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Abstract

An analysis of Pythagoras's Theorem and Fermat's Last Theorem is performed by the
study of two conditions, termed the Residue and Quotient Condition, which have to
be satisfied by any possible integer triple solution (a, b, c) to the Diophantine
Equation a™n + b”n = c”n for prime, exponent n, n >= 2,

The Residue Condition filters out Candidate Pairs of integers b and c that satisfy a
form of the Generalised Fermat Equation, k*a™n + b”n = c”n, for what we term the
base 'a'. The Quotient Condition restricts k to unity and should such a triple (a, b, c)
be found, which satisfies both the Residue and Quotient Conditions, then it would be
an FLT counter-example. Of course, for exponent n >= 3, no such counter-examples
exist, Wiles [1]. The Residue Condition necessitates the study of Residue Sequences:
x™n (mod a"n), 0 <= x < a”n, in the 'Standard’ case; (mod b”"n) in the 'Dual’ case; and
(mod c™n) in the 'Skew' case.

The structure of a Residue Sequence, its symmetries and the stringency of the Residue
and Quotient Conditions offers insight, but not a proof, into why Pythagoras has
solutions but FLT has none. The two conditions allow us to place several constraints
on the form of integers a, b and ¢ in any such FLT counter example, were they to
exist.

We show that all Pythagorean triples can be generated through a symmetry in the
Residue Sequences which exist by virtue of an even power exponent. For odd
exponent n >= 3, this symmetry is absent and is replaced by a Skew Symmetry which
we show is not sufficient to generate FLT solutions. We conclude from this that were
there to be any FLT solutions for odd exponent they would have to arise through
another mechanism which we term 'Unity Root Mappings'. In the Standard case, a
Unity Root u, such that u™n =1 (mod a™n), a < u < a™n, maps an integer b to integer ¢
via the relation ¢ = u*b (mod a"n), a < b < ¢. This mechanism offers the possibility of
counter-examples but, in doing so, allows us to place yet more restrictions upon any
such counter-example (a, b, c).
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O Introduction

0.1 Document Status

0.1.1 History

0.1.1.1 Combined, all sections 1 to 7

All sections were combined into this single volume, Issue 0 Draft D.

18/12/2004 Issue 0. Draft D

0.1.1.2 Sections 1 and 2

29/09/2003 Issue 0. Early unpublished notes
19/05/2004 Issue 0. Draft O

27/08/2004 Issue 0. Draft A

05/11/2004 Issue 0. Draft B5

10/11/2004 Issue 0. Draft C2

11/11/2004 Issue 0. Draft C3

18/11/2004 Issue 0. Draft C4

21/11/2004 Issue 0. Draft C5

0.1.1.3 Section 3

28/11/2004 Issue 0. Draft C3

0.1.1.4 Sections4to7

16/11/2004 Issue 0. Draft C3

0.1.2 Formats

Word 2000 format

This document is currently available in electronic form only as an MS Word 2000
Document.

This documents have been written using the standard ASCII character set for all
equations and an equation editor has not yet been employed. This is so that a pure-text
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version can easily be generated. A more standard form incorporating standard
mathematical symbols, subscripts etc, will be generated at a later date prior to release.

Text format

A single text document, which is converted directly from an amalgamation of the
three separate Word documents, above is also supplied.

Sectionslto7_date.txt
HTML format

An online version will be made available, prior to external review, so that it can be
made available to a wider audience.

PDF format

Once the document has been externally reviewed and corrected it is anticipated that
any publishable work resulting from it will be then written with a more approriate
editor such that it can be made available in Adobe Acrobat, PDF form

0.1.3 Current Status

The document is still in a pre-published form and has not yet been reviewed although
it is now ready for a preliminary review prior to a full peer review and possible
submission of parts for publication.

Due to its large size and diversity of topics, should extracts be published, it is likely
that this document will be broken up into a summary paper and a few minor papers.

0.1.4 TBDs

All current outstanding points, missing cross references, Author references etc. are
marked by the bracketed three-letter-acronym (TBD) denoting ‘To Be Defined’. In
some serious cases additional text has been highlighted in yellow.

0.1.5 Originality of Content

The originality of much of the work presented cannot be guaranteed. Indeed several
Theorems are trivial and well-known, for example those on Pythagoras. In these
instances they are presented only for completeness. However, we are not claiming a
Proof of FLT nor claiming originality of all the work. Whilst doing the work during
2003 and 2004, several aspects have been found to be prior known and published. A
good example is the Modified Fermat Test (MFST), section (4.5) which is more
commonly known as The ‘Strong Pseudoprime Test’, ref. Mathworld [4]). Another
example is the Unity Root Polynomial ‘f(u)n’, section (3.6), which is actually a form
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of ‘Cyclotomic Polynomial’, ref. Mathworld [4] with well known factor properties
which are also derived. References to prior published work are welcome and will be
acknowledged when verified.

0.1.6 Reviewers

Comments will be accepted by any person reading the document. Spelling and
grammar corrections will also be accepted — we had to disable these word-processing
features as they caused considerable problems — crashing.

The document is available electronically and electronically embedded comments are
welcome. Please use some method to differentiate them, such as highlighting in red or
blue, if using Word. For text only, use multiple asterisks ‘****’ or ‘@@@@’ to
delineate comments. Return the document electronically, by email, to the principle
author, see Contact, below.

