher, since they are congruent to 0 (mod 7^3), we get 

 

3.7.4.22     30^3 + 3 * 30^2 * 7^2 * s2  =  1 (mod 7^3) 

 

factoring 30^2 

 

3.7.4.23     30^2*(30 + 3 * 7^2 * s2)  =  1 (mod 7^3) 

 

defining x as 

 

3.7.4.24     x = (30 + 3 * 7^2 * s2) 

 

then (3.7.4.23) can be re-written 

 

3.7.4.25 30^2 * x  =  1 (mod 7^3) 

 

which can be expressed as a LDE in unknowns x and y 

 

3.7.4.26     30^2 * x - 343 * y = 1 

 

which has solutions, for arbitrary integer t, 
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3.7.4.27     x = 226 + 343t 

 

3.7.4.28     y = 593 + 30^2 * t 

 

We only require the solution for x. Substituting for x back into (3.7.4.24), we now get 

a LDE in s2 and t as follows 

  

3.7.4.29     7*t - 3*s2 = -4 

 

which has solutions, for arbitrary integer w, 

 

3.7.4.30     s2 = 6 + 7w 

 

3.7.4.31     t = 2 + 3w 

 

So we now have a solution for s2 and, substituting for s2 into (3.7.4.20), we get a 

solution for u3 that satisfies (3.7.4.21) 

 

3.7.4.32     u3 = 30 + 7^2 * (6 + 7w) 

 

which simplifies to 

 

3.7.4.33     u3 = 324 + 7^3w 

 

For w = 0 we get the positive root u3 = 324 and, verifying this,  

3.7.4.34     324^3  =  1 (mod 7^3) 

 

We can use this root to find the other non-unity, Unity Root. Note that for a cubic, 

prime base, there are three roots of which one is unity. The second root we have just 

found is 324 and, since the roots sum to a^3 in the cubic case, Theorem (3.6.14), we 

know the third root must be 343 - (1 + 324) = 18. Alternatively, we could use 324 as 

the generator where the other root = u3^2 (mod a^3). Doing so we find that 

324^2 = 18 (mod 7^3) and hence 18 is confirmed as the other root. Conversely, note 

that 324 = 18^2 (mod 7^3). Since any element is also a generator we would expect 

324 to be a perfect square (mod a^3).  

 

The complete set of cubic Unity Roots, (mod 7^3), is therefore 

 

(3.7.4.35) U = {1, 18, 324} 
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3.7.5 Unity Roots (mod a) 

 

The algorithmic method to determine a Unity Root (mod a^n), as detailed in the 

previous section, requires prior knowledge of a Unity Root (mod a). Unfortunately, at 

least to the authors knowledge, there appears to be no general analytic method by 

which Unity Roots (mod a) can be determined for arbitrary n. Nevertheless, tabulating 

the Unity Root polynomial f(u)n, equation (3.6.4) and table (3.7.7), can give us some 

roots relatively easily. 

 

Theorem (3.6.13) proves that for arbitrary u, u is Unity Root (mod f(u)n), i.e. 

 

3.7.5.1 u^n  =  1 (mod f(u)n) 

 

If we interpret f(u) as the base modulus 'a' 

 

3.7.5.2 a = f(u)n 

 

then we see that u^n is a Unity Root, (mod a), as desired. 

 

3.7.5.3 u^n  =  1 (mod a) 

 

Of course, there are only certain values f(u) can take so it would appear that we 

cannot use this method for any arbitrary a. However this is not so and we can actually 

find all desired Unity Roots, (mod a), by using f(u)n as the base. We will see that f(u) 

is often composite with the desired factor a, i.e. for integer k, if f(u)n = k*a then u^n 

is still a Unity Root (mod a) according to (3.7.5.1). Note too that it is also a Unity 

Root (mod k). 

 

3.7.5.4 Example, u = 5, n = 3 

 

Suppose we pick a Unity Root u = 5 then the cubic Unity Root function f(u)3 is 

 

f(u)3 = 1 + 5 + 5^2 

 

i.e. 

 

f(5)3 = 31 

 

Therefore we know that 

 

5^3  =  1 (mod 31) 

 

and, verifying, we see this is true since 

 

5^3 = 4*31 + 1 
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Although the base modulus f(u)3 = 31 is not a perfect power, we know from section 

(3.7.3) that we will be able to obtain, by algorthmic methods, the roots 

for any base that is a power of 31, given this root u = 5. 

 

3.7.5.5 Example, u = 7, n = 3 

 

Suppose we pick a Unity Root u = 7 then the cubic Unity Root function f(u)3 is 

 

f(u)3 = 1 + 7 + 7^2 

 

i.e. 

 

f(7)3 = 57 

 

Therefore we know that 

 

7^3  =  1 (mod 57) 

 

and, verifying, we see this is true since 

 

7^3 = 6*57 + 1 

 

Furthermore, if we expand the whole of 7^3, as given immediately above, into prime 

factors and their powers, i.e. 

 

7^3 = 2 * 3^2 * 19 + 1 

 

then we also see that 

 

7^3  =  1 (mod 2) 

 

7^3  =  1 (mod 3) 

 

7^3  =  1 (mod 3^2) 

 

7^3  =  1 (mod 19) 

 

and therfore u = 7 is a Unity Root mod 2, 3, 3^2 and 19 

 

3.7.6 A perfect power f(u) 

 

If the base f(u) is composite there might be values of u for which it is a perfect power 

or contains, as a factor, a perfect n'th power. This is the case for u = 18, n = 3 as in the 

following example. 
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3.7.6.1 Example, u = 18, n = 3 

 

Suppose we pick a Unity Root u = 18 then the Unity Root function f(u) for exponent 

n = 3 is 

 

f(u)3 = 1 + 18 + 18^2 

 

i.e. 

 

f(18)3 = 343 

 

Therefore we know that 

 

18^3  =  1 (mod 343) 

 

and, since, 

 

343 = 7^3 

 

we have a Unity Root, u = 18, (mod 7^3) 

 

18^3  =  1 (mod 7^3) 

 

It is important to note here that both the exponent n = 3 and the perfect power in the 

base modulus is also 3. Since they are the same we see that u = 18 is a cubic root to 

the cubic modulus a^3 = 7^3 and we have effectively found (by luck) a Unity Root 

(mod a^3).  

 

It is 'lucky' in that we picked a value u = 18 which just so happened to have an f(u)3 

function which contained, as a factor, a perfect cube. In this case the f(u)3 value was 

exactly 7^3 albeit it could equally well have been some multiple k*7^3 and still be 

valid. 

 

3.7.7 Tabulation f(u) 

 

(TBD) 

 

3.7.8 How does this help us find Unity Roots (mod a)? 

 

Suppose we pick an arbitrary value for a. For now we assume a is an odd prime. The 

exponent will always be assumed to be odd, prime, n >= 3. The value a will also have 

to be of the 2ln + 1 form to be of interest, i.e. have n roots within the interval [0, a^n). 

 

[Note that if a is an odd prime but not of the form 2ln + 1, and n != a, then it has one 

and only one primitive Unity Root at u = 1 and all other primitive roots at 1 + k*a^n, 

integer k, k >= 1. If a is prime and n = a, and therefore cannot be of the 2ln + 1 form, 

there is one and only one Unity Root within each Minimal Residue Sequence , size 

a^n / n, at location 1 + k*a^(n - 1), integer k, 0 <= k < n]. 
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To find a Unity Root (mod a) we would look down the column for exponent n and see 

where a appears as either the value of f(u)n or as one of its factors. We then read 

across to find which value of u generates the value f(u)n. 

 

For example, suppose we require the Unity Root for 

 

a = 41, n = 5 

 

We note 41 = 2 * 4 * 5 + 1 hence the value a = 41 is of the 2ln + 1 form. If we look 

down the n = 5 column to find the first occurence of 41 as a factor of f(u)5 then we 

see that the value of f(u)5 = 11111 ( = 41*271) at u = 10 and so 10^5 = 1 (mod 41). 

Since 271 is the other factor, we also know that 10^5 = 1 (mod 271). 

 

Because there is always a value of f(u) for whatever integer u we choose, We can 

arrive at the conclusion that every integer u, is a Unity Root, for some base f(u), 

exponent n. 

 

3.7.9 Special Cases, (mod a) 

 

3.7.9.1 a = 2n + 1 

 

Section (2.6.11) states that for prime modulus a, exponent n such that a is of the form 

given by (3.7.9.1) then the residue r, (mod a), for any integer x, 0 < x < a, as given by, 

 

3.7.9.2 x^n  =  r (mod a) 

 

can only either be +1 or -1. What we do not know is whether the residue is -1 or +1. 

However, if the residue is -1 we know the conjugate residue at (a - x) is +1 and vice 

versa. If we know just one value x (excepting x = +1 and x = -1, see further) which 

gives a residue of +1 or -1 then, since all the roots are cyclic, the other n-1 roots are at 

locations x^2, x^3 etc. We will eventually cycle through all n roots that give the same 

residue. The value x acts as the generator of the group. 

 

[Note that the root x = +1, which gives a residue of +1, cannot be used as a generator 

since repeated exponentiation gives the same value +1. Likewise for the root at 

x = a - 1 which has the residue r = -1]. 

 

To find all the roots we simply have to pick an initial value, say x = 2, determine its 

residue and then find all the other n - 1 roots by cyclic generation. Once we have all 

the roots for, say residue r = +1, the remaining n values of x, which are not roots of 

+1, are the roots for the conjugate residue, a - x (mod a). 

 

3.7.9.3 Example 

 

a = 11, n = 5 
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Firstly, we see a is of the 2n + 1 form so we know it has 5 Unity Roots 

 

x^5  =  +1 (mod 11) 

 

and 5 conjugate roots 

 

 (11 - x)^5  =  -1 (mod 11) 

 

If we start with x = 2 we find that this has a residue r = -1 since 

 

2^5  =  -1 (mod 11) 

 

Therefore, to get the next root of -1, we use x = 2 as a generator and the remaining 

roots, not including -1, are thus x = 4, x = 8, x = 5 since 

 

2^2  =  4 (mod 11) 

2^3  =  8 (mod 11) 

2^4  =  5 (mod 11) 

 

Verifying we see that, as expected, 

 

4^5  =  -1 (mod 11) 

8^5  =  -1 (mod 11) 

5^5  =  -1 (mod 11) 

 

The other root is given by x = -1, i.e. x = 10 (mod 11). Thus, the five roots with a 

residue of -1 are 

 

(2, 4, 5, 8, 10} 

 

and this leaves the roots of +1 as 

 

{1, 3, 6, 7, 9} 

 

3.8 Composites 

 

3.8.1 Introduction 

 

In this section, we shall show that the Unity Roots of a composite can be determined  

from the Unity Roots of the prime factors. 

 

3.8.2 Theory: Unity Roots of Factors 

 

We will work with an arbitrary modulus A which, within this paper, is normally either 

A = a or A = a^n. 
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If the base A is composite, comprising two unique co-prime factors k and m, i.e. 

 

3.8.2.1 A = km 

 

and, if u is a Unity Root (mod a) such that, by the usual definition, 

 

3.8.2.2 u^n  =  1 (mod A) 

 

then expanding u^n in quotient remainder form we get 

 

3.8.2.3 u^n = l*A + 1 

 

Substituting for A from (3.8.2.1) in terms of its factors k and m 

 

3.8.2.4 u^n = l*km + 1 

 

we see that the Unity Root u is also a Unity Root of the factors k and m since 

 

3.8.2.5 u^n  =  1 (mod k) 

 

3.8.2.6 u^n  =  1 (mod m) 

 

Denoting a Unity Root of factor k by u(k) and that of factor m by u(m) where 

0 < u(k) < k^n, 0 < u(m) < m^n then, by definition, 

 

3.8.2.7 u(k)^n  =  1 (mod k) 

 

and 

 

3.8.2.8 u(m)^n  =  1 (mod m) 

 

Thus, by (3.8.2.5) and (3.8.2.6), for some to-be-determined, integer constants c(k) and 

c(m), the Unity Root u of the composite A can be expressed in terms of the Unity 

Roots u(k) and u(m) of its factors, k and m respectively, as follows 

 

3.8.2.9 u = u(k) + c(k)*k 
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3.8.2.10 u = u(m) + c(m)*m 

 

In such a form we see that equations (3.8.2.5) and (3.8.2.6) are simultaneously 

satisfied if we can find constants c(k) and c(m). This can be done by equating (3.8.2.9 

and 3.8.2.10) and solving for c(k) and c(m) as unknowns of a LDE. 

 

Before proceeding we shall examine how many Unity Roots there are so we can 

determine the number of equations to solve. 

 

Defining the number Nk of Unity Roots for factor k as follows 

 

3.8.2.11 Nk = number of Unity Roots, u^n  =  1 (mod k), 

 

Then Nk can have one of the following possible values 

 

  Nk = n if k = 2ln + 1, 0 < u < k^n 

  Nk = 1 if k!= 2ln + 1 and k!= n, 0 < u < k^n 

  Nk = 1 if k = n, 0 < u < k^n / n 

  Nk = n if k = n, 0 < u < k^n 

 

Similarly, defining the number Nm of Unity Roots for factor m as follows 

 

3.8.2.12 Nm = number of Unity Roots u^n  =  1 (mod m) 

 

Then Nm can have one of the following possible values 

 

  Nm = n if m = 2ln + 1, 0 < u < m^n 

  Nm = 1 if m!= 2ln + 1 and m!= n, 0 < u < m^n 

  Nm = 1 if m = n, 0 < u < m^n / n 

  Nm = n if m = n, 0 < u < m^n 

 

Finally, defining the number Nkm of Unity Roots for the composite A (= km) as 

follows 

 

3.8.2.13 Nmk = number of Unity Roots u^n  =  1 (mod A) 

 

then the composite A has Nmk Unity Roots given by the product of Nk and Nm 

 

  Nmk = Nm * Nk 

  Nmk = 1, n or n^2, see (3.8.2.11) and (3.8.2.12) 

 

Returning to equations (3.8.2.9) and (3.8.2.10); because there are Nk values of u(k) 

and Nm values of u(m), equation (3.8.2.9) actually comprises Nk equations and 

equation (3.8.2.10) comprises Nm equations. If we equate them, which we shall do so 

in a moment, we will have Nm*Nk separate equations (= Nmk by (3.8.2.13)), which 

cannot all possibly be dependent. 

 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

154 

Since the expressions (3.8.2.9) and (3.8.2.10) are linear in the constants, by equating 

them and rearranging, we get 

 

3.8.2.14 c(k)*k^n - c(m)*m^n = u(m) - u(k) 

 

which are the aforementioned Nmk LDEs in the 2Nmk unknowns c(k) and c(m). 