0.1.7 Contact

Richard J Miller
richard@microscitech.com
richard@microscitech.freeserve.co.uk
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0.2 Foreward

This paper is based upon earlier, unpublished work first started in September 2003.
This early work established the Residue and Quotient Conditions and criteria for
generating Pythagorean Triples via symmetry in the Residue Sequence. It was this
initial observation on symmetry that triggered the wider study into FLT.

Absurd as it may seem to study FLT ‘after the horse has bolted', i.e. several years after
a proof has been published, the Wiles 1995 [1] proof is essentially an indirect proof,
i.e. a proof of the Taniyama Wiles Shimuara' conjecture, and offers no simple, direct
insights into the difficulty of finding any counter-example to FLT. It is the intention
of this paper to try and gain some direct insight why counter-examples are non-
existant for exponents n >= 3. Because Pythagoras does have solutions, we use this
case extensively for a comparative study.

The paper is split into five main sections:

section 1 starts by establishing conditions and imposing constraints upon any possible
solutions to the FLT equation;

section 2 then analyses the residue mechanism by which these constraints can be
satisfied, splitting the exponent into even and odd cases since they have an inherently
different structure in their Residue Sequences, namely symmetric (even exponent) and
skew-symmetric (odd exponent);

section 3 unifies the symmetric and skew-symmetric concepts in section 2 through the
study of Unity Roots;

section 4 is a collection of miscellaneous applications arising from concepts presented
in sections 1, 2 and 3

section 5 summarises all the constraints upon any possible FLT counter-example,
were there to be any

For some background to FLT we point you to the following two references [2] and
[3]. For an elementary, under-graduate level text on Number Theory, see reference
[6]. The online reference [4] is also an excellent source of information on all
mathematical topics.

It is often stated that a Residue approach to work on an FLT proof is doomed to
failure since there are ‘local solutions’. [Reference required TBD]. However, although
the work presented in this paper is based upon a residue approach it does not start
with a congruential form of the FLT equation such as

a™n + b n =c”n (mod A)
Instead, the work starts with the exact FLT equation

a’n+b*=cn
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and then places Residue Conditions upon possible solutions to this exact equation.

A lot of number theory deals with what the actual values of residues are, for instance,
the subject of quadratic residues and, in general, n’th order residues. Our work is
primarily interested in the cases where residues repeat within the [0, a*n) interval
when studying residues (mod a”*n). What their actual values are is of little or no
relevance. Ultimately we shall see, section (3), that the only residue of real interest is
+1 and, in particular, the Unity Roots u, u!= 1, where u*n = +1 (mod a’*n).

The work presented in this paper is entirely based on congruential arithmetic and
generally using only positive integers, never really straying into either negative
numbers or complex numbers. The main reason for this is that every negative integer
has a positive equivalent in modulo arithmetic, e.g. - x = A - x (mod A) and thus we
can always use the positive form if so desired. Secondly, and related, any equation of
the form x*n = -1 (mod A) can also be written x*n = A - 1 (mod A) for which there
may/may not be solutions in integer arithmetic. If there are no integer solutions then
this is not of real concern within the scope of this paper.
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0.3 Conventions

The following will be assumed throughout
0.3.1 We shall be working with a triple of integer a, b and c, denoted by the ordered

triple notation (a, b, ), such that it is a solution to the following Diophantine
equation for integer exponent n, n >= 2,

0.3.1.1 a™n+b™n=c™n

0.3.2 The exponent n is 2 or greater and prime, excepting when n = 4.

0.3.3 The triple (a, b, c) is such that a, b and c are all positive integers and satisfy
the following inequalities

0.3.3.1 a>2
0.3.3.2 b>a

0333 c>b

The minimum value of b and ¢ under consideration is thus 3 and 4 respectively.

0.3.4 The three integer values a, b and c are all ‘co-prime in pairs’. This ensures that
the solutions to equation (0.3.1.1) have no common factor, i.e. they are
‘primitve’.

0.34.1 GCD(ab)=1

0.3.42 GCD(bc)=1

0.3.4.3 GCD(ac)=1

0.3.5 The following symbolic, mathematical conventions are employed

0.3.5.1 When referring to the modulus, invariably a*n, b”n or c¢n, the base is the un-
exponentiated form, i.e. a, b or c.

a - the ‘Standard Base’, smallest member of (a, b, C).
b - the ‘Dual Base’, middle value member of (a, b, )
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¢ — the ‘Skew Base’, largest member of (a, b, )

When we are referring to the Standard Base a, we usually drop the 'Standard' prefix as
for most terms prefixed with 'Standard’ when the context is clear.

0.3.5.2 Residues, usually symbolised by 'r', are always such that r > 0. When
negative, they are denoted by -r. The ‘zero residue’ (r = 0) occurs for values
x = ka (integer k, base a) which is excluded since, if b or c is a multiple of a,
then the triple (a, b, ) is not co-prime in pairs (0.3.4).

0.3.5.3 Quotients, usually symbolised by q and p' or p’ and q’, are always such that

p>0,q9>0,p’>0,q >0. When negative they are denoted by -p and -q
respectively.

0.3.5.4 Exponentiation takes precedence over multiplication or division. E.g. a*n/n =
(@™n) / n. Often a bracket will be used for clarity.

0.3.5.5 All variables and constants are assumed positive whole numbers >= 0 unless
otherwise stated.

0.3.5.6 The three ordered pairs of integers (b,c), (a,c), (a,b) are termed 'Candidate
Pairs' (they each share a common 'Repeat Residue’)

(b,c) - the 'Standard Candidate Pair’, b n = ¢n (mod a’*n)
(a,c) - the 'Dual Candidate Pair’, a*n = ¢n (mod b”n)
(a,b) - the 'Skew Candidate Pair', a*n = b™n (mod c”n)

When we are referring to the Standard Candidate Pair (b,c) we usually drop the
‘Standard' prefix as for most terms prefixed with 'Standard' when the context is clear.

0.3.5.7 Usage of the muliplication symbol *

The multiplication symbol ™' is not always used when multiplication is implied. Such
instances are

multiplying two bracketed expressions together, e.g.
(c-b)(c+b)=(c-b)*(c+h)

mulitiplication of an alphabetic symbol by a numeric constant, e.g.
2a=2*a

commonly used multiples, especially constant multiples of a, b or c and n, e.g.
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ka=k*a

2In=2*]*n

0.3.5.8 Operator Precedence

We shall assume the usual convention on operator precedence:
Exponention takes precedence over multiplication and division
Multiplication takes precence over addition and subtraction

A bracketed expression is evaluated before any of its left or right operators. Use of
brackets therefore permits operator precedence to be over-ridden.

Some Examples
2a™n =2 * (a™n)
(2a)™n =2"n * a™n
an/2=(@"n)/2
ar(n/2)=(@""N1/2)
2*(c +b)
Generally the precedence rules will be implied and brackets are only used to alter the

precedence in an expression. However, to improve readability, brackets may be used
in some cases although their presence may not be strictly necessary.

0.3.5.9 Usage of the term "2In+1'

This is an extremely frequently used expression and it is defined as

2In+1=2*1*n)+1

0.3.5.10 Non-standard symbols, notation

The readers attention is drawn to our usage of the some non-standard symbols and
notation

negation symbol 'V

al=2 denotes a not equal to 2
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2!la denotes 2 does not divide a
nth root 'n_/'
3 /a denotes the cubic root of a
2_/(c-b) denotes the square root of (c - b)

2 fc-b =(2./c)-b

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem.
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0.4 Acronyms and Symbols

041

dp
FLT
FST
GCD
GFLT
INT
LDE
lhs

Acronyms

Decimal Place

Fermat's Last Theorem

Fermat’s Little (‘Small’) Theorem
Greatest Common Divisor
General FLT Equation

Integer function

Linear Diophantine Equation
Left-hand side

MFLT Modified FLT Equation
MFST Modified FST Test

MRS
Qg
Rg
rhs
TBC
TBD
wrt

0.4.2

For compatibility and simplicity reasons, this document is written in standard
ASCII text format and can be read with a simple text editor, e.g. notepad. For this

Minimal Residue Sequence
Quotient Gap

Root Gap

right hand side

To Be Confirmed

To Be Defined

with respect to

Symbols

reason, certain symbols are non-standard

For compatibility and simplicity reasons, this document is written in standard ASCII
text format and can be read with a simple text editor, e.g. Windows notepad. For this
reason, certain symbols are non-standard

*

AN

denotes multiplication

denotes exponentiation, e.g. X2 reads X squared.
denotes 'not' when immediately followed by '|' or '=',
otherwise it denotes factorial as per usual

denotes 'n divides a', for integers n,a

denotes 'n does not divide a', for integers n,a
denotes 'n is not equal to &', for integers n,a

denotes 'not congruent to', e.g. X =Y (mod Z) reads X
is not congruent to Y (mod Z)

denotes approximately equal

denotes square root, e.g. _/x"2 =X

denotes nth root, e.g. 3_/x"3 =X

when appended to an alphabetic letter, e.g. u_k,
denotes the k'th element of a sequence or set

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem.
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e.g. u_k is the k'th Unity Root
X| absolute value of x, if x <0, [x] =-x. If x>=0 |x| = X
[0,n-1] closed interval of n integer values integers O to n- 1
[0, n) semi-open interval of n integer values integers 0 to n- 1
(0, n] semi-open interval of n integer values integers 1 to n
{u_i} setof n Unity Roots, indexi,0<=i<n-1

(a,b,c) an ordered triple of integers (a, b, ¢),2<a<b<c

a Standard Base, lowest member of the triple (a, b, c).
A generic modulus, one of {a, a*n, b, b”n, ¢, c*n, P}
b Dual Base, middle member of the triple (a, b, c)

(x,y) an ordered pair of integers (Xx,y), X <y

Bmax Maximum value of b in an FLT counter-example

Cmax Maximum value of ¢ in an FLT counter-example

c 'Skew Base', largest member of the triple (a, b, c)

f(u)n  Unity Root Polynomial Exponent n

INT Integer truncation. INT(x), for real x, is the largest integer value less than x
n Exponent

p quotient, (mod a’*n)

p' Dual quotient, (mod b”n)

P arbitrary prime base

q quotient

q Dual quotient

r residue

u Unity Root

u(@  Unity Root (mod a™n)

u(b)  Dual Unity Root (mod b”n)

ur rthUnityRoot,u 0=+1,u 1>1,1<=u_<A
U Set of n Unity Roots {u_0,u_1,..u_(n-1)}

U Conjugate Set of n Unity Roots U' = -U

w Winding number
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1 Residues and Quotients