These LDEs can be solved by by algorithmic methods. Of course if Nmk is n^2 this is 

a lot of LDEs to solve. Fortunately we do not have to solve this many. Firstly, and 

most importantly, we know that the roots u are cyclic and all we have to find is a 

single, non-unity, Unity Root to act as a generator for all other Unity Roots. One 

might then think we can go from having to solve a maximum of n^2 equations to 

merely having to solve only one. Perhaps, not surprisingly, the truth lies in between. 

 

We will proceed assuming each factor k and m has n roots 

 

3.8.2.15 Nk = n 

 

3.8.2.16 Nm = n 

 

and therefore Nmk has, by (3.8.2.13), n^2 possible roots. 

 

3.8.2.17 Nmk = n^2 

 

Excluding the trival root +1, the number of non trivial roots is given by 

 

3.8.2.18 Nmk - 1 = n^2 - 1 

 

Since each factor has Nk = Nm = n - 1 non trivial roots, all of which can be derived 

from one of them as generator, the total number of independent generators ‘Ng’ is 

given by 

 

3.8.2.19 Ng = (Nmk - 1) / (n - 1) 

 

Substituting for Nmk from (3.8.2.18) 

 

3.8.2.20 Ng  = (n^2 - 1) / (n - 1) 

 

and factoring out (n - 1) we get for Ng 

 

3.8.2.21 Ng = n + 1 
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Thus the total number of independent, non-trivial generators for the composite a, 

comprising two, odd prime factors k and m, is (n + 1). For instance if n = 3 there are 4 

generators. The following Example Data illustrates this. 

 

3.8.3 Example Data 

 

3.8.3.1 a = 91, k = 7, m = 13 

 

 u(7) = {1, 18, 324} 

 

 u(13) = {1, 1036, 1160} 

 

 91^3 = 753571 

 

 N7 = 3 

 

 N9 = 3 

 

 N91 = N7*N9 = 9 

 

The nine Unity Roots of 91^3 are 

 

 U(91) = {1, 9948, 59320, 69267, 244903, 304222,  

    439401, 449348, 684303} 

 

Since 

 Nk = Nm = 3 

 

Then 

 

 Nkm = Nm*Nk = 9 

 

And the number of generators 

 

 Ng(91) = (Nm*Mk - 1) / (Nm - 1) = 4 

 

Four possible generators are {9948, 59320, 69257, 304222} and the other roots they 

generate, by squaring (in the cubic case), are given by 

 

 9948^2  =  244903  =  1 (mod 91^3) 

 

 59320^2 =  439401  =  1 (mod 91^3) 

 

 69267^2  =  684303  =  1 (mod 91^3) 

 

 304222^2  =  449348  =  1 (mod 91^3) 

 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

156 

3.8.4 Mulitple Factors 

 

We can generalise the above arguments to r prime factors. In this case the maximum 

total number of Unity Roots, given each factor had n roots, would be n^r 

 

3.8.4.1 Ng = (n^r - 1) / (n - 1 ) 

 

If not all roots have n factors, i.e. some (most) may have only the single trivial root +1 

if they are not of the 2ln + 1 form, then n^r in (3.8.4.1) is replaced by n^r' where r' is 

the number of factors with n roots. 

 

In example (3.8.5), given below, only one of the two factors, namely 7, has 3 Unity 

Roots since n = 3 and it is of the 2ln + 1 form. The other factor has only one root so 

the total number of generators is 1, according to (3.8.4.1) where 1 = (3^1 - 1) / (3 - 1). 

 

If the modulus A is a^n, as is the most common modulus used throughout this paper, 

and a is composite, i.e. a = km, then A^n = a^n = (km)^n. We can re-cycle the same 

arguments above using the base A = a^n and replacing k with k^n and m with m^n.  

 

If the base a is prime, even though the modulus a^n is no longer prime, it is the only 

unique prime factor and therefore, in terms of the number of roots, it is the same as 

for a prime modulus. 

 

Section (3.9) gives a more detailed exposition on determining Unity Roots for 

composites, with regard to the Pythagorean case, including some lengthy examples. A 

couple of examples for odd exponent are given below. For more detail in 

understanding the process see also section (3.9). 

 

3.8.5 Example 

 

3.8.5.1 n = 3, a = 14, k = 2, m = 7 

 

The Unity Roots of the composite a, and factors k and m are 

 

3.8.5.2 U(14) = {1, 361, 1353} 

 

3.8.5.3 U(2) = {1} 

 

3.8.5.4 U(7) = {1, 18, 324} 

 

Since the composite 14 only contains a single prime factor of the form 2ln+1 (= 7) 

there are only three roots for the composite. These are not the same as the factors 

however, as will be seen. 
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For the factor k = 2, by equation (3.8.2.9), we know that all U(14) are of the form 

 

3.8.5.5 u_0(14) = +1 + c_0(2)*2^3 

 u_1(14) = +1 + c_1(2)*2^3 

 u_2(14) = +1 + c_2(2)*2^3 

 

where there are three constants c_i(2), i =0, 1, 2 to be determined for each of the three 

U(14) roots. 

 

For the factor m = 7, by equation (3.8.2.10), we know that all U(14) are also of the 

form 

 

3.8.5.6 u_0(14) = +1 + c_0(7)*7^3 

 u_1(14) = +18 + c_1(7)*7^3 

 u_2(14) = +324 + c_2(7)*7^3 

 

Equating each root u_i(14), i =0, 1, 2 in (3.8.5.5) with (3.8.5.6), we get the following 

three LDEs, each in two unknowns, namely the constants c_i(2) and c_i(7), i = 0, 1, 2 

 

3.8.5.7 c_0(2)*2^3 - c_0(7)*7^3 = 0 

 

3.8.5.8 c_1(2)*2^3 - c_1(7)*7^3 = 17 

 

3.8.5.9 c_2(2)*2^3 - c_2(7)*7^3 = 323 

 

Since, by their cyclic properties, we can get all the roots from a single solution, say 

u_1(14), we need only solve one of the LDEs (3.8.5.8) or (3.8.5.9) to get the two, 

non-unity roots. Nevertheless, solving all these LDEs gives, for arbitrary integer 

constants f, g and h we get 

 

3.8.5.10 c_0(2) = f*7^3 

 c_0(7) = f*2^3 

 

3.8.5.11 c_1(2) = 45 + g*7^3 

 c_1(7) = 1 + g*2^3 

 

3.8.5.12 c_2(2) = 169 + h*7^3 

 c_2(7) = 3 + h*2^3 
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To get the constants within the 0 < c_i < 14^3 range, simply set f, g and h to zero and 

then substitute back into either (3.8.5.5) or (3.8.5.6) to finally give for the three roots 

of the composite 14 

 

3.8.5.13     U(14) = {1, 361, 1353 } 

 

These can be verified as correct 

 

3.8.5.14     361^3  =  1 (mod 14^3) 

 

3.8.5.15     1353^3  =  1 (mod 14^3) 

 

and, by the cyclic property, 

 

3.8.5.16     361^2  =  1353 (mod 14^3) 

 

3.9 Pythagoras and Unity Roots 

 

3.9.1 Prime base a 

 

For n = 2, arbitrary base (composite or prime), there are always at least two Unity 

Roots +1 and a^2 - 1 in the interval 0 < u < a^2. If the base a is prime there are only 

two roots, (mod a) or (mod a^2), written in the positive form as the set U as follows 

 

3.9.1.1 U = {+1, a^2 - 1} 

 

It is usually simpler to use the negative form for clarity of algebraic manipulation and 

-1 is often used in place of a^2 - 1, i.e. we write U as 

3.9.1.2 U = {+1, -1} 

 

In particular, for prime base a, we shall see that it is always the negative Unity Root 

-1 that is responsible for Pythagorean triples. 

 

3.9.1.3 Theorem: Pythagoras, Negative Unity Root Mapping 

 

If the base a is prime and (b,c) is a Candidate Pair, (mod a^2), such that b maps to c 

via the Unity Root u, i.e. 

 

3.9.1.3.1 c  =  u*b (mod a^2) 
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and, if (a, b, c) is a Pythagorean triple, then the Unity Root responsible for the 

mapping is always negative, i.e. u = -1. 

 

Proof 

 

Writing the Pythagoras Equation as 

 

c^2 - b^2 = a^2 

 

and factoring the lhs 

 

(c + b)*(c - b) = a^2 

 

then, by Theorem (1.14), we know that if the base a is prime then the factor (c - b) is 

such that 

 

c - b = 1 

 

This implies that the other factor (c + b) is  

 

c + b = a^2 

 

Taking residues (mod a^2) 

 

c  =  -b (mod a^2) 

 

and comparing this with (3.9.1.3.1) we see that 

 

u = -1 

 

If u were to be +1 then we would have 

 

c  =  b (mod a^2) 

 

rearranging 

 

c - b  =  0 (mod a^2) 

 

which implies for integer l 

 

c - b = l*a^2 

 

If l = 0, this implies c = b and we get 

 

2*b^2 = a^2 

 

which has no integer solution 

 

If l != 0, then 
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| c - b | >= a^2 

 

which will not give us a Unity Root gap, since Theorem (1.12) proves that, for prime 

base a, c - b < a, where c > b as per the convention throughout this paper. 

 

We thus conclude that if (a, b, c) is a Pythagorean triple then the Candidate Pair (b,c) 

is such that c = -b (mod a^2) and b maps to c via the negative Unity Root only. 

 

We shall see that for composites this is only true for one or more factors but not all of 

them. 

 

3.9.1.3.2 What does Theorem (3.9.1.3) mean physically? 

 

For prime, odd base a, a > 2, the entire residue sequence x^2 (mod a^2), for 

0 <= x < a^2, is symmetric about the mid-point which is actually the half-integer point 

(a^2) / 2. Any Candidate Pair (b,c) is such that the b value lies in the lower half and 

that, by Theorem (3.9.1.3), the value c is a mirror image of b about the centre point, 

lying in the upper half of the residue sequence, c > a^2 / 2. Alternatively stated, c is 

the value b flipped about the centre point. However, by Theorem (1.14), we know that 

c is numerically one greater than b. The only way to satsify these two Theorems is if b 

is exactly the largest integer not greater than the mid-point and that c is the smallest 

integer, not less than the mid-point. Since the mid-point is half integral at a^2 / 2 we 

conclude that, for prime base a, 

 

b = (a^2 - 1) / 2 

 

c = (a^2 + 1) / 2 

 

One can verify that the resulting triple (a, b, c) satisfies the Pythagoras equation 

(1.1.2). 

 

3.9.2 Composites base a 

 

If a is composite there are two roots for each unique prime factor of a and hence there 

are 2^r roots, where r is the number of unique, prime factors. For simplicity we shall 

proceed assuming r = 2, i.e. only two unique prime factors. 

 

Let a be composite with two, unique prime factors k and m, i.e. 

 

3.9.2.1 a = k*m 

 

Each prime factor has two roots, (mod a^2), denoted u(k) and u(m) 

 

3.9.2.2 U(k) = {+1, k^2 - 1}  =  {+1, -1} (mod k^2) 
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3.9.2.3 U(m) = {+1, m^2 - 1}  =  {+1, -1} (mod m^2) 

 

From what has been said about the Unity Roots of composites, section (3.8.2), the 

Unity Roots u, (mod a^2), for some integer constants c(k) and c(m), will be of the 

form 

 

3.9.2.4 u = u(k) + c(k)*k^2 

 

3.9.2.5 u = u(m) + c(m)*m2^2 

 

With two factors there are four separate roots for the composite (two for each unique 

prime factor) given by the set U(km) 

 

3.9.2.6 U(km) = {u_0, u_1, u_2, u_3 } 

 

And, for each of the four roots in the set, there are four constants c(k) and four 

constants c(m), i.e. eight constants in all (8= 2*n^2, see section (3.8.2) equations 

(3.8.2.9) and (3.8.2.10) ), which satisfy the equations 

 

3.9.2.7 u_0 = u(k) + c_0(k)*k^2 

 

3.9.2.8 u_0 = u(m) + c_0(m)*m^2 

 

3.9.2.9 u_1 = u(k) + c_1(k)*k^2 

 

3.9.2.10 u_1 = u(m) + c_1(m)*m^2 

 

3.9.2.11 u_2 = u(k) + c_2(k)*k^2 

 

3.9.2.12 u_2 = u(m) + c_2(m)*m^2 

 

3.9.2.13 u_3 = u(k) + c_3(k)*k^2 

 

3.9.2.14 u_3 = u(m) + c_3(m)*m^2 

 

At this stage we do not know exactly which roots u(k) are to be inserted in which 

equation. For example, is u(k), in the expression for u_0, equation (3.9.2.7), equal to 

+1 or –1? Similarly for all the other seven equations (3.9.2.8) to (3.9.2.14). We also 
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need to determine the 8 constants c_0(k), c_0(m) etc.. To do this we equate the 

respective expressions for u_0, u_1 etc to get four LDEs, each in two unknowns 

which are the constants c_0(k), c_0(m) etc. 

 

3.9.2.15 c_0(k)*k^2 -  c_0(m)*m^2 = u(m) - u(k) 

 

3.9.2.16 c_1(k)*k^2 -  c_1(m)*m^2 = u(m) - u(k) 

 

3.9.2.17 c_2(k)*k^2 -  c_2(m)*m^2 = u(m) - u(k) 

 

3.9.2.18 c_3(k)*k^2 -  c_3(m)*m^2 = u(m) - u(k) 

 

Since each root u(m) and u(k) is either +1 or -1, there are four combinations for their 

difference given by u(m) - u(k) on the rhs of the above equations. 

 

3.9.2.19 c_0(k)*k^2 -  c_0(m)*m^2 = 0 

 

3.9.2.20 c_1(k)*k^2 -  c_1(m)*m^2 = -2 

 

3.9.2.21 c_2(k)*k^2 -  c_2(m)*m^2 = +2 

 

3.9.2.22 c_3(k)*k^2 -  c_3(m)*m^2 = 0 

 

In fact, since u(m) - u(k) = -( u(k) - u(m) ), and all u(k) and u(m) are restricted to +/-1 

only, only half the equations are actually unique. For instance, (3.9.2.20) is the 

negative equivalent of (3.9.2.21) where the constants linking the two equations are 

givenby c_2(k) = -c_1(k) and c_2(m) = -c_1(m). Similarly, the two equations 

(3.9.2.19) and (3.9.2.22) are identical since -0 = +0. Solving (3.9.2.19) we get 

 

3.9.2.23 c_0(k)*k^2 =  c_0(m)*m^2 

 

Which gives, for co-prime factors k and m, arbitrary integer l, 

 

3.9.2.24 c_0(k) = l*m^2 

 

3.9.2.25 c_0(m) = l*k^2 

 

Since equations (3.9.2.19) and (3.9.2.22) are identical, we get for c_3(k) and c_3(m) 
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3.9.2.26 c_3(k) = c_0(k) 

 

3.9.2.27 c_3(m) = c_0(m) 

 

Inserting for c(0)k from (3.9.2.24) into (3.9.2.7) we get the zero'th order Unity Root 

 

3.9.2.28 u_0 = u(k) + l*(km)^2 

 

We would get the same result for u_0 if we had inserted for c(0)m from (3.9.2.25) 

into (3.9.2.8). 