In this section we shall start by placing two conditions, termed the Residue and
Quotient Condition, upon any possible solution triple (a, b, c) to Pythagoras and the
FLT Equation. We show these two weak conditions are sufficient conditions such
that, when they are both met, they can be used to generate Pythagorean triples and/or
FLT counter-examples. A few example Pythagorean Triples confirm this and, indeed,
by use of the analytic solution to Pythagoras, we can prove all Pythagorean triples
meet both conditions. We then show that, for arbitrary exponent n, the Residue
condition can be met for many ‘Candidate Pairs’ (b,c) where b*n = ¢”n (mod a”n),
such that (a, b, ¢) is a solution to a General FLT Equation ‘GFLT’. To meet the
Quotient Condition we show that the difference between integers b and c, termed the
‘Root Gap’, of a Candidate Pair (b,c), is constrained to be less than the base if the
triple (a, b, c) is to have any chance of being a FLT counter-example. Once again, in
the Pythagorean case, we can prove this constraint on the Root Gap is satisified by all
Pythagorean triples.

We also look at what we call the ‘Dual’ case, where the base is b and the modulus
b”n, and we study Candidate Pairs (a,c) (mod b”n) which have to satisfy similar Dual
Residue and Quotient Conditions. In combination these Standard and Dual conditions
place tight constraints on any potential FLT counter-example.

Finally in this section we summarise the various constraints upon any Pythagorean
Triples and FLT counter-examples solutions that have arisen, so far, in the course of
the work.

Section (2) proceeds to the study of Residue Sequences, i.e. the residues x”n (mod

a™n), 0 <= x < a”n and how their symmetry structure, for even exponent, can give rise
to Pythagorean Triples and the consequent repurcussion for odd exponent.

1.1 The FLT and Pythagoras Equations

The work starts by placing constraints on the following Diophantine equation,
referred to within this paper as the 'FLT Equation'.

1.1.1 a™n+b*n=c”n (the FLT Equation)

Although (1.1.1) applies to all exponents, n >= 2, the special case whenn =2 is
termed the 'Pythagoras Equation'

1.1.2 a"2+b"2=c"2 (the Pythagoras Equation)

There are no integer solutions (a, b, c) to the FLT Equation (1.1.1) for integer n >2.
So says Fermat's Last Theorem, finally proved by A Wiles [1].
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1.2 The Residue Condition

By taking the residue of (1.1.1) (mod a™n)

1.2.1 a”n(mod a™n) + b”n (mod a™n) = cn (mod a’*n)
and using
1.2.2 a™n=0(mod a™n)

we obtain what is termed herein as the 'Standard Residue Condition' or more simply
the 'Residue Condition'.

1.2.3 c¢™n=Db"n (moda™) (the Residue Condition)

This shows that for any pair b and ¢ of a triple (a, b, ) the residue b”n (mod a”n) is
congruent to the residue c*n (mod a"n).

We term this expression (1.2.3) the Residue Condition since b”n and c”n have
identical residues (mod a”*n). This is a necessary but not sufficient condition upon any
triple solution (a, b, ).

[Note that there is also a Dual Residue Condition (1.17.1), obtained by taking residues

of (1.1.1) (mod b”n), and a Skew Residue Condition (2.5.1.18), obtained by taking
residues of (1.1.1) (mod c”™n)].

1.3 The Quotient Gap

The Residue Condition (1.2.3) implies that b*n and c”n can be written as follows,
where we term integers p and q 'quotients’, 0 <= p < ¢, and r is the integer residue,
r >=0, identical to both.

1.3.1 b™=p*a™n+r

132 c™n=qg*a™n+r

and we define the '‘Quotient Gap' (QQg) as the positive difference of the quotients

1.33 Qg=qg-p (the Quotient Gap)

1.4 The Quotient Condition

Substituting for b”n and ¢*n from (1.3.1) and (1.3.2) into (1.1.1) and cancelling the
residue r implies that
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141 a™n+p*a™n=qg*a™n

Dividing throughout by a”n we obtain

142 q-p=1

which, comparing with (1.3.3), becomes the 'Quotient Condition’

143 Qg=1 (the Quotient Condition)

The Quotient Condition merely states that the Quotient Gap must be 1 for any
Pythagorean Triple or FLT counter-example.

The Quotient Condition might just seem a restatement of the FLT equation since, by
re-arrangement of (1.1.1),

144 c™n-b*n=1%a"n

Nevertheless, like the Residue Condition, it is not sufficient by itself. A triplet
satisfying only the Quotient Condition will not necessarily be a solution to (1.1.1). For
instance, if b and ¢ were of the form b"n =r (mod a”*n) and ¢*n =s (mod a"n), where
r'=sand 0 <r,s<a”n, i.e. bandcdo not meet the Residue condition, but are
defined as follows,

145 bnm=a™+r

146 c™n=2*a"n+s

then the Quotient Gap is still unity since q = 2, p = 1. However, subtracting (1.4.5)
from (1.4.6)

147 c™-bMm=a™Mm+(s-r)

and, since s I= r by definition, the triple (a, b, c) is not a solution to (1.1.1).

1.5 Quotient & Residue Sufficiency

In essence, the Residue and Quotient Conditions split the single FLT equation into
two weaker conditions. The Residue condition is a necessary condition and imposing
the additional Quotient Condition upon it provides sufficiency.
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We will see that the Residue Condition can be satisfied for all exponents n >= 2,
whereas the Wiles Proof [1] confirms that both Residue and Quotient conditions can
only be simultaneously satisfied when n = 2, i.e. the Pythagorean case.

Sufficiency Assertion

Any integer triple (a, b, ¢) satisfying both the Quotient and Residue condition is a
solution to the FLT equation (1.1.1).

Proof

The Residue Condition (1.2.3) implies that b”n and c”n can be written, as given by
(1.3.1) and (1.3.2) respectively, with quotients p and g and a common, identical
residue r.

Subtracting (1.3.1) from (1.3.2) to eliminate the residue r we get

15.1 c™n-b”n=g*a™n-p*atn

and rearranging, using (1.3.3) defining Qg, this becomes

1.5.2 c”™n=Qg*a™n +b™n

We see from (1.5.2) that if Qg = 1 then we recover the FLT equation (1.1.1). But
since Qg = 1 is simply the Quotient Condition (1.4.3) then any integer triplet (a, b, ¢)
satisfying the Residue Condition (1.2.3) is a Pythagorean triple (n = 2) or FLT
counter-example (n >2) if it also meets the Quotient Condition.

Since the two conditions are sufficient then, amongst the infinitude of triples (a, b, c)
that meet the Residue Condition, any that also satisfy the Quotient condition are
therefore FLT counter-examples. Since there exist solutions to the General FLT
Equation (1.8) then a proof that the Quotient Condition can never be met for such
GFLT solutions is equivalent to proof of FLT, i.e. the Quotient Condition becomes a
restatement of FLT for GFLT.

1.6 Theorem: Pythagoras, Analytic Solution Sufficiency

If a Pythagorean Triple is given by (u*2 - v*2, 2uv, u"2 + v*2), v > 0, integers u and
v, u>v>0,GCD(u,v) = 1, then it satisfies both the Residue and Quotient Conditions.

Proof
There are two cases to consider: 1) u2 - v~2 > 2uv; 2) u2 - v*2 < 2uv. The equality

is not considered since it implies u = v which would imply one member of the
Pythagorean triplet is zero which it is not, by definition.
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By convention (0.3.3), we take a to be the smallest of the triplet (a, b, ) so that, in
case 1,a=2uv and, in case 2, a = u"2 - v*2.

Case 1: 2uv <u”™2-v"2

Leta=2uv, b =u”2 - v"2, ¢ = u"2 + v*2 then by squaring each term

1.6.1 a"2=4u"2*v"2

1.6.2 b"2 =uM4 - 2u"2*v"2 + VM4

1.6.3 c"2=uM + 2u"2*v2 + v™M

and since 4u"2*v~2 = 0 (mod a”2) by (1.6.1), taking the modulus a"2 of (1.6.2)
and (1.6.3) gives

164 b2 =uM + VA4 (mod at2)

1.6.5 c"2=uM+v* (moda2)

and hence equating b2 with ¢"2 we see that

1.6.6 ¢"2=Db"2 (moda’2)
and therefore case 1 satisfies the Residue Condition.

To prove the Quotient Condition, if we subtract (1.6.2) from (1.6.3)

1.6.7 ¢c"2- b2 = 4ur2*v"2

we see the difference ¢”2 - b2 is identical to a*2 as given by (1.6.1). Hence case 1
satisfies the Quotient Condition.

Case2: 2uv>u"2-v*2,v>0,u>v

Leta=u"2-v"2, b=2uv, c=u"2+Vv"2,

Rearranging a = u"2 - v~2 for u*2 in terms of a and v*2
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1.6.8 uM2=a+v*2

and squaring b

1.6.9 b2 =4ur2*v"2

By substituting for u"2 from (1.6.8) into (1.6.9) gives

1.6.10 b"2 =4a*v"2 + 4v™4

From a =u”2 - v”2 and ¢ = u"2 + v*2 we can write ¢ in terms of a

1.6.11 c=a+2v\2

and consequently

1.6.12 c"2 = a2 + 4a*v"2 + 4v™4

Taking the modulus a2 of c2

1.6.13 ¢c"2 = (4a*v"2 + 4v™4) (mod a”2)

and hence equating (1.6.10) and (1.6.13) gives

1.6.14 ¢"2 =b"2 (mod a"2)
and we see that case 2 satisfies the Residue Condition.

To prove the Quotient Condition, if we subtract (1.6.9) from (1.6.12)

1.6.15 c*2-b"2=a"2

we see the difference ¢"2 - b2 is identical to 1*a”2, i.e. the Quotient Gap is 1 and
hence case 2 satisfies the Quotient Condition.

1.7 Examples: Pythagorean Triples
Since Pythagorean triples are in abundance it is easy to verify the Residue and

Quuotients conditions with a few examples.
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1.7.1 The Pythagorean triple (3,4,5)
We see that the Residue Condition is satisfied since
572 =472 (mod 372) (25 =16 mod 9)
And we have the following constructions for 472 and 52 in terms of 32
4N = 1%3"2 + 7 (16 = 1*9 + 7)
5A2 = 2%372 + 7 (25 =2*9 + 7)
Showing that the quotients p = 1 and g = 2 meet the Quotient Condition.
1.7.2 The Pythagorean triple (8,15,17)
We see that the Residue Condition is satisfied since
1772 = 15”2 (mod 8"2) (289 = 225 mod 64)
and we have the following constructions for 152 and 1772 in terms of 82
1572 =3*8"2 +33 (225 =3*64 + 33)
1772 =4*8"2 +33 (289 = 4*64 + 33)

showing that the quotients p = 3 and g = 4 meet the Quotient Condition

1.8 The General FLT Equation (GFLT)

For Qg>1 equation (1.6.2), reproduced below, is hereafter referred to as the 'General
FLT Equation’ and abbreviated to GFLT.