 

With u(k) = +1 we see that u_0 is the familiar unity, Unity Root (mod a^2). Using 

equation (3.9.2.3) we get 

 

3.9.2.29 u_0 = +1 + l*a^2 

 

With u(k) = -1 we get the conjugate unity, Unity Root (mod a^2). This expression can 

be thought of as also deriving from the duplicated equation for c_3(k) and c_3(m), see 

(3.9.2.22). 

 

3.9.2.30 u_0 = -1 + l*a^2 

 

What about the other two, non -trivial, i.e. non-unity, Unity Roots given by solving 

equation (3.9.2.20) and (3.9.2.21). Firstly, as prior mentioned, we need only solve one 

of them, say the first one (3.9.2.20). Doing this will give us c_1(k) and c_1(m). If we 

multiply (3.9.2.21) by -1, we see that 

 

3.9.2.31 c_2(k) = -c_1(k) 

 

3.9.2.32 c_2(m) = -c_1(m) 

 

We have to be slightly careful here in that if we want positive roots we have to put 

either c_1(k) and c_1(m) or c_2(k) and c_2(m) in the more general solution form. 

Assuming c_1(k) and c_1(m) are positive then c_2(k) and c_2(m) are adjusted as 

follows, for arbitrary integers s and t. 

 

3.9.2.33 c_2(k) = -c_1(k) + s*m^2 
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3.9.2.34 c_2(m) = -c_1(m) + t*k^2 

 

We get c_1(k) and c_1(m) by solving the LDE (3.9.2.20) and, in doing so, we have 

now determined all eight constants, c_0(k), c_0(m) to c_3(k), c_3(m) as specified in 

equations (3.9.2.7) to (3.9.2.14). 

 

Of course, this method generalises to any number of unique prime factors and not just 

two as specified above. 

 

The fact that we can derive the upper-half constants c_2, c_3, from the negative of the 

lower-half c_0 and c_1, also reduces the number of LDEs from n^2 to actually 

n^2 / 2, i.e. from 4 to 2 in the Pythagorean case. 

 

Section (3.8.2) showed that the constants c(k), c(m) can be obtained by solution of a 

LDE if the Unity Roots of the prime factors are known. Of course they are always +/-

1 for n = 2 so there is no problem in computing c(k) and c(m). 

 

Having established the form of the roots for prime or composite base, the main aim of 

this section is to show that for composite base, if (b,c) is a Candidate Pair, (mod a^2), 

such that b maps to c via a Unity Root u, then the Unity Root u is of the negative form 

for one or more of the prime factors k but not for all prime factors. 

 

 

3.9.3 Theorem: Pythagoras Negative Unity Root Mapping 

 

If the base a is composite with m unique prime factors k_0, k_1, k_2, ... k_r ... 

k_(m-1), 0 <= r < m, i.e. a is factored as 

 

3.9.3.1 a = k_1*k_2* ... k_r^2 ... k_(m-1) 

 

and (b,c) is a Candidate Pair such that b maps to c via the Unity Root u, i.e. 

 

3.9.3.2 c  =  u*b (mod a^2) 

 

then the Unity Root u is of the 'negative form' (explained shortly) for one or more of 

the prime factors k but not for all prime factors. 

 

A Unity Root u (mod a^2), of a composite base a, is considered of the 'negative form' 

when it is expressed using the negative unity root u(k_r) of the r'th prime factor k_r of 

the base a (3.9.3.1), i.e. with u(k_r) given by 

3.9.3.3 u(k_r) = -1 

 

then the negative form of the Unity Root u, as in (3.9.3.2), expressed using u(k_r) is 

given by 
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3.9.3.4 u = u(k_r) + c(k_r)*k_r^2 

 

Proof 

 

If we look back at equations (3.9.2.15) to (3.9.2.18) for the case of two unique, prime 

factors k and m, we had four possible combinations for forming the sum u(m) - u(k), 

given for each prime factor there were two roots, +1 or -1, i.e. 

 

3.9.3.5 U(m) = {+1, -1} 

 

3.9.3.6 U(k) = {+1, -1} 

 

and the four possible differences are given by 

3.9.3.7 U(m) - U(k) = {0, -2, +2, 0 } 

 

Of the four combinations, the +2 and 0 resultant is a linear (-1 factor) combination of 

the -2 and 0 solutions. Thus there were in fact only 2^2 / 2 linearly independent 

combinations. 

 

For m unique prime factors, k_r, 0 <= r < m, the number of linearly independent 

combinations grows exponentially as 2^(m - 1). Nevertheless, there is only one case 

whereby the Unity Root u is a combination of only positive Unity Roots for each of 

the factors, i.e. 

 

3.9.3.8 u(k_r)= +1 for 0 <= r < m 

 

In such a case, the Unity root of the composite can be written in any one of the 

following m different forms for each of the m prime factors k_0 to k_(m-1). 

3.9.3.9 u = +1 + c(k_0)*k_0^2 

 u = +1 + c(k_1)*k_1^2 

 . 

 . 

 . 

 u = +1 + c(k_r)*k_r^2 

 . 

 . 

 . 

 u = +1 + c(k_(m - 1))*k_(m - 1)^2 

 

If we equate any pair of equations in (3.9.3.9), for example the equations for factor 

k_0 and k_r, we get the equation 

 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

166 

3.9.3.10 c(k_0)*k_0^2 - c(k_r)*k_r^2 = 0 

 

which, since all the factors are co-prime, has the general solution, for arbitrary integer 

l, 

 

3.9.3.11 c(k_0) = l*k_r^2 = 0 

 

3.9.3.12 c(k_r) = l*k_0^2 = 0 

 

Equating any pair of terms in (3.9.3.9) will give a zero on the rhs as the +1 Unity Root 

always cancels to leave 0. Thus, every one of the equations is similar and there is only 

one consistent, general solution for the r'th constant c(k_r), arbitrary integer l, given 

by 

 

3.9.3.13 c(k_r) = l*( k_1^2*k_2^2* ... k_r^2 ... k_(m - 1)^2 ) / k_r^2 

 

i.e. c(k_r) is the continued product of the squares of all the prime factors k_r, 

0 <= r < n excepting the factor k_r. 

 

This then gives for the solution for the Unity Root u of the composite a, as 

 

3.9.3.14 u = +1 + l*( k_1^2*k_2^2* ... k_r^2 ... k_(m - 1)^2 ) 

 

which, by the definition of the composite base a (3.9.3.1), is just  

 

3.9.3.15 u = +1 + l*a^2 

 

For any value l other than l = 0 this gives non-primitive Unity Roots, i.e. | u | > a^2 

and outside of the [0,a^2) interval. Thus we find that the Unity Root +1 for the 

composite base is comprised of the +1 Unity Roots of all its factors. 

 

If we do a similar analysis for the conjugate Unity Roots, u(k_r), for all the m factors 

k_r, 0 <= r < m, i.e. 

 

3.9.3.16 u(k_r) = -1 for 0 <= r < m 

 

we will arrive at the solution 

 

3.9.3.17 u = -1 + l*a^2 

 

i.e. the negative Unity Roots for the prime factors combine to give the negative Unity 

Root of the composite. 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

167 

 

Generalising these two special cases where all the Unity Roots of the factors are either 

+1 or -1, equation (3.9.3.4) expands, for 0 <= r < m, into the following m equations, 

for each particular Unity Root u,  

 

3.9.3.18 u = u(k_0) + c(k_0)*k_0^2 

 u = u(k_1) + c(k_1)*k_1^2 

 . 

 . 

 . 

 u = u(k_r) + c(k_r)*k_r^2 

 . 

 . 

 . 

 u = +(k_(n - 1) + c(k_(m - 1))*k_(m - 1)^2 

 

For the trivial Unity Root, u = +1, we set all u(k_r) = +1, 0 <= r < m. Likewise for the 

conjugate unity Unity Root, u = -1, we set all u(k_r) = -1. In between these two 

extremes, all other m^2 - 2 Unity Roots u will be obtained from some combination 

whereby at least one of the Unity Roots of the factors u(k_r) is different to the others. 

i.e. if m - 1 of the factor roots u(k_r) are all +1 then the m'th factor root u(k_(m - 1)) 

must be -1. 

 

As per Theorem (3.9.1.3), the u = +1 root for composite a cannot be a solution since, 

by (3.9.3.2), we would have 

 

3.9.3.19 c  =  b (mod a^2) 

 

Lastly, since u = +1 is the only case when all the factor roots are also +1, any other 

root u, which maps b to c (mod a^2) must always be expressible in terms of at least 

one negative Unity Root, -1, of one or more of its prime factors. 

 

3.9.3.20 What does this Theorem mean physically? 

 

Referring back to the same question (3.9.1.3.2) for prime base, Theorem (3.9.1.3), it 

means that there is at least one prime factor k such that, when examining a residue 

sequence (mod k^2), there will be symmetry in the residue sequence about the mid-

point k^2 / 2 (more generally any point l*k^2 / 2, integer l, see Example (3.9.4)) such 

that the value c is a mirror image of b about this symmetry point. Note, the mid-point 

is always given by (c + b) / 2. 

 

For one or more prime factors, k, the mid-point, (c + b) / 2 of the Candidate Pair (b,c) 

(mod a^2), is a symmetry point of the residue sequence, (mod k^2), occurring at a 

point l*k^2 / 2 for some integer l. Where this is the case, the value b maps to c via the 

negative Unity Root, u(k) = -1 (mod k^2), of the prime factor k. Conversely, the 

residue sequence will NOT be symmetric about the mid-point if the value b maps to c 

via the positive Unity Root, u(k) = +1 (mod k^2). 
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This does not mean to say there is no onbvious symmetry in the residue sequence 

(mod k^2) for those factors k where the Unity Root u(k) is +1. However, the residues 

about the mid-point will not appear symmetric when u(k) = +1. The following 

Example (3.9.4) will illustrate this. 

 

The above remarks apply to even exponent and, in particular, the Pythagorean case. 

Indeed, we have prior shown in section (2.4.4) that this point symmetry can reproduce 

all the Pythagorean triples. 

 

In the case of odd exponent, whilst there is always a negative Unity Root, arguments 

presented in section (2.5) show that this negative Unity Root mapping cannot produce 

an FLT counter-example because it leads to a quotient sum greater than 2, see 

equation (2.5.1.14). Nevertheless, odd exponents can produce positive Unity Roots 

that can still map a value b to a value c such that b and c are relatively close. By 

'relatively' we mean that the root gap, c - b is less than the base a and consequently 

such a Candidate Pair (b,c) might meet the Quotient Condition, Theorem (1.12). 

 

3.9.4 Example 

 

A good example of composite base is the Pythagorean triple (20, 21, 29) 

 

Both the lowest value (a = 20) and the middle value (b = 21) are composite. We shall 

start by looking at the standard residue table for the base a = 20, modulus 20^2, 

Candidate pair (b,c) = [21,29]. 

 

3.9.4.1 a = 20, b = 21, c = 29 

 

We shall split the base into the co-prime factors 4 and 5. 

 

3.9.4.2 k_0 = 4 

 

3.9.4.3 k_1 = 5 

 

Of course, 4 is not actually prime. Nevertheless, it does comprise only one unique 

prime factor and, especially when counting Unity Roots for arbirtrary even base, can 

be regarded as a prime factor. This is because, like any prime base, it only has two 

roots in the Minimal Residue Sequence since 2 is its only factor and 2 also divides the 

exponent (n=2) - hence a Minimal Residue Sequence. The two roots in this Minimal 

Residue Sequence, are +1 and +7, section (3.5.8). The other key point is that 4 is co-

prime to the other factor 5. 

 

The Unity Roots of the composite base a = 20 and its factors k_0 and k_1 are as 

follows 
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3.9.4.4 U(20) = {+1, 49, 151, 199, 201, 249, 351, -1 } 

 

3.9.4.5 U(4) = {+1, 7, 9, -1} 

 

3.9.4.6 U(5) = {+1, -1} 

 
[A point of note is that the exponent, n = 2, divides the base and thus the Minimal Residue Sequence 

size is actually (20^2) / 2, i.e. 200, although all the Unity Roots have been listed between 0 < u <20^2. 

Similarly, for the factor 4, the Minimal Residue Sequence size is actually (4^2) / 2, i.e. 8, although all 

the Unity Roots have been listed between 0 < u < 4^2. This is intentional to avoid extra complication 

and keep things simple. If we used only the roots in the Minimal Residue Sequence we would actually 

have to use a reduced modulus of 20^2 / 2 for u(20) and a reduced modulus of 4^2 / 2 for u(8). As an 

example, if b = 21, c = 29 and c = u(20)*b (mod 20^2) then u(20) = 249. The value u(20) = 249 is 

outside of the Minimal Residue Sequence since it is greater than 20^2 / 2. However, the equivalent root 

within the Minimal Residue Sequence is 49  =  249 mod 20^2 / 2. Using this root we also find c = u*b 

(mod 20^2 / 2) but c != u*b (mod 20^2). i.e. we have to consistently use a reduced modulus, the size of 

the Minimal Residue Sequence, when working only with roots in the Minimal Residue Sequence]. 

 

Ignoring the two trivial Unity Roots +1 and -1 (-1 = 399 mod 20^2), the non-trivial, 

Unity Roots U(20), in terms of the factor roots u(4) and u(5) are 

 

3.9.4.7 U(20) = { 49, 151, 199, 201, 249, 351 } 

 

and each root expands as follows 

3.9.4.8 49 = +1 + 3*4^2 

 49 = -1 + 2*5^2 

 

 151 = +7 + 9*4^2 

 151 = +1 + 2*5^2 

 

 199 = +7 + 12*4^2 

 199 = -1 + 8*5^2 

 

 201 = +9 + 12*4^2 

 201 = +1 + 8*5^2 

 

 249 = +9 + 15*4^2 

 249 = -1 + 10*5^2 

 

 351 = -1 + 16*4^2 

 351 = +1 + 14*5^2 

 

The Unity Root u(20) that maps b = 21 to c = 29 is u(20) = 249, i.e. 

 

3.9.4.9 29  =  249*21 (mod 20^2) 
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And, by (3.9.4.8), 

 

3.9.4.10 249 = -1 (mod 5^2) 

 

So that the Unity Root u(20) is in the negative form with regard to the Unity Root 

u(5) of its factor k_1 = 5 since u(5) = -1 for u(20) in (3.9.4.8). 