1.8.1 c*n=Qg*a"n+ b n (the General FLT Equation 'GFLT")

We will see that there are an abundance of solutions to GFLT, an infinite number in
fact, all with Qg > 1. If we have a triple (a, b, ¢) satisfying GFLT and we make b
negative, assuming odd n, we can take b”n over to the Ihs and add it to ¢ *n giving
what is known as the 'Generalised Fermat Equation'.

1.8.2 b™n+c™n=Qg*a™n (the Generalised Fermat Equation)

This form is widely investigated, ref Mathworld [4], keyword 'Generalized Fermat
Equation' (note the US spelling of Generalized with a ‘z’). In particular, there are only
certain integral values Qg can take for a specific exponent.
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Whilst we have implied the solutions of (1.8.2) have a negative value for b, this is
merely because of our use of a*n in the modulus. We can obtain positive solutions by
using a 'Skew' base ¢ and taking residues of the FLT Equation (1.1.1) mod c”n. More
details about this method and the Generalised Fermat Equation are provided in section
(2.5.5). However, for now, we will mainly be concerned with GFLT (1.8.1).

The Quotient Gap Qg can legitimately be a perfect power of n, i.e. for some integer |,
1> 1.

1.83 Qg=I™"n

In which case, equation (1.8.1) becomes

1.8.4 c™n=(la)*n+b™n

Which shows that (a, b, c) is a triplet solution to GFLT and that (la,b,c) is actually
also an FLT counter-example, n > 2. For n = 2 there do, of course, exist Pythagorean
triples (a',b,c) where a' is composite, a' = la.

1.8.5 Pythagorean Example (8,15,17)

As a simple example, the Pythagorean triple (8,15,17)

1851 8"2+15"2=17"2

This triple has a composite value of 8 for the base and equation (1.8.5.1) could be
alternatively be written in GFLT form.

1.85.2 (272)*4"2 + 1572 = 172

In this form the triple (4,15,17) will meet the Residue condition (mod 4/2) (a = 4
here) and will have a Quotient Gap of 2/2. This can be seen from the following
construction of 15°2 and 17”2 in terms of the modulus 42

1.8.5.3 1572=14*4"2+1

1854 177"2=18*4"2+1

We see that the Residue Condition is met since 152 = 1772 = 1 (mod 4"2) and that
the quotients g and p are 18 and 14 respectively, hence Qg =18 - 14 =4 =2"2 as in
(1.8.5.2).
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Alternatively, the composite b = 15 could be factored as follows

1.855 872+ (3/3)*(5"2) = 172

It can be viewed as a triple (8,5,15) (mod 5°2) that has Qg = 32 or, alternatively, as a
triple (8,3,17) (mod 372) that has Qg = 5"2.

These example triples (4,15,17), (8,5,17) and (8,3,17) were actually reverse-
engineered from a known Pythagorean triple (8,15,17) where a and/or b was
composite. In fact any triple (a, b, ¢) where the values a or b are composite can be re-
written in a GFLT form since we can just factor out the 'I', equation (1.8.4), from a or
b. Furthermore, for any Pythagorean triple, since either a or b is always even but not
both, one of them will always have a factor of 2 and therefore a Pythagorean triple of
the form (a, 2x, c), here b = 2x, can always be written as a triple (a,x,c) such that

1.85.6 a2+ (282)*x"2 = ¢"2

where the Quotient Gap is 272. Of course, this could also be viewed as a triple (a,2,c)
with a Qg = x"2.

In fact, since the middle value b of a Pythagorean triple is always composite, section

(1.15), there are at least two GFLT triples for every Pythagorean triple since there are
always two or more factors in a composite.

1.8.6 GFLT Solutions

For arbitrary n, the GFLT equation (1.8.1) does have an infinite set of solutions. Since
any residue x”n (mod a’*n) repeats at (a*n + x)*n (mod a’*n) i.e.

1.8.6.1 (a™n+ x)"n =x"n (mod a™n)

Although stated without proof, by expanding the lhs of (1.8.6.1) binomially, and
taking residues (mod a”n), all terms are congruent to zero except the last term x”n].
By associating b with x and ¢ with a*n + x in (1.8.6.1) then (a, b, ) is a triple
satisfying the Residue condition since

1.8.6.2 c¢”n=Db"n (mod a™n)

As both x and a are arbitrary integers the set of triplet solutions to the GFLT equation
is infinite.

Any triple given by

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 24
R J Miller, sections1to7_18122004.doc Issue 0. Draft D



1.8.6.3 (a, x,a™n +x)

will satisfy GFLT.

The triples given by (1.8.6.3) are not the only solutions. There is a more select group
which might offer hope, false we might add, of finding an FLT counter-example. See,
for example, section (1.8.9).

Since there are so many GFLT solutions for every exponent it raises the immediate
question as to why none of the solutions meets the Quotient Condition except when

n =2? Whilst it is not difficult to see that Qg >> 1 for a triple given by (1.8.6.3), it is
not obvious that Qg is not a perfect power as per (1.8.3). In fact, as we shall see in the
Pythagorean case, none of the solutions originate via the Repeat Residue mechanism

given by (1.8.6.1). This mechanism merely makes for an easy example but is not
seriously considered further except in the next example.