 

3.9.4.11 29  =  -1*21 (mod 5^2) 

 

Examining the residue table (mod 5^2), given below, for the factor k_1 = 5, we see 

that the residue sequence is symmetric about the mid-point (29+21) / 2 (= 25). 

 
-------------------------------------------- 

 

      Residue Table a = 5, n = 2 

 

   x        x^n  residue r  residue quotient 

                   (mod a^n)    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          4        4        0  

. 

. 

  19        361         11        1       14  

  20        400          0        0       16  

  21        441         16        1       17  

  22        484          9        4       19  

  23        529          4        4       21  

  24        576          1        1       23  

  25        625          0        0       25  

  26        676          1        1       27  

  27        729          4        4       29  

  28        784          9        4       31  

  29        841         16        1       33  

  30        900          0        0       36  

  31        961         11        1       38  

 

We see that entries for x = 21 and x = 29 have an identical residue (= 16) and thus 

(21,29) is a Candidate Pair (mod 5^2). Since the symmetry point is at x = 25, the 

value x = 29 represents a flip of the point x = 21 about this symmetry point, i.e. 29 is a 

mirror image of 21. 

 

We confirm that there is a Pythagorean triple to be found for the Candidate Pair 

(21,29) by expanding 21^2 and 29^2 in quotient, remainder form  

 

3.9.4.12     21^2 = 17*5^2 + 16 

 

3.9.4.13     29^2 = 33*5^2 + 16 
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Subtracting 21^2 from 29^2 gives 

 

3.9.4.14 29^2 - 21^2 = 16*5^2 

 

and we see that the Quotient Gap is 16 i.e. a perfect square (= 4^2), i.e. 

 

3.9.4.15 29^2 - 21^2 = 20^2 

 

and we get the Pythagorean triple (20, 21, 29). 

 

If we now examine the other factor k_0 (= 4), we see from (3.9.4.8) that u(4) = +1 for 

u(20) = 249 i.e. u(20) is only in the positive form for the factor u(4) unlike k_1 (= 5) 

which is in the negative form since u(5) = -1. If we look at the residue table (mod 4^2) 

for k_0, given below, although not easy to see, the residues about the same mid-point 

(29+21) / 2 (= 25) are not symmetric. The symmetry is actually slightly off centre at 

the point x = 24. However, no matter how small the offset, it destroys the symmetry at 

the mid-point.  

 
-------------------------------------------- 

 

      Residue Table a = 4, n = 2 

 

   x        x^n  residue r  residue quotient 

                   (mod a)^n    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          4        0        0  

. 

. 

  19        361          9        1       22  

  20        400          0        0       25  

  21        441          9        1       27  

  22        484          4        0       30  

  23        529          1        1       33  

  24        576          0        0       36  

  25        625          1        1       39  

  26        676          4        0       42  

  27        729          9        1       45  

  28        784          0        0       49  

  29        841          9        1       52  

  30        900          4        0       56  

  31        961          1        1       60  

 

 

We see therefore that Theorem (3.9.3) is confirmed in this example since the 

symmetry only exists about the mid-point for the factor k_1 (= 5) where u(5) = -1 for 

u(20) = 249 but the symmetry does not exist for the factor k_4 (= 4). That is, u(20) is 

in the negative form with regard to the factor k_1 but in the positive form with regard 

to the factor k_0. 
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We shall now examine the dual case of this example, i.e. where the base is the 

composite, middle value b = 21, modulus 21^2, with dual Candidate Pair (a,c) = 

(20,29). 

 

3.9.4.16 b = 21 

 a = 20 

 c = 29 

 

The base b factors into the two unique prime factors 3 and 7 

 

3.9.4.17 k_0 = 3 

 

3.9.4.18 k_1 = 7 

 

The Unity Roots of the composite b, k_0 and k_1 are 

 

3.9.4.19 U(21) = {1, 197, 244, 440 } 

 

3.9.4.20 U(7) = {1, 48} 

 

3.9.4.21 U(3) = {1, 8} 

 

Ignoring the two trivial Unity Roots +1 and -1 (-1 = 440 (mod 21^2) ), the non-trivial, 

Unity Roots u(21), in terms of the factor roots u(3) and u(7), are 

 

3.9.4.22     197 = -1 + 22*3^2 

 197 = +1 + 4*7^2 

 244 = +1 + 27*3^2 

 244 = -1 + 5*7^2 

 

The Unity Root u(21) that maps a = 20 to c = 29 is u(21) = 244, i.e. 

 

3.9.4.23    29  =  244*20 (mod 21^2) 

 

And, by (3.9.4.22), 

 

3.9.4.24     244 = -1 (mod 7^2) 

 

So that the Unity Root u(7) that maps a = 20 to c = 29 is u(7) = -1, i.e. in the negative 

from, which is confirmed since 



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

173 

 

3.9.4.25      29  =  -1*20 (mod 7^2) 

 

Examining the residue table (mod 7^2), given below, for the factor k_1 = 7 we see 

that the residue sequence is symmetric about the mid-point (29 + 20) / 2 (= 24.5) and 

that the residues for a = 20 and c = 29 are symmetric about this point. 

 
-------------------------------------------- 

 

      Residue Table a = 7, n = 2 

 

   x        x^n  residue r  residue quotient 

                   (mod a)^n    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          4        4        0  

. 

. 

. 

  19        361         18        4        7  

  20        400          8        1        8  

  21        441          0        0        9  

  22        484         43        1        9  

  23        529         39        4       10  

  24        576         37        2       11  

 

  25        625         37        2       12  

  26        676         39        4       13  

  27        729         43        1       14  

  28        784          0        0       16  

  29        841          8        1       17  

  30        900         18        4       18  

. 

. 

. 

  47       2209          4        4       45  

  48       2304          1        1       47  

  49       2401          0        0       49 

 

In quotient and remainder form the a and c values are 

 

3.9.4.26 20^2 = 8*7^2 + 8 

 

3.9.4.27 29^2 = 17*7^2 + 8 

 

and subtracting 20^2 from 29^2 

 

3.9.4.28 21^2 - 20^2 = 9*7^2 

 

we see the Quotient Gap is 9, i.e. a perfect square (= 3^2) 
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3.9.4.29 29^2 - 20^2 = 21^2 

 

and we get the Pythagorean triple (21, 20, 29) 

 

On the other hand, if we look at the residue table for the other factor k_0 = 3, i.e. 

residue table (mod 3^2) we see that the residue sequence is not symmetric about the 

mid point 24.5. 

 
-------------------------------------------- 

 

      Residue Table a = 3, n = 2 

 

   x        x^n  residue r  residue quotient 

                   (mod a)^n    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          4        1        0  

 

  19        361          1        1       40  

  20        400          4        1       44  

  21        441          0        0       49  

  22        484          7        1       53  

  23        529          7        1       58  

  24        576          0        0       64  

  25        625          4        1       69  

  26        676          1        1       75  

  27        729          0        0       81  

  28        784          1        1       87  

  29        841          4        1       93  

  30        900          0        0      100  

 

  34       1156          4        1      128  

  35       1225          1        1      136  

  36       1296          0        0      144  

 

Theorem (3.9.3) is thus confirmed since the symmetry only exists about the mid-point 

for the factor k_1 (= 7) where u(7) = -1 for u(21) = 244 but the symmetry does not 

exist for the factor k_0 (= 3) where u(3) = +1. That is, u(21) is in the negative form 

with regard to the factor k_1 but in the positive form with regard to the factor k_0. 

 

Generally speaking, the symmetry that exists for one factor, but not another, is no 

surprise since we are trying to equate a symmetry point (k_0^2 / 2) of a factor k_0 

with the symmetry point (k_1^2 / 2) of a co-prime factor k_1. For instance, in this 

later example, trying to equate symmetry ppoints for each factor is equivalent to 

solving, for integers s and t, the following LDE 

 

3.9.4.30 s*7^2 / 2 = t*(3^2) / 2 

 

This does have a general solution for some integer l, l != 0, s = l*7^2 / 2, t = l*3^2 / 2, 

but the mid-point is then l*21^2 / 3 which is, of course, outside of the range of 

[20,29]. 
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3.10 Summary of Conditions 

 

This section gives a summary of all the conditions and constraints developed in this 

section (3) on a triplet (a, b, c), were it to be a an FLT counter-example. 

 

If ‘u(a)’ is a Unity Root (mod a^n), as defined by (3.1.1), then the values b and c of a 

candidate pair (b,c) (mod a^n) are such that 

 

3.10.1 c  =  u(a)*b (mod a^n) 

 

In the Dual case, if ‘u(b)’ is a Unity Root (mod b^n) then the values a and c of a Dual 

candidate pair (a,c) (mod b^n) are such that 

 

3.10.2 c  =  u(b)*a (mod b^n) 

 

In the Skew-symmetric case, for odd exponent, Section (2.5.1), if ‘u(c)’ is a negative 

Unity Root (mod c^n), such that u(c)^n = -1 (mod c^n), then the values a and b of the 

Skew Candidate Pair (a,b) (mod c^n) are such that 

 

3.10.3 b  =  -u(c)*a (mod c^n) 

 

[Note that negative Unity Roots have not been specifically discussed in this paper 

because, for odd exponent, they are trivially the negative equivalents of the positive 

+1 Unity Roots and the theory behind them remains the same]. 

 

By arguments in (3.4.6), if u(a) is a Unity Root (mod a^n) then 

 

3.10.4 u(a) > a 

 

This constraint is also valid in the Dual case for Unity Root u(b), (mod b^n) 

 

It is conjectured (3.6.15) that the minimum value of a Unity Root ‘Umin(a)’, (mod 

a^n) is given greater than or equal to the (n - 1)’th root of the modulus a^n 

 

3.10.4.1 Umin(a) >= (n - 1)_/a^n 

 

This conjecture is also valid in the Dual case for Unity Root Umin(b), (mod b^n) 

 

Using the definition of the Winding Number ‘w’ (3.4.4), and by arguments in (3.4.6) 

concerning the Root Gap, if (b,c) is a Candidate Pair (mod a^n) then the Winding 

Number is greater than zero 
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3.10.5 w > 0 

 

A non-trivial, Unity Root u(A), to any modulus A, such that u(A)^n = 1 (mod A), is a 

root to the following congruence for the Cyclotomic, 'Unity Root Polynomial' f(u(A)) 

(3.6.4) such that 

 

3.10.6 f(u(A))  =  0 (mod A) 

 

If the modulus A is a multiple of a perfect power of the base a, i.e. A = k*a^n, for 

integer k, k > 0, then we denote f(u(a)), exponent n, by ‘f(u(a))n’ and re-write (3.10.6) 

as 

 

3.10.7 f(u(a))n  =  0 (mod a^n) 

 

This constraint is also valid in the Dual case for Unity Root u(b), (mod b^n) 

 

In the special, cubic exponent case we have, by Theorem (3.6.14), an exact equation 

 

3.10.8 1 + u + u^2 = a^n 

 

This equation is also valid in the Dual case for Unity Root u(b), (mod b^n) 
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4 Miscellaneous 
 

This section comprises miscellaneous applications arising from the work presented in 

sections (1) to (3). The topics are not central to the main work which is predominantly 

about the structure of Residue Sequences and their impact upon Pythagoras and FLT. 

Nevertheless, hopefully the topics in this section provide an interesting diversion for 

the readers. 

4.1 Polynomial Factorisation 

 

An early and falacious proof of FLT was submitted by Gabriel Lame' in 1847 to The 

Paris Academy. Essentially, it was based upon the factorisation of the FLT equation 

as follows, where q is an n'th root of unity and generally complex. 

 

4.1.1 q^n - 1 = 0 

 

and 

 

4.1.2 c^n - b^n = (c - q^0*b)(c - q^1*b)(c - q^2*b)...(c - q^(n - 1)*b) 

 

[Note that the first factor (c - q^0*b) = (c - b) and the second factor (c - q^1*b) = (c -

 qb) where q^0 = 1 is the trivial, unity Unity Root and q^1 = q, the smallest, non-

trivial Unity Root]. 

 

The Lame' proof asserted that the bracketed terms on the rhs in (4.1.2) are co-prime to 

each other and, therefore, each had to be a perfect n'th power if the entire rhs was to 

be a perfect power, i.e. a^n. The proof was doomed in so much as the factorisation 

was assumed unique in the ring of cyclotomic integers, which it isn't for certain prime 

exponent termed irregular primes (Kummer 1849). However such irregular promes 

are relatively rare. For example, there are only eight irregular primes less than 160 

which are {37, 59, 67, 101, 103, 131, 149, 157}.  

 

History aside, using the isomorphism between the complex n'th roots of unity and 

Unity Roots (mod a^n), a similar factorisation can be performed using Unity Roots u, 

(mod a^n). 

 

4.1.3 c^n - b^n = (c - u^0*b)(c - u^1*b)(c - u^2*b)...(c - u^(n - 1)*b) (mod a^n) 

 

If b and c meet the Residue Condition (1.2.3) then 

 

4.1.4 c^n - b^n = 0 (mod a^n) 

 

and therefore, using the expansion in (4.1.3) and letting u^0 = 1, u^1 = u, we obtain 
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4.1.5 (c - b)(c - u*b)(c - u^2*b)...(c - u^(n - 1)*b) = 0 (mod a^n) 

 

The factorisation on the lhs of (4.1.5) pre-supposes that there are n Unity Roots (mod 

a^n) which, for odd, prime exponent, is true if a is prime of the 2ln+1 form or a is 

composite with one or more prime factors of the 2ln+1 form. 

 

From what has been said before, (4.1.5) is a necessary but not sufficient condition for 

the triple (a, b, c) to be an FLT counter-example. Since it is a congruence, the lhs can 

equal any multiple l of a^n. Sufficiency derives from the additional Quotient 

Condition (1.4.3) which states that the multiple l must be 1. 

 

The polynomial expansion (4.1.5) could also be deduced, rather than derived by 

analogy with  (4.1.2), by considering the roots of (4.1.2) - which is the method one 

might use when factoring an arbitrary polynomial. 

 

We know immediately that b = c is a root of (4.1.2) and hence (c - b) is a factor. 

Furthermore, by the arguments given on Unity Root Mappings in section (3.4), we 

know that if c = u*b (mod a^n) then c^n = b^n (mod a^n). Hence, 

(c - u*b) = 0 (mod a^n) and thus (c - u*b) is a factor of (4.1.5). Similarly, since the 

entire set of Unity Roots is U = {u, u^2, .. u^(n - 1)}, then (c - u^2*b) is also a factor 

and, in general, (c - u^r*b) is a factor for 0 <= r < n. Hence we get n factors in total 

and the polynomial congruence c^n - b^n (mod a^n) factors as in (1.14.2). Of course, 

without the congruence condition, one has to revert back to using the n'th roots of 

unity denoted by q in (4.1.1). 