1.8.7 Cubic Exponent Example 1

Firstly, a relatively trivial example illustrating (1.8.6.1) and GFLT

The triple (5, 7, 132) has been constructed in accordance with (1.8.6.1) where n = 3,
the base a =5 and x = 7, hence a"n + x = 132.

Expanding 773 and 132”3 in terms of 53

1.8.7.1 7"3=2*5"3+93

1.8.7.2 13273 = 18399*5"3 + 93

and hence 773 and 132”3 meet the Residue Condition (mod 5/3) since

1.8.7.3 773 =132"3 =93 (mod 5"3)

Subtracting (1.8.7.1) from (1.8.7.2) we get

1.8.7.4 13273 - 773 = 18397*5"3

and re-arranging gives a GFLT form with a Quotient Gap of 18397 as follows

1.8.7.5 13273 =18397*5"3 + 73
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1.8.8 Cubic Exponent Example 2

This next example, the triple (3, 4, 13), n = 3, illustrates a Repeat Residue mechanism
not given by (1.8.6.1). A summary of mechanisms by which residues repeat is given
in section (2.2). However, in this example, it should be noted that the exponent n = 3
divides the base a = 3 and, as a consequence, the Residue Sequence is 'Minimal’, see
(2.1.2.2). Basically, this means the residues repeat at a shorter interval than a™n
(1.8.6.1). In fact they repeat at a*n / n. In this case, a*n = 33 = 27 and hence

a™n /n=9. This is why the third value of the triple ¢ = 13 has been constructed from
c=b+a™m/n=4+9=13

Expanding 43 and 13”3 in terms of 33

1.8.8.1 4"3=2*3"3+10

1.8.8.2 133 =81*3"3+ 10

and hence 4 and 13 meet the Residue Condition (mod 3"3) since

1.8.8.3 43=13"3 =10 (mod 3"3)

Subtracting (1.8.8.1) from (1.8.8.2)

1.8.8.4 1373 -4/73 =79*3"3

and re-arranging we get a GFLT form with a Quotient Gap of 79 as follows

1.8.8.5 1373 =79*3"3 + 4”3

1.8.9 Cubic Exponent Example 3

Lastly, a triple (7, 17, 20), n = 3, whereby the Repeat Residue mechanism is of the
'2In+1' form, see section(2.2.5). Basically, the base value a = 7 can be written as twice
a multiple of the exponent n = 3, plus 1, in this case 7 = 2*3 + 1. This mechanism is
of major importance in the further study of the FLT equation within this paper,
essentially it is the only mechanism whereby FLT counter-examples could be (but
aren't) possible. All other mechanisms, examples 1 and 2 for instance, being rejected.
A summary of all mechanisms by which a residue can repeat is given in section (2.2).

Expanding 1773 and 20”73 in terms of 73
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1.8.9.1 1773 =14*7"3 + 111

1.8.9.2 2073 =23*7"3 + 111

and hence 17 and 20 meet the Residue Condition (mod 7/3) since

1.8.9.3 1773 =20"3 =111 (mod 7/3)

Subtracting (1.8.9.1) from (1.8.9.2)

1.8.9.4 2073 -17"3 =9*7"3

and re-arranging gives a GFLT form with a Quotient Gap of 9 as follows

1.8.9.5 2073 =9*7"3 +17"3

1.9 Definitions: Candidate Pair and Repeat Residues

1.9.1 Definition: Candidate Pair

If b and ¢ meet the Residue condition (1.2.3) then the pair of values is termed a
‘Standard Candidate Pair' and denoted by (b,c). The prefix 'Standard’ is usually
removed when the modulus a*n is implied.

1.9.2 Definition: Repeat Residues

Two integers x and y are termed 'Repeat Residues' if, when raised to an integer
exponent n and taking residues (mod z”k), integer z, integer exponent k, 0<k<=n, then
x™n and y"*n are congruent mod z"k, i.e. if

1.9.2.1 x*n=y"n (mod z"k) (integer k, O<k<=n)

then x and y are 'Repeat Residues' mod z”n.

Specifically, in this paper, we are only interested in two particular cases where the
exponent k = 1 or k =n, i.e. the modulus is z or z*n, then we have either

1.9.2.2 x*n=y"n (modz™n) (xandy are termed Repeat Residues mod z"*n)

or
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1.9.23 x*=y™ (modz) (xandy aretermed Repeat Residues mod z)

By definition, the values b and c of a Standard Candidate Pair (b,c) are Repeat
Residues because bn = ¢*n (mod a”™n) by the definition (1.9.1) of a Candidate pair.
Similarly, in the Dual case, the values a and c of a Dual Candidate Pair (a,c) are
Repeat Residues since a*n = ¢n (mod b”n), see further, (1.17).

In section (2.5.7) we shall see that residues (mod z), where z is either a, b or c of a
triple (a, b, ) and the exponent n = 1, play an important part in the development of
constraints upon possible FLT counter-examples.

1.10Definition: Standard Root Gap

The Standard Root Gap, denoted by 'Rg' and more commonly referred to simply as
the Root Gap, is defined as the numeric, positive difference between the values b and
c of a Candidate Pair (b,c), where it is assumed ¢ > b by convention (0.3.3.3),

1.10.1 Rg=c-b

In GFLT triplet, (1.8.6.3) above, the Root Gap is a*n. However, we will see, by
Theorem (1.12), it must be much smaller than this for (a, b, c) to be an FLT counter-
example. It is called a 'Root' Gap because b and c are effectively the roots of an
equation

1.10.2 x™n -r =0 (mod a"n)

and they share, by the definition of a Candidate Pair (b,c), an identical residue 'r', i.e.