 

4.1.6 Example 

 

Let 

 

n = 3 and a = 7 

 

then the smallest, non-trivial Unity Root u is 

 

u =18 

 

By (4.1.3), the polynomial c^n - b^n factors as follows 

 

c^3 - b^3 = (c - b)(c - 18*b)(c - 18^2*b) (mod 7^3) 

 

and to meet the Residue Condition 

 

c^3 - b^3 = 0 (mod a^n) 

 

which, upon expansion in terms of Unity Roots, becomes 
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(c - b)(c - 18*b)(c - 18^2*b) = 0 (mod a^n) 

 

If we convert (4.1.5) from a congruence back to an equation we get, for integer l, 

 

4.1.7 (c - b)(c - u*b)(c - u^2*b)...(c - u^(n - 1)*b) = l*a^n 

 

As mentioned, if l = 1 we have met the Quotient Condition and the triple (a, b, c) is an 

FLT counter-example. So too if l is a perfect power, i.e. l = k^n, then the triple 

(ka, b, c) is an FLT counter-example. 

 

Firstly, if n = 2, (4.1.7) reduces to 

 

4.1.8 (c - b)(c - u*b) = l*a^2 

 

Here we see that if u = -1 then (4.1.8) becomes 

 

4.1.9  (c - b)(c + b) = l*a^2 

 

and expanding the brackets on the lhs gives 

 

4.1.10 c^2 - b^2 = l*a^2 

 

This confirms the findings in section (3.9) on Pythagoras and Unity Root mappings 

that it is only the negative Unity Root (u = -1) that is responsible for generating 

Candidate Pairs in solutions to the Pythagoras Equation, i.e. 

 

4.1.11 c = -1 * b (mod a^2) 

 

This may seem obvious since, if the Unity Root were to be positive, then c and b 

would be equal since c = u*b (mod a^2). However, the general solution for a positive 

root b is actually c = k*a^2 + b for integer k, k >= 0, so it is not a foregone conclusion 

that a form of u = +1 cannot be used for the mapping of b to c. 

 

If a is prime in (18.1.10) then, since (c - b) != (c + b) except when c and b are 

identically zero, by prime factorisation we are forced to conclude that either 

 

4.1.12 c - b  = +l 

 

and 

 

4.1.13 c + b  = a^2 
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or, for integer s, t, s >= 1, t > s, subject to the condition 

 

4.1.14 l = s*t 

 

then each bracketed term is of the general form 

 

4.1.15  (c - b) = s*a 

 

4.1.16 (c + b) = t*a 

 

The above solutions apply to the general Diophantine equation (4.1.10) where l is not 

presumed unity. To avoid any contradictions between (4.1.15) and (4.1.16) notice that 

t > s. Since s >= 1, t >= 2 so, invariably, l >= 2. 

 

Without dwelling further on Pythagorean triples, the only values for s and t which 

lead to valid solutions, are either 

 

4.1.17 l = +1, c - b = +1, c + b = k^2, prime a, c^2 - b^2 = a^2 

 

or, for l >= 4, integer k, k >= 2 

 

4.1.18 l >= 4, s = 1, t = k^2, l = k^2 and so c^2 - b^2 = (ka)^2 

 

The real motivation for studying the factorisation of (4.1.7) is that it gives us a way to 

study the value of l. If we refer back to section (2.2.5) on the Generalised Fermat 

Equation we mentioned 'k' values, equation (2.5.5.4). The l value in (4.1.7) above is 

similar and it would be nice to look at the possible values that occur. 

 

Referring back to equation (4.1.8), which is essentially a Generalised Pythagoras 

Equation, for prime a, the factor (c - b) has to be unity by Theorem (1.14). It then 

meant that the other bracket (c - u*b) is a multiple of a^2. Indeed, since c = u*b (mod 

a^n), c - u*b = l*a^n. 

  

If we suppose a is prime then we have (c - b) = 1 and equation (4.1.7) then becomes 

 

4.1.19 (c - u*b)(c - u^2*b)...(c - u^(n - 1)*b) = l*a^n 

 

If we refer back to the general n'th order congruence (4.1.5) then only one factor, call 

it the r'th factor (c - u^r*b), where 0 < r < n, can satisfy the congruence 

 

4.1.20 (c - u^r*b) = 0 (mod a^n) 
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This is the same as saying there are no repeated roots. 

 

We can also derive a similar expression to (4.1.19) for a^n + b^n. If we swap c with a, 

such that the Unity Roots are now defined as, 

 

4.1.21 u^n = 1 mod c^n 

 

and replace b with -b then, for odd exponent only, we can re-write (4.1.3) as 

 

4.1.22 a^n + b^n = (a + u^0*b)(a + u^1*b)(a + u^2*b)...(a + u^(n - 1)*b) mod c^n 

 

and therefore, for integer l, l >0 

 

4.1.23  (a + u^0*b)(a + u^1*b)(a + u^2*b)...(a + u^(n - 1)*b) = l*c^n 

 

Because the original congruence (4.1.5) is precisely a congruence relation, and not an 

exact equation, the further development of this factorisation in terms of integral unity 

roots has not been developed further and the Authors have left its study outstanding. 

No current reference to external work on the matter is currently known but that's not 

to say there isn't any! 

 

4.2 Consecutive Identical Residues 

 

Section (1.11) defined the pair of integer values b and c as 'Consecutive Identical 

Residues' if they are such that they form a Candidate Pair satisfying the relation 

 

4.2.1 c - b = 1 

 

The term 'Consecutive' follows because c is the next integer after b, for positive b, and 

that since (b,c) form a Candidate Pair, by definition, they have identical residues (mod 

a^n). 

 

Consecutive Identical Residues are important since Theorem (1.14) proves that if the 

base a is prime then the Candidate Pair must have a Root Gap of unity as per (1.10.1) 

hence also (4.2.1) above. 

 

In other words, if we are studying a prime base a, odd exponent, modulus a^n then 

any potential FLT counter-example (a, b, c) would be such that the values b and c are 

Consecutive Identical Residues. Thus, in principle, if we could prove there are no 

such Consecutive Identical Residues, we could dismiss all prime bases as giving rise 

to FLT counter-examples and this would prove FLT for any exponent, prime base a. 

Alas, Consecutive Identical Residues do exist, except they are scarce, see Observation 

(4.2.2.1) below. So the future challenge lies in proving that although Consecutive 

Identical Residues exist they are always such that the b value is greater than Bmax, 
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see Theorem (1.19.1). In experimental data this is confirmed. Indeed, Consecutive 

Identical Residues seem to have a b value much greater than Bmax. 

 

For even exponent, odd base a, the symmetry in the residue sequence gives rise to 

numerous Consecutive Identical Residues. At its simplest level, if a is odd prime, for 

exponent n = 2, there is a symmetry point at the half integer point given by (a^2) / 2. 

Because the point is half-integral, the two integer values either side are consecutive, 

i.e. if b is the lower value, then b + 1 is the upper value. If the base is even there is 

still a symmetry point at a^2 / 2 but it is now integral and there is effectively one 

central value. The two integers either side of this are separated by a gap of 2 and are 

hence not consecutive. 

 

Nevertheless, an even valued base also has symmetry within the Minimal Residue 

Sequence (2.1.2.2) and, if one can factor out an odd factor k, point symmetry about a 

half integral point k^2 / 2 can be found for at least one odd prime factor, see section 

(3.9.2). That said, Consecutive Identical Residues are only a necessity for odd, prime 

base and so to get into a discussion on the symmetry of a composite base, when 

talking about Consecutive Identical Residues, is irrelevant. Suffice to say, numbers 

such as a = 2^m, integer m, m >= 2, have no odd, prime factor and therefore they have 

no half-integral symmetry point. Nevertheless, there still exists a Pythagorean triple 

for every such number. This is simply because, being composite, they do not require 

Candidate Pairs to be consecutive. Pythagorean triples with a Consecutive Identical 

Residue, although common (at least one triple for every prime), they are a mere subset 

of all the Pythagorean triples, most having a Root Gap (c - b) much greater than 1. 

 

4.2.2 Observations 

 

Our own theoretical analysis of Consecutive Identical Residues is little developed and 

none of it published.  

 

Nevertheless, we have made several observations that are summarised here: 

 

4.2.2.1 The number of Consecutive Identical Residues, 'Nc', for odd exponent n, 

prime base a, is given by 

 

4.2.2.2 Nc = (n - 1) 

 

Since Nc is even, when n is odd, there are actually only half this number that are 

independent. Every Consecutive Identical Residue (b,c) is accompanied by its 

conjugate [a^n - b, a^n - c]. 

 

Thus, for n = 3, there is only one unique Consecutive Identical Residue, See (4.2.2.3) 

below. 
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4.2.2.3 If u is a Unity Root (mod a^n) and b and c are Consecutive Identical 

Residues then b maps to c via a Unity Root u 

 

4.2.2.4 c = u*b (mod a^n) 

 

Since, by the definition of a Consecutive Identical Residue, 

 

4.2.2.5 c = b + 1 

 

then substituting for b from (4.2.2.5) into (4.2.2.4) and converting from a congruence 

to an equation, for some integer l, we obtain a LDE in the two unknowns, b and l. 

 

4.2.2.6 (u - 1)*b + l*a^n = 1 

 

Since this LDE is soluble, if (u - 1) and a^n are co-prime, it implies we can find 

Consecutive Identical Residues given the Unity Root. Studying Consecutive Identical 

Residues thus becomes, once again, a problem in understanding Unity Roots. 

 

Taking a specific example 

 

4.2.2.7 n = 3, a = 7, u =18 

 

and substituting for n, a and u, we get the LDE 

 

4.2.2.8 17*b + l*343 = 1 

 

Which gives the solution 

 

4.2.2.9 b = 222, l = 11 

 

We thus get a Consecutive Identical Residue, Candidate Pair (b,c) 

 

4.2.2.10 b = 222, c = 223 

 

and another pair, conjugate to this pair, is 

 

4.2.2.11 b = 120, c = 121 

 

Verifying with a computer shows that these are the only two occurrences of a 

Consecutive Identical Residue for the n = 3, a = 7 case and only one of these is 
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independent. We usually take the smaller of the two, namely the Candidate Pair 

[120,121]. 

 

Another cubic example 

 

4.2.2.12 n = 3, a = 13, u =1036 

 

and substituting for n, a and u, we get the LDE 

 

4.2.2.13 1035*b + l*2197 = 1 

 

Which gives the solution 

 

4.2.2.14 b = 1851, l = -872 

 

We thus get a Consecutive Identical Residue, Candidate Pair (b,c) 

 

4.2.2.15 b = 1851, c = 1852 

 

and another pair, conjugate to this pair, is 

 

4.2.2.16 b = 345, c = 346 

 

A computer search verifies these two as the only occurrences. 

 

4.3 Modified FLT Equation ‘MFLT’ 

 

The problem of finding a Candidate Pair is almost trivial and leads to the GFLT 

equation (1.8.1). However, since FLT is proven, we know that no such Candidate 

Pairs can also meet the Quotient Condition. Is there any way we can obtain a 

compromise between far too many GFLT solutions and none when the Quotient 

Condition is included? 

 

Fortunately there is a compromise and that is to impose two Residue conditions but no 

Quotient Condition. In other words, retain the Standard Residue Condition (1.2.3) and 

replace the Quotient Condition (1.4.3) with the Dual Residue Condition (1.17.1) 

 

It has been prior noted in section (1.21) that trying to meet both the Standard Residue 

Condition (1.2.3) and the Dual Residue condition (1.17.1) is very difficult. In fact, it 

was rather hoped that this might be impossible and so kill off the FLT problem. 

Certainly the difficulty in meeting two Residue Conditions seemed impossible as a 

random scan of Residue Tables revealed no Candidate Pairs. To put the idea on an 

analytic basis however, a study of which potential Candidate Pairs could meet two 
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Residue Conditions was made and resulted in a new variant on the FLT equation 

(1.1.1), tentatively named the ‘Modified FLT equation' (MFLT), given below, for 

integer k, k>0: 

 

4.3.1 c^n = k*a^n*b^n + a^n + b^n 

 

If the 'k' factor is zero then this reduces to the FLT equation. This equation does 

actually have solutions. 

 

Due to the volume of work it is generating, its study is to be detailed in a separate 

paper, as yet unpublished. 

 

4.4 Mersenne Primes 

 

A Mersenne number, 'Mn', integer exponent n, n >= 2, is a number of the form 

 

4.4.1 Mn = 2^n - 1 

 

Section (3.6.16.9.14) came to the known conclusion that if n is composite then Mn is 

composite. For instance, if the exponent is composite comprising two unique, prime 

factors k and m, i.e. 

 

4.4.2 n = k*m 

 

then Mn can be factored, for some integer d, as follows 

 

4.4.3 Mn = (2^m - 1)(2k - 1)*d 

 

Therefore, if we wish to test the primality of Mersenne numbers, we need only try 

testing those where the exponent is prime. 

 

Additionally, from the factor summary in section (3.6.16.11), we can deduce the 

following: 

 

To test the primality of a Mersenne number Mn, where n is prime, we only need to 

perform trial division on Mn with all prime numbers of the form 2ln+1, less than or 

equal to the square root of Mn. 

 

The 'square root' bound on trial factors is standard for any prime test based upon 

factoring. It hardly needs stating that if a prime factor x is greater than the square root 

of P and if it divides P then the other factor is less than the square root of P. Of course 

if P is a perfect square then it is composite. 
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That trial factors of Mn are of the 2ln+1 form is also a known result; see Mathworld, 

Ref [4], keyword 'Mersenne Numbers'. Its derivation within this paper is based upon 

the Unity Root Polynomial and its factor properties. 

 

We can get a quick and quite reasonable approximation for the upper bound of the 

square root of Mn as follows: 

 

Since the exponent n is odd, let 

 

4.4.4 n = 2m + 1 

 

then 

 

4.4.5 Mn = 2^(2m + 1) - 1 

 

giving the inequality 

 

4.4.6 Mn < 2^(2m + 1) 

 

and taking the square root 

 

4.4.7 _/Mn < 2^m * _ / 2    (the symbol '_/' denotes the square root) 

 

since 

 

4.4.8 _ /2 < 3 / 2 

 

then 

 

4.4.9 _/Mn < 3*2^(m - 1) 

 

Of course, for small n less than approximately 30, we could use a calculator to simply 

find _/n. 

 

4.4.10 Examples 

 

4.4.10.1 n = 11, M11 = 2047 

 

For M11 we find that _/M11 < 48. Indeed, 48^2 = 2304. In fact _/M11 < 46 so, the 

list of all trial divisors for M11 comprises all primes of the form 22l + 1 less than 48. 

This is not a very big list and, in fact, it contains the single prime number 23.This is 
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quite a remarkable fact that to test the primality of a four digit number, admittedly a 

very special number 2^11 - 1, we only need one trial divisor, namely 23. Performing 

the division, we see 2047 = 23*89, i.e. 23 is a divisor of M11. The other prime factor 

is 89 and, not surprisingly, this is also of the 22l + 1 form, where l = 4. 

 

4.4.10.2 n = 13, M13 = 8191, _/M13 < 96 

 

Primes of the form 26l + 1 less than 96 are 53 and 79 only. None of these two trial 

divisors is a factor of M13 so we conclude that M13 is prime. 

 

4.4.10.3 n = 17, M17 = 131071, _/M17 < 384 

 

Primes of the form 34l + 1 less than 384 are {103, 137, 239, 307}. 

 

None of these trial divisors is a factor of M17 so we conclude that M17 is prime. 

 

Skipping the prime n=19, for which M19 is also prime, we see in the next example 

that M23 is composite. 

 

4.4.10.4 n = 23, M23 = 8288607, _/M23 < 3072 

 

The first prime of the form 46l + 1 is 47. This is a factor of M23 and we find that 

M23 = 47*178481 and M23 is therefore composite. The factor 178481, which is 

prime, is also of the 46l + 1 form, since 178481 - 1 = 3880*46. 

 

Because of the binary form of a Mersenne Number, primality tests for Mn can be 

implemented relatively fast on a computer, i.e. relatively fast when compared with the 

primality testing of an arbitrary prime number. Because of this binary advantage, the 

search for the largest Mersenne Prime is a continual worldwide project. The published 

work on Mersenne Numbers is huge and, as a starting point, readers are referred to 

GIMPS 'The Great Internet Mersenne Prime Search', search the Web for this. 

 

For the layman, a relatively short but informative description can be found in [8]. This 

book also gives algorithmic details (but not the mathematics) of the 'Lucas Lehmer' 

primality test for Mersenne primes. 

 

4.5 A Primality Test 'MFST' 

 

The primality test we detail here is a variant of the Fermat test based upon Fermat's 

Little Theorem which we will abbreviate to FST (Fermat’s Small Theorem). We have 

consequently named the test 'Modified FST' and henceforth abbreviated it to MFST. 

 

SEE THE STRONG PSEUDOPRIME PRIMALITY TEST (TBD) 

 

Although MFST is similar to the Fermat test its false alarm rate is better than that of 

the Fermat test and it also has the potential to reject all Carmichael Numbers. 
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Section (2.6.11), which discusses the repetition of residues (mod a), asserts that for 

prime modulus a (we shall use 'p' here), exponent n such that 

 

4.5.1 p = 2n + 1 

 

the residue r, (mod p), for any integer value x, 0 < x < p given by 

 

4.5.2 x^n = r (mod p) 

 

can only be either +1 or -1. Combining (4.5.1) and (4.5.2) we get 

 

4.5.3 | x^( (p - 1) / 2 ) | = 1 (mod p) 

 

If we wished to test the primality of a candidate number p we could examine the 

absolute value of the residue |r|, given by (18.6.2), to see if it is unity for all x, 

0 < x < p. If we found a residue |r| not equal to unity we could then dismiss the base p 

as composite. Conversely, if ALL residues were either +/-1, then we have found a 

prime. 

 

Obviously, for any large prime, it is not practical to test every value of x. However, at 

worst, you only need to try at most (p - 1) / 2 values for x since, if x^n = 1 (mod a), 

then (p - x)^n = -1 (mod a), i.e.  if you know the first half residues 0 < x <= (p - 1) / 2, 

then you automatically know the 2nd half values (p - 1) / 2 < x < p from the first half 

values. 

 

Nevertheless, it is still not practical to test this many values for any large prime. 

However, if we randomly picked an arbitrary value for x then, in general for an 

arbitrary base a, it is unlikely that the residue r will be exactly +1 or -1. If it is we 

could then test another x, say x + 1. The residue r for x + 1 is also relatively unlikely 

to be +1 or -1, the probability both residues are +1 or -1 then diminishes. In fact, 

computation shows this probability diminishes rapidly. So much so only a couple of 

tests are needed to reject most composites. 

 

Of course, we haven't put any probabilities on MFST thus far. A complete analysis is 

outside the scope of this paper and is to be published in a separate paper should the 

authors not find references to it in previously published work. 

 

Before outlining a procedure to perform the MFST primality test it should be noted 

that MFST is essentially a variant on the Fermat Test (hence the name we chose for it) 

with which it will be compared, see further below. 

 

4.5.4 MFST Procedure 

 

MFST can be performed with the following steps. It does assume computer Usage. 
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4.5.4.1 Pick (guess, construct) a large, prime candidate p. 

 

4.5.4.2 Do a quick trial division check to eliminate simple composites, i.e. those 

with a prime factor less than say a million. 

 

Let the exponent n be given by (4.5.1), so that by re-arrangement 

 

4.5.4.3 n = (p - 1) / 2 

 

Start with x = 2, compute the residue r_2 

 

4.5.4.4 r_2 = 2^n (mod p) 

 

If the residue r_2 is not +1 or -1, reject a as composite. Otherwise, try the next value 

x = 3 and then compute the residue r_3 

 

4.5.4.5 r_3 = 3^n (mod p) 

 

If the residue r_3 is not +1 or -1, reject a as composite. Otherwise, try the next value 

x = 4, compute the residue r_4 etc. Repeat this proceed for the x'th residue  r_x etc. 

for 0<x<a. 

 

4.5.4.6 r_x = x^n (mod p) 

 

As mentioned above, the test only need proceed from x = 2 to x = (p - 1) / 2. In 

reality, we only need try a few values of x to reject composites. Nevertheless, for an 

absolute proof, we would need to try all x up to x = (p - 1) / 2. This is just not 

practical and, just like the Fermat test, an ironclad answer as to a value's primality can 

only be obtained by employing another test, e.g. ref (TBD). 

 

Nevertheless MFST appears to give, at worst, roughly half the false-alarm rate of FST 

with which we shall compare some results after a short description of FST. We will 

also show algebraically that our test is, in fact, a variant on FST but can avoid false 

alarms on Carmichael numbers, see further below. 

 

4.5.5 The Fermat Test ‘FST’ 

 

The standard, Monte-Carlo type, FST test works as follows: for arbitrary x, if p is 

prime, then Fermat's Little Theorem says that 

 

4.5.5.1 x^p - x = 0 (mod p) 
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Here 'x' is referred to in the literature as the 'base'. 

 

[Please note that we have, in this paper, extensively referred to the base as being the 

letter ‘a’ which is not the same as the Fermat base. Therefore, to avoid confusion, we 

will refer to 'p' in (4.5.5.1) as the 'Fermat base']. 

 

To keep the numbers small, or at least as small as possible, the Fermat base is usually 

2 or 3 as a first start, i.e. exactly as for our prime test. 

 

If (4.5.5.1) is not satisfied then the candidate 'p' is definitely composite.  

 

However, if (4.5.5.1) is satisfied, it does not necessarily mean that p is prime, albeit, it 

is likely to be prime. That is why FST is, like MFST, a Monte-Carlo test. For any 

particular Fermat base x there is a small probability that a composite 'p' will also pass 

the Fermat test. Such a composite, that passes the test to a particular Fermat base, is 

termed a 'Pseudoprime' to that Fermat base. To reduce the probability we can try 

another Fermat base, exactly as for our own primality test. Nevertheless, there are 

certain composites, called 'Carmichael Numbers', that will pass the test for all bases. 

See section (4.5.9) for a list. The lowest such Carmichael number is 561, which 

factors as 561 = 3*11*17. This particular number is discussed again in section (4.5.8) 

where an algebraic comparison of MFST and FST is given. 

 

4.5.6 Experimental Comparison with the Fermat Test 

 

The below data is produced from a comparison of MFST and FST for three bases, 

x = 2, 3 and 5 in(4.5.5.1). The test is performed for all odd p, p = 2l + 1, for all integer 

l, 0 < l < 5,000,000, i.e. all odd numbers p less than 10,000,000. All candidates were 

verified as composite by performing a division test using all primes between 0 and 

3162 (= _/10,000,000). 

 

Column 1: Prime candidate 'p' 

Column 2: Count of MFST false alarms 

Column 3: Count of Fermat test false alarms 

Column 4: 1 denotes MFST false alarm 

Column 5: 1 denotes Fermat test false alarm 

 

Note all the numbers shown fail FST and hence a '1' in the last column. ALL the 

numbers 561..512461 are Carmichael numbers, see section (4.5.9) for a full list. 

 

4.5.6.1 Odd numbers p = 2l + 1, 0 < l < 4,999,999 

 
     561  0    1 0 1 

    1105  0    2 0 1 

    1729  1    3 1 1 

    2465  1    4 0 1 

    2821  1    5 0 1 

    6601  1    6 0 1 

    8911  1    7 0 1 

   10585  1    8 0 1 
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   15841  2    9 1 1 

   29341  2   10 0 1 

   41041  3   11 1 1 

   46657  4   12 1 1 

   52633  4   13 0 1 

   62745  4   14 0 1 

   63973  4   15 0 1 

   75361  5   16 1 1 

  101101  5   17 0 1 

  115921  6   18 1 1 

  126217  6   19 0 1 

  162401  7   20 1 1 

  172081  8   21 1 1 

  188461  8   22 0 1 

  252601  8   23 0 1 

  278545  8   24 0 1 

  294409  8   25 0 1 

  314821  8   26 0 1 

  334153  9   27 1 1 

  340561  9   28 0 1 

  399001 10   29 1 1 

  410041 10   30 0 1 

  449065 10   31 0 1 

  488881 11   32 1 1 

  512461 11   33 0 1 

  530881 12   34 1 1 

  552721 12   35 0 1 

  656601 12   36 0 1 

  658801 12   37 0 1 

  670033 13   38 1 1 

  721801 13   39 0 1 

  748657 13   40 0 1 

  825265 13   41 0 1 

  838201 14   42 1 1 

  852841 14   43 0 1 

  873181 14   44 0 1 

  997633 15   45 1 1 

 1024651 15   46 0 1 

 1033669 15   47 0 1 

 1050985 15   48 0 1 

 1082809 15   49 0 1 

 1152271 15   50 0 1 

 1193221 15   51 0 1 

 1461241 15   52 0 1 

 1569457 15   53 0 1 

 1615681 16   54 1 1 

 1773289 17   55 1 1 

 1857241 18   56 1 1 

 1909001 18   57 0 1 

 2100901 18   58 0 1 

 2113921 19   59 1 1 

 2433601 20   60 1 1 

 2455921 21   61 1 1 

 2508013 21   62 0 1 

 2531845 21   63 0 1 

 2628073 21   64 0 1 

 2704801 22   65 1 1 

 3057601 23   66 1 1 

 3146221 23   67 0 1 

 3224065 23   68 0 1 

 3581761 24   69 1 1 
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 3664585 24   70 0 1 

 3828001 25   71 1 1 

 4335241 25   72 0 1 

 4463641 26   73 1 1 

 4504501 26   74 0 1 

 4767841 26   75 0 1 

 4903921 27   76 1 1 

 4909177 27   77 0 1 

 5031181 27   78 0 1 

 5049001 28   79 1 1 

 5148001 29   80 1 1 

 5310721 30   81 1 1 

 5444489 30   82 0 1 

 5481451 30   83 0 1 

 5632705 30   84 0 1  

 5968873 31   85 1 1 

 6049681 31   86 0 1 

 6054985 31   87 0 1 

 6189121 32   88 1 1 

 6313681 32   89 0 1 

 6733693 32   90 0 1 

 6840001 33   91 1 1 

 6868261 33   92 0 1 

 7207201 33   93 0 1 

 7519441 34   94 1 1 

 7995169 35   95 1 1 

 8134561 35   96 0 1 

 8341201 35   97 0 1 

 8355841 36   98 1 1 

 8646121 36   99 0 1 

 8719309 36  100 0 1 

 8719921 37  101 1 1 

 8830801 38  102 1 1 

 8927101 38  103 0 1 

 9006401 39  104 1 1 

 9439201 40  105 1 1 

 9494101 40  106 0 1 

 9582145 40  107 0 1 

 9585541 41  108 1 1 

 9613297 42  109 1 1 

 9863461 43  110 1 1 

 9890881 44  111 1 1 

 

We see that there are 44 false alarms for MFST compared with 110 false alarms for 

FST, i.e. MFST has less than half the false alarm rate. 

 

[Note that there are 664579 primes less than 10,000,000 (10 million) starting with 2 

and ending with 9,999,991. Since 2 is the only even prime, there are 664578 odd 

primes of the form 2l + 1, l >= 1]. 

 

It was noted that if the test was performed with only odd numbers of the form 4l+3, 

i.e. every other odd number such that (a - 1) / 2 was odd, MFST had 3 false alarms 

and FST had 11. The data, with format as per section (4.5.6) is given below. Notice 

that the Carmichael number 561 is not of the 4l + 3 form. 

 

4.5.6.2 Odd numbers p = 4l + 1, 0 < l < 2,499,999 
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    8911  0    1 0 1 

   90751  0    2 0 1 

 1024651  0    3 0 1 

 1152271  0    4 0 1 

 1530787  1    5 1 1 

 3116107  2    6 1 1 

 3375487  2    7 0 1 

 4314967  2    8 0 1 

 5481451  2    9 0 1 

 6539527  2   10 0 1 

 6787327  3   11 1 1 

 

4.5.7 Algebraic Comparison with the Fermat Test 

 

It was mentioned earlier in this section that MFST is really just a variant of FST. 

Nevertheless, it appears to give better results, i.e. a lower false alarm rate. We can see 

why this is so, as follows. 

 

If we factorise the lhs of FST (4.5.5.1) we get 

 

4.5.7.1 x^p - x = x*( x^( (p - 1) / 2) - 1 )*( x^( (p - 1) / 2) + 1 ) 

 

and so FST becomes 

 

4.5.7.2 x*( x^( (p - 1) / 2 ) - 1 )*( x^( (p - 1) / 2 ) + 1 ) = 0 (mod p) 

 

The left hand side comprises at least three factors, which we shall denote by A, B and 

C as follows 

 

4.5.7.3 A = x 

 

4.5.7.4 B = ( x^( (p - 1) / 2 ) - 1 ) 

 

4.5.7.5 C = ( x^( (p - 1) / 2) + 1 ) 

 

The solution to 4.5.7.2 using A, B and C now becomes 

 

4.5.7.6 A*B*C = 0 (mod p) 

 

This splits into the following possible equations, any one of which would ensure the 

candidate prime p passes FST. 
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4.5.7.7 B = 0 (mod p) 

4.5.7.8 C = 0 (mod p) 

4.5.7.9 A*C = 0 (mod p) 

4.5.7.10 B*C = 0 (mod p) 

4.5.7.11 A*B*C = 0 (mod p) 

 

Obviously, by choice of the Fermat base x != 0 and we cannot have A = 0. 

 

If we substitute back for B and C from (4.5.7.4) and (4.5.7.5) into (4.5.7.7) and 

(4.5.7.8) respectively, upon re-arranging, we get 

 

4.5.7.12 ( x^( (p - 1) / 2 ) = 1 (mod p) 

 

4.5.7.13 ( x^( (p - 1) / 2 ) = -1 (mod p) 

 

and combining them 

 

4.5.7.14 | ( x^( (p - 1) / 2 ) | = -1 (mod p) 

 

which is exactly the same as our MFST primality test (4.5.3). 

 

The key point is that FST can pass any one of the five equations (4.5.7.7) to (4.5.7.11) 

whereas MFST satisfies only two of them. Consequently, FST can pass false alarms 

which are solutions to the three tests (4.5.7.9) to (4.5.7.11). Alternatively stated, any 

false alarm to MFST will also be a false alarm to FST, the converse is not true 

however so FST, as implemented by equation (4.5.5.1), can only give equivalent or 

worse false alarm rejection. 

 

4.5.8 The Carmichael Number 561 

 

Let p be defined as the smallest Carmichael number, 

4.5.8.1 p = 561 

 

which factors as 561 = 3*11*17, then 

 

4.5.8.2  (p - 1) / 2 = 280 

 

and 
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4.5.8.3 x^561 - x = x*(x^280 - 1)*(x^280 + 1) 

 

Let x = 2 then 

 

4.5.8.4 (2^280) - 1 = 67*67 (mod 561) 

 

and, with some modulo arithmetic (2^280 = 2^140*2^140,  2^140 = 2^70*2^70, 

2^70 = 2^35*2^35, 2^35 = 263 (mod 561) ) we find that 

 

4.5.8.5 2^280 = 1 (mod 561) 

 

Hence, by (4.5.5.1) 561 will fail FST for base x = 2 and will fail MFST for the same 

base by (4.5.7.4) and (4.5.7.7). 

 

However, if we now try the base x = 3, 

 

Let x = 2, then 

 

4.5.8.6 (3^280) - 1 = 440 (mod 561) 

 

and 

 

4.5.8.7  (3^280) + 1 = 442 (mod 561) 

 

therefore 

 

4.5.8.8 | (3^280) + 1 | != 1 (mod 561) 

 

and so, by (4.5.3), MFST correctly rejects 561 as composite to base 3. However, using 

(4.5.8.6) for B and (4.5.8.7) for C in (4.5.7.10), we find that 

 

4.5.8.9 (3^280 + 1)*(3^280 - 1) = 440*442 (mod 561) 

 

and since 

 

4.5.8.10 440*442 = 0 (mod 561) 

 

we see that the number 561 fails the FST for Fermat base x = 561. 

 

4.5.9 Some Carmichael Numbers 
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The first 33 (up to approx 500,000) Carmichael numbers are given below. 

 

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 

52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 

252601, 278545, 294409, 314821, 34153, 340561, 399001, 410041, 449065, 488881, 

512461 
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5 Summary of Conditions 
 

This is an edited (shortened) collation of all the conditions and constraints, placed 

upon a triple (a, b, c), were it to be an FLT counter-example and as summarised at the 

end of each section. 

 

5.1.1 The Standard Residue Condition (1.2.3) 

 

b^n = c^n (mod a^n) 

 

5.1.2 The Standard Quotient Condition (1.4.3) 

 

 If (b^n = p*a^n + r) and (c^n = q*a^n + r) then q-p = 1 

 

5.1.3 The Dual Residue Condition (1.17.1) 

  

 a^n = c^n (mod b^n) 

 

5.1.4 The Dual Quotient Condition (1.18) 

 

 If (c^n = q'*b^n + a^n) then q' = 1 

 

5.1.5 The Skew Residue Condition (2.5.1.18) 

 

b^n = -a^n mod c^n 

 

5.1.6 The Root Gap, must be less than the base a Theorem (1.12) 

 

Rg = c - b <  a 

 

5.1.7 If the base a is prime, the Root Gap (1.10.1) must be unity, Theorem (1.14). 

 

Rg = c - b = 1 

 

5.1.8 The Root Gap (1.10.1) must divide the base a 

 

(c – b) | a 

 

The Dual Root Gap (1.15.1) must divide the Dual base b 
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5.1.9 (c – a) | b 

 

5.1.10 The Dual base b is always composite, Theorem (1.15) 

 

5.1.11 By convention a < b < c, (0.3.3), the Dual Root Gap Rg’ (1.15.1) is 

always greater than unity. 

 

Rg = (c – a) > 1 

 

5.1.12 The maximum value of b, Candidate Pair (b,c) is Bmax, Theorem (1.19.1). 

 

b < Bmax 

 

5.1.13 The maximum value of c, Dual Candidate Pair (a,c) is C'max, Theorem (1.20). 

 

c < C'max 

 

5.1.14 For integers x and k, x >= 1, k >= 1, the value a is either prime (x = 1) or 

composite (x > 1) with one or more factors of the form (2kn+1), i.e. 

 

a = x(2kn + 1) 

 

5.1.15 For integers y and l, y >= 2, l >= 1 the value b always composite with one or 

more prime factors of the form 2ln+1, i.e. 

 

b = y(2ln + 1) 

 

5.1.16 For integers z and m, z >= 1, m >= 1 the value c is either prime (z = 1) or 

composite (z > 1) with one or more factors of the form (2mn+1), i.e. 

 

c = z(2mn + 1) 

 

 

5.1.17 Candidate Pair (b,c), b maps to c by the Unity Root ‘u(a)’, (3.1.1)  

 

c = u(a)*b (mod a^n) 
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5.1.18 Dual Candidate Pair (a,c), a maps to c by the Unity Root ‘u(b)’ 

 

c = u(b)*b (mod b^n) 

 

5.1.19 Skew Candidate Pair (a,b), a maps to b by the Unity Root ‘u(c)’, (2.5.1.4) 

 

b = -u(c)*a mod c^n 

 

5.1.20 The Unity Root u(a), (mod a^n), is greater than the base a, (3.3.5) 

 

u(a) > a 

 

This constraint is also valid in the Dual case for Unity Root u, (mod b^n) 

 

5.1.21 The minimum value of a unity root ‘Umin(a)’, (mod a^n) is greater than or 

equal to the (n - 1)’th root of the modulus a^n, Conjecture (3.6.15) 

 

Umin(a) >= (n - 1)_/a^n 

 

This conjecture is also valid in the Dual case for Unity Root u, (mod b^n) 

 

5.1.22 If (b,c) is a Candidate Pair (mod a^n), then the Winding Number ‘w’ (3.4.4) is 

greater than zero 

 

w > 0 

 

5.1.23 A non-trivial, Unity Root u(A), to any modulus A, such that u(A)^n = 0 (mod 

a), is a solution to the Cyclotomic Polynomial f(u(A)) (3.6.4) such that 

 

f(u(A)) = 0 (mod a) 
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7 Data/Software 
 

 

7.1 Residue Tables 

 

7.1.1 n = 2, a = 3 

 
-------------------------------------------- 

 

      Residue Table a = 3, n = 2 

 

   x        x^n  residue r  residue quotient 

                   (mod a^n)    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          4        1        0  

   3          9          0        0        1  

   4         16          7        1        1  

   5         25          7        1        2  

   6         36          0        0        4  

   7         49          4        1        5  

   8         64          1        1        7  

   9         81          0        0        9 

7.1.2 n = 2, a = 4 

 
-------------------------------------------- 

 

      Residue Table a = 4, n = 2 

 

   x        x^n  residue r  residue quotient 

                   (mod a^n)    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          4        0        0  

   3          9          9        1        0  

   4         16          0        0        1  

   5         25          9        1        1  

   6         36          4        0        2  

   7         49          1        1        3  

   8         64          0        0        4  

   9         81          1        1        5  

  10        100          4        0        6  

  11        121          9        1        7  

  12        144          0        0        9  

  13        169          9        1       10  

  14        196          4        0       12  

  15        225          1        1       14  

  16        256          0        0       16 

 

7.1.3 n = 2, a = 5 

 
-------------------------------------------- 

 

      Residue Table a = 5, n = 2 

 

   x        x^n  residue r  residue quotient 

                   (mod a^n)    (mod a)        p 
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---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          4          4        4        0  

   3          9          9        4        0  

   4         16         16        1        0  

   5         25          0        0        1  

   6         36         11        1        1  

   7         49         24        4        1  

   8         64         14        4        2  

   9         81          6        1        3  

  10        100          0        0        4  

  11        121         21        1        4  

  12        144         19        4        5  

  13        169         19        4        6  

  14        196         21        1        7  

  15        225          0        0        9  

  16        256          6        1       10  

  17        289         14        4       11  

  18        324         24        4       12  

  19        361         11        1       14  

  20        400          0        0       16  

  21        441         16        1       17  

  22        484          9        4       19  

  23        529          4        4       21  

  24        576          1        1       23  

  25        625          0        0       25 

 

7.1.4 n = 3, a = 5 

 
-------------------------------------------- 

 

      Residue Table a = 5, n = 3 

 

   x        x^n  residue r  residue quotient 

                   (mod a^n)    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          8          8        3        0  

   3         27         27        2        0  

   4         64         64        4        0  

   5        125          0        0        1  

   6        216         91        1        1  

   7        343         93        3        2  

   8        512         12        2        4  

   9        729        104        4        5  

  10       1000          0        0        8  

  11       1331         81        1       10  

  12       1728        103        3       13  

  13       2197         72        2       17  

  14       2744        119        4       21  

  15       3375          0        0       27  

  16       4096         96        1       32  

  17       4913         38        3       39  

  18       5832         82        2       46  

  19       6859        109        4       54  

  20       8000          0        0       64  

  21       9261         11        1       74  

  22      10648         23        3       85  

  23      12167         42        2       97  

  24      13824         74        4      110  

  25      15625          0        0      125  

  26      17576         76        1      140  

  27      19683         58        3      157  

  28      21952         77        2      175  

  29      24389         14        4      195  

  30      27000          0        0      216  

  31      29791         41        1      238  

  32      32768         18        3      262  

  33      35937         62        2      287  



A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 

R J Miller, sections1to7_18122004.doc Issue 0. Draft D  
 

203 

  34      39304         54        4      314  

  35      42875          0        0      343  

  36      46656         31        1      373  

  37      50653         28        3      405  

  38      54872        122        2      438  

  39      59319         69        4      474  

  40      64000          0        0      512  

  41      68921         46        1      551  

  42      74088         88        3      592  

  43      79507          7        2      636  

  44      85184         59        4      681  

  45      91125          0        0      729  

  46      97336         86        1      778  

  47     103823         73        3      830  

  48     110592         92        2      884  

  49     117649         24        4      941  

  50     125000          0        0     1000  

  51     132651         26        1     1061  

  52     140608        108        3     1124  

  53     148877          2        2     1191  

  54     157464         89        4     1259  

  55     166375          0        0     1331  

  56     175616        116        1     1404  

  57     185193         68        3     1481  

  58     195112        112        2     1560  

  59     205379          4        4     1643  

  60     216000          0        0     1728  

  61     226981        106        1     1815  

  62     238328         78        3     1906  

  63     250047         47        2     2000  

  64     262144         19        4     2097  

  65     274625          0        0     2197  

  66     287496        121        1     2299  

  67     300763         13        3     2406  

  68     314432         57        2     2515  

  69     328509          9        4     2628  

  70     343000          0        0     2744  

  71     357911         36        1     2863  

  72     373248        123        3     2985  

  73     389017         17        2     3112  

  74     405224         99        4     3241  

  75     421875          0        0     3375  

  76     438976        101        1     3511  

  77     456533         33        3     3652  

  78     474552         52        2     3796  

  79     493039         39        4     3944  

  80     512000          0        0     4096  

  81     531441         66        1     4251  

  82     551368        118        3     4410  

  83     571787         37        2     4574  

  84     592704         79        4     4741  

  85     614125          0        0     4913  

  86     636056         56        1     5088  

  87     658503          3        3     5268  

  88     681472         97        2     5451  

  89     704969         94        4     5639  

  90     729000          0        0     5832  

  91     753571         71        1     6028  

  92     778688         63        3     6229  

  93     804357        107        2     6434  

  94     830584         84        4     6644  

  95     857375          0        0     6859  

  96     884736        111        1     7077  

  97     912673         48        3     7301  

  98     941192         67        2     7529  

  99     970299         49        4     7762  

 100    1000000          0        0     8000  

 101    1030301         51        1     8242  

 102    1061208         83        3     8489  

 103    1092727        102        2     8741  

 104    1124864        114        4     8998  

 105    1157625          0        0     9261  

 106    1191016         16        1     9528  

 107    1225043         43        3     9800  

 108    1259712         87        2    10077  

 109    1295029         29        4    10360  

 110    1331000          0        0    10648  
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 111    1367631          6        1    10941  

 112    1404928         53        3    11239  

 113    1442897         22        2    11543  

 114    1481544         44        4    11852  

 115    1520875          0        0    12167  

 116    1560896         21        1    12487  

 117    1601613        113        3    12812  

 118    1643032         32        2    13144  

 119    1685159         34        4    13481  

 120    1728000          0        0    13824  

 121    1771561         61        1    14172  

 122    1815848         98        3    14526  

 123    1860867        117        2    14886  

 124    1906624        124        4    15252  

 125    1953125          0        0    15625 
 

7.1.5 n = 3, a = 7 

 
-------------------------------------------- 

 

      Residue Table a = 7, n = 3 

 

   x        x^n  residue r  residue quotient 

                   (mod a^n)    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2          8          8        1        0  

   3         27         27        6        0  

   4         64         64        1        0  

   5        125        125        6        0  

   6        216        216        6        0  

   7        343          0        0        1  

   8        512        169        1        1  

   9        729         43        1        2  

  10       1000        314        6        2  

  11       1331        302        1        3  

  12       1728         13        6        5  

  13       2197        139        6        6  

  14       2744          0        0        8  

  15       3375        288        1        9  

  16       4096        323        1       11  

  17       4913        111        6       14  

  18       5832          1        1       17  

  19       6859        342        6       19  

  20       8000        111        6       23  

  21       9261          0        0       27  

  22      10648         15        1       31  

  23      12167        162        1       35  

  24      13824        104        6       40  

  25      15625        190        1       45  

  26      17576         83        6       51  

  27      19683        132        6       57  

  28      21952          0        0       64  

  29      24389         36        1       71  

  30      27000        246        1       78  

  31      29791        293        6       86  

  32      32768        183        1       95  

  33      35937        265        6      104  

  34      39304        202        6      114  

  35      42875          0        0      125  

  36      46656          8        1      136  

  37      50653        232        1      147  

  38      54872        335        6      159  

  39      59319        323        1      172  

  40      64000        202        6      186  

  41      68921        321        6      200  

  42      74088          0        0      216  

  43      79507        274        1      231  

  44      85184        120        1      248  

  45      91125        230        6      265  

  46      97336        267        1      283  

  47     103823        237        6      302  
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  48     110592        146        6      322  

  49     117649          0        0      343  

  50     125000        148        1      364  

  51     132651        253        1      386  

  52     140608        321        6      409  

  53     148877         15        1      434  

  54     157464         27        6      459  

  55     166375         20        6      485  

  56     175616          0        0      512  

  57     185193        316        1      539  

  58     195112        288        1      568  

  59     205379        265        6      598  

  60     216000        253        1      629  

  61     226981        258        6      661  

  62     238328        286        6      694  

  63     250047          0        0      729  

  64     262144         92        1      764  

  65     274625        225        1      800  

  66     287496         62        6      838  

  67     300763        295        1      876  

  68     314432        244        6      916  

  69     328509        258        6      957  

  70     343000          0        0     1000  

  71     357911        162        1     1043  

  72     373248         64        1     1088  

  73     389017         55        6     1134  

  74     405224        141        1     1181  

  75     421875        328        6     1229  

  76     438976        279        6     1279  

  77     456533          0        0     1331  

  78     474552        183        1     1383  

  79     493039        148        1     1437  

  80     512000        244        6     1492  

  81     531441        134        1     1549  

  82     551368        167        6     1607  

  83     571787          6        6     1667  

  84     592704          0        0     1728  

  85     614125        155        1     1790  

  86     636056        134        1     1854  

  87     658503        286        6     1919  

  88     681472        274        1     1986  

  89     704969        104        6     2055  

  90     729000        125        6     2125  

  91     753571          0        0     2197  

  92     778688         78        1     2270  

  93     804357         22        1     2345  

  94     830584        181        6     2421  

  95     857375        218        1     2499  

  96     884736        139        6     2579  

  97     912673        293        6     2660  

  98     941192          0        0     2744  

  99     970299        295        1     2828  

 100    1000000        155        1     2915  

 101    1030301        272        6     3003  

 102    1061208        309        1     3093  

 103    1092727        272        6     3185  

 104    1124864        167        6     3279  

 105    1157625          0        0     3375  

 106    1191016        120        1     3472  

 107    1225043        190        1     3571  

 108    1259712        216        6     3672  

 109    1295029        204        1     3775  

 110    1331000        160        6     3880  

 111    1367631         90        6     3987  

 112    1404928          0        0     4096  

 113    1442897        239        1     4206  

 114    1481544        127        1     4319  

 115    1520875         13        6     4434  

 116    1560896        246        1     4550  

 117    1601613        146        6     4669  

 118    1643032         62        6     4790  

 119    1685159          0        0     4913  

 120    1728000        309        1     5037  

 121    1771561        309        1     5164  

 122    1815848          6        6     5294  

 123    1860867         92        1     5425  

 124    1906624        230        6     5558  
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 125    1953125         83        6     5694  

 126    2000376          0        0     5832  

 127    2048383        330        1     5971  

 128    2097152         50        1     6114  

 129    2146689        195        6     6258  

 130    2197000         85        1     6405  

 131    2248091         69        6     6554  

 132    2299968        153        6     6705  

 133    2352637          0        0     6859  

 134    2406104        302        1     7014  

 135    2460375         36        1     7173  

 136    2515456        237        6     7333  

 137    2571353        225        1     7496  

 138    2628072          6        6     7662  

 139    2685619        272        6     7829  

 140    2744000          0        0     8000  

 141    2803221        225        1     8172  

 142    2863288        267        1     8347  

 143    2924207        132        6     8525  

 144    2985984        169        1     8705  

 145    3048625         41        6     8888  

 146    3112136         97        6     9073  

 147    3176523          0        0     9261  

 148    3241792         99        1     9451  

 149    3307949         57        1     9644  

 150    3375000        223        6     9839  

 151    3442951        260        1    10037  

 152    3511808        174        6    10238  

 153    3581577        314        6    10441  

 154    3652264          0        0    10648  

 155    3723875        267        1    10856  

 156    3796416         92        1    11068  

 157    3869893        167        6    11282  

 158    3944312        155        1    11499  

 159    4019679         62        6    11719  

 160    4096000        237        6    11941  

 161    4173281          0        0    12167  

 162    4251528         43        1    12395  

 163    4330747         29        1    12626  

 164    4410944        307        6    12859  

 165    4492125        197        1    13096  

 166    4574296         48        6    13336  

 167    4657463        209        6    13578  

 168    4741632          0        0    13824  

 169    4826809        113        1    14072  

 170    4913000        211        1    14323  

 171    5000211        300        6    14577  

 172    5088448         43        1    14835  

 173    5177717        132        6    15095  

 174    5268024        230        6    15358  

 175    5359375          0        0    15625  

 176    5451776        134        1    15894  

 177    5545233        295        1    16166  

 178    5639752        146        6    16442  

 179    5735339         36        1    16721  

 180    5832000        314        6    17002  

 181    5929741        300        6    17287  

 182    6028568          0        0    17576  

 183    6128487        106        1    17867  

 184    6229504        281        1    18161  

 185    6331625        188        6    18459  

 186    6434856        176        1    18760  

 187    6539203        251        6    19064  

 188    6644672         76        6    19372  

 189    6751269          0        0    19683  

 190    6859000         29        1    19997  

 191    6967871        169        1    20314  

 192    7077888         83        6    20635  

 193    7189057        120        1    20959  

 194    7301384        286        6    21286  

 195    7414875        244        6    21617  

 196    7529536          0        0    21952  

 197    7645373        246        1    22289  

 198    7762392        302        1    22630  

 199    7880599        174        6    22975  

 200    8000000        211        1    23323  

 201    8120601         76        6    23675  
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 202    8242408        118        6    24030  

 203    8365427          0        0    24389  

 204    8489664         71        1    24751  

 205    8615125        337        1    25116  

 206    8741816        118        6    25486  

 207    8869743        106        1    25859  

 208    8998912        307        6    26235  

 209    9129329         41        6    26616  

 210    9261000          0        0    27000  

 211    9393931        190        1    27387  

 212    9528128        274        1    27778  

 213    9663597        258        6    28173  

 214    9800344        148        1    28572  

 215    9938375        293        6    28974  

 216   10077696         13        6    29381  

 217   10218313          0        0    29791  

 218   10360232        260        1    30204  

 219   10503459        113        1    30622  

 220   10648000        251        6    31043  

 221   10793861        337        1    31468  

 222   10941048         34        6    31898  

 223   11089567         34        6    32331  

 224   11239424          0        0    32768  

 225   11390625        281        1    33208  

 226   11543176        197        1    33653  

 227   11697083         97        6    34102  

 228   11852352        330        1    34554  

 229   12008989        216        6    35011  

 230   12167000        104        6    35472  

 231   12326391          0        0    35937  

 232   12487168        253        1    36405  

 233   12649337        183        1    36878  

 234   12812904        139        6    37355  

 235   12977875        127        1    37836  

 236   13144256        153        6    38321  

 237   13312053        223        6    38810  

 238   13481272          0        0    39304  

 239   13651919        176        1    39801  

 240   13824000         71        1    40303  

 241   13997521         34        6    40809  

 242   14172488         71        1    41319  

 243   14348907        188        6    41833  

 244   14526784         48        6    42352  

 245   14706125          0        0    42875  

 246   14886936         50        1    43402  

 247   15069223        204        1    43933  

 248   15252992        125        6    44469  

 249   15438249        162        1    45009  

 250   15625000        321        6    45553  

 251   15813251        265        6    46102  

 252   16003008          0        0    46656  

 253   16194277        218        1    47213  

 254   16387064        239        1    47775  

 255   16581375         69        6    48342  

 256   16777216         57        1    48913  

 257   16974593        209        6    49488  

 258   17173512        188        6    50068  

 259   17373979          0        0    50653  

 260   17576000        337        1    51241  

 261   17779581        176        1    51835  

 262   17984728        209        6    52433  

 263   18191447         99        1    53036  

 264   18399744        195        6    53643  

 265   18609625        160        6    54255  

 266   18821096          0        0    54872  

 267   19034163         64        1    55493  

 268   19248832         15        1    56119  

 269   19465109        202        6    56749  

 270   19683000        288        1    57384  

 271   19902511        279        6    58024  

 272   20123648        181        6    58669  

 273   20346417          0        0    59319  

 274   20570824         85        1    59973  

 275   20796875         99        1    60632  

 276   21024576         48        6    61296  

 277   21253933        281        1    61964  

 278   21484952        118        6    62638  
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 279   21717639        251        6    63316  

 280   21952000          0        0    64000  

 281   22188041         57        1    64688  

 282   22425768         85        1    65381  

 283   22665187         90        6    66079  

 284   22906304         78        1    66782  

 285   23149125         55        6    67490  

 286   23393656         27        6    68203  

 287   23639903          0        0    68921  

 288   23887872        323        1    69643  

 289   24137569        316        1    70371  

 290   24389000        328        6    71104  

 291   24642171         22        1    71843  

 292   24897088         90        6    72586  

 293   25153757        195        6    73334  

 294   25412184          0        0    74088  

 295   25672375        197        1    74846  

 296   25934336        106        1    75610  

 297   26198073         76        6    76379  

 298   26463592        113        1    77153  

 299   26730899        223        6    77932  

 300   27000000         69        6    78717  

 301   27270901          0        0    79507  

 302   27543608         22        1    80302  

 303   27818127        141        1    81102  

 304   28094464         20        6    81908  

 305   28372625          8        1    82719  

 306   28652616        111        6    83535  

 307   28934443        335        6    84356  

 308   29218112          0        0    85184  

 309   29503629        141        1    86016  

 310   29791000         78        1    86854  

 311   30080231        160        6    87697  

 312   30371328         50        1    88546  

 313   30664297         97        6    89400  

 314   30959144        307        6    90259  

 315   31255875          0        0    91125  

 316   31554496        211        1    91995  

 317   31855013        260        1    92871  

 318   32157432        153        6    93753  

 319   32461759        239        1    94640  

 320   32768000        181        6    95533  

 321   33076161        328        6    96431  

 322   33386248          0        0    97336  

 323   33698267        232        1    98245  

 324   34012224          1        1    99161  

 325   34328125        342        6   100081  

 326   34645976        232        1   101008  

 327   34965783         20        6   101941  

 328   35287552         55        6   102879  

 329   35611289          0        0   103823  

 330   35937000        204        1   104772  

 331   36264691        330        1   105727  

 332   36594368         41        6   106689  

 333   36926037         29        1   107656  

 334   37259704        300        6   108628  

 335   37595375        174        6   109607  

 336   37933056          0        0   110592  

 337   38272753        127        1   111582  

 338   38614472        218        1   112578  

 339   38958219        279        6   113580  

 340   39304000        316        1   114588  

 341   39651821        335        6   115602  

 342   40001688        342        6   116622  

 343   40353607          0        0   117649 

 

7.1.6 n = 4, a = 5 

 

First fifty entries only, 0<=x<50 

 

See b =38, c =41 for smallest Candidate Pair [38,41] mod 5^4. 
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-------------------------------------------- 

 

      Residue Table a = 5, n = 4 

 

   x        x^n  residue r  residue quotient 

                   (mod a^n)    (mod a)        p 

---- ---------- ---------- -------- -------- 

   0          0          0        0        0  

   1          1          1        1        0  

   2         16         16        1        0  

   3         81         81        1        0  

   4        256        256        1        0  

   5        625          0        0        1  

   6       1296         46        1        2  

   7       2401        526        1        3  

   8       4096        346        1        6  

   9       6561        311        1       10  

  10      10000          0        0       16  

  11      14641        266        1       23  

  12      20736        111        1       33  

  13      28561        436        1       45  

  14      38416        291        1       61  

  15      50625          0        0       81  

  16      65536        536        1      104  

  17      83521        396        1      133  

  18     104976        601        1      167  

  19     130321        321        1      208  

  20     160000          0        0      256  

  21     194481        106        1      311  

  22     234256        506        1      374  

  23     279841        466        1      447  

  24     331776        526        1      530  

  25     390625          0        0      625  

  26     456976        101        1      731  

  27     531441        191        1      850  

  28     614656        281        1      983  

  29     707281        406        1     1131  

  30     810000          0        0     1296  

  31     923521        396        1     1477  

  32    1048576        451        1     1677  

  33    1185921        296        1     1897  

  34    1336336         86        1     2138  

  35    1500625          0        0     2401  

  36    1679616        241        1     2687  

  37    1874161        411        1     2998  

  38    2085136        136        1     3336  

  39    2313441        316        1     3701  

  40    2560000          0        0     4096  

  41    2825761        136        1     4521  

  42    3111696        446        1     4978  

  43    3418801         51        1     5470  

  44    3748096        596        1     5996  

  45    4100625          0        0     6561  

  46    4477456        581        1     7163  

  47    4879681        306        1     7807  

  48    5308416        291        1     8493  

  49    5764801        426        1     9223  

  50    6250000          0        0    10000  

 

7.2 Unity Roots 

 

7.2.1 n = 3 

 

7.2.1.1 a = 7 
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a is of the 2kn+1 form so there are 3 roots 

 

U ={1,18,324} 

 

7.2.1.2 a = 13 

 

a is of the 2kn+1 form so there are 3 roots 

 

U ={1,1036,1160} 

 

7.2.2 n = 4 

7.2.2.1 a = 4 

 

Since n|a, the Residues Sequence is Minimal of size 4^4/4, there are only two roots in 

the Minimal interval [0,4^3) 

 

U = {1,63} 

 

where 63=-1 mod 4^3 

7.2.2.2 a = 5 

 

a is of the ln+1 form so there are 4 roots 

 

U = {1, 182, 443, 624} 

 

7.2.2.3 a = 9 

 

a is of the ln+1 form so there are 4 roots 

 

U = {1, 182, 443, 624} 

 

7.2.2.4 a = 13 

 

a is of the ln+1 form so there are 4 roots 

 

13^4 = 28561 

 

U = {1, 239, 28322, 28560} 

 

Consecutive Idetnical Residues 

 

C = {119, 120, 14280, 14281, 28441, 28442} 
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7.2.3 n = 5 

 

7.2.3.1 a = 11 

 

a is of the 2kn+1 form so there are 5 roots 

 

U ={1, 37101, 46709, 104450, 133835} 

 

7.2.3.2 a = 31 

 

a is of the 2kn+1 form so there are 5 roots 

 

U ={1, 13801549, 13979094, 15561847, 28629152} 

 