1.10.3 b™n =r (mod a™n)

and

1.10.4 c¢™n=r (mod a"n)

For example, in the Pythagorean case, equation (1.10.2) is the Quadratic Diophantine
equation

1.10.5 x"2 - r =0 (mod a"2)
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This equation can have no roots, 2 roots or a multiple of 2 roots in the interval
[0, a*2). There only exist roots when r is a quadratic residue of a, i.e. if ris not a
quadratic residue of a then there are no roots.

However, excepting Pythagoras, we are chiefly concerned within this paper with odd
prime exponent, n >= 3 and, as regards roots to (1.10.2), there are either no roots or n
roots for prime base, Lagrange's Theorem, see (2.2.5.3).

1.11 Definition: Consecutive Identical Residues

If a Candidate Pair (b,c) has a Root Gap of unity such that, by (1.10.1) Rg = 1, and
therefore

1111 c-b=1

then the pair of values b and c are termed 'Consecutive Identical Residues’, sometimes
abbreviated to CIR. By the definition of a Candidate Pair the residues will be equal,
hence 'identical’ and, by (1.11.1), the value c is the next ‘consecutive' integer after b.

Consecutive Identical Residues are an important concept when the base is prime,
section (1.14).

1.12Theorem: Root Gap Constraint

If the Root Gap for a Candidate Pair (b,c) (mod a”*n) is greater than or equal to the
base a then the Quotient Gap is greater than unity foralln>1, i.e.

If

Rg>=a
then

Qg>1

Alternatively stated, if we are to meet the Quotient Condition (1.4.3), then the Root
Gap must be less than a.

If

Qg=1
then

Rg<a

This is a necessary condition, not a sufficient condition. In general, we shall see that
the Root Gap has to be a lot less than the base for a unity Quotient Gap.

Proof

By hypothesis, the Root Gap is greater than the base, i.e.
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1.121 c-b>=a

Rearranging and raising to the n'th power we get

1.12.2 c™n>=(a+hb)"n

Expanding the rhs by the binomial theorem, where nCr denotes the binomial
coefficientn! / (n -r)! rl

1.12.3 c¢*n>=a™n +nCl*a(n - 1)*b
+ nCr*a’™(n - r)*b"r
+nC(n - 1)*a*b™(n - 1)
+b™n
Now, since a < b by choice, substituting for a in place of b for all terms of order b*(n -

1) or less, this implies

1.12.4 ¢c™n>a”n +nCl*a™(n - 1)*a

+ nCr*a™(n - r)*a’r

+nC(n-1)*a*a”(n- 1)
+b”n

This inequality is now homogeneous in a*n and, using nCO = 1, this simplifies to

1.12.5 ¢*n>(nCO +nC1l+ .. nCr+..nC(n-1) )*a™n + b n

Since the binomial coefficients nCO to nCn sum to 2”*n, then the bracketed sum above,
which omits the last term nCn (= 1), sums to 2”*n - 1 giving:

1.12.6 cn>Db"n+ (2"n - 1)*a™n

Comparing (1.12.6) with (1.8.1) the Quotient Gap is seen to be given by
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1127 Qg=2™n-1

We see that if n >1 then

1.12.8 Qg>1

Thus, for all n >1, if the Root Gap is greater than a, i.e. if ¢ - b > = a then the Quotient
Gap is greater than unity.

1.12.9 Remarks

Theorem (1.12) says that for any Candidate Pair (b,c) (mod a”*n), to meet the Quotient
Condition (1.4.3), the gap between b and ¢ must be less than the base a. Alternatively
expressed, any two integers b and ¢, where ¢ > b > 3, with identical residues such that
c™n =b”n (mod a”*n), for n >= 2, can only be a valid Pythagorean triple or FLT
counter-example if c- b < a.

Although we have given the proof in the Standard case where the base is a and the
Candidate Pair is subsequently (b,c), the Theorem is equally valid in the Dual case
with base b and Candidate Pair (a,c). This is because, in the Standard case, ifc-b <a
then it simply re-arranges to ¢ - a < b and, in the Dual case, the Candidate Pair is (a,c)
and the Base is b.

Note that Theorem (1.12) does not state that if the Root Gap is less than the base then
the Quotient Gap will always be unity. It only says that the Quotient Gap will never
be Unity if the Root Gap is greater than the base.
To emphasize Theorem (1.12) further.
There are no Pythagorean Triples (a, b, ¢),2<a<b<csuchthatc-b>=a
There are no FLT counter-examples (a, b, ¢), 2<a <b<csuchthatc-b>=a
Of course, there are no FLT counter-examples, Wiles [1]. Nevertheless, it is worth

exploring how Pythagoras succeeds where others fail in the hope that it may offer
some insights into FLT.

1.13Pythagoras Root Gap < base

One can verify all Pythagorean triples (a, b, c) have a Root Gap less than the base by
using the standard analytic solution.

Firstly, defining a, b and c as follows using the standard analytic solution for a
Pythagorean triple
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1.13.1 a=2uv

1.13.2 b=u"2 -v"2

1.13.3 c=u"2 +v*2

Since

1134 b>0

this implies, using (1.13.2), that

1.135 ur2-v*2>0

and since, by convention, a is positive then we have

1.13.6 |u|>v|

Subtracting b from c using (1.13.2) for b and (1.13.3) for ¢ we get

1137 c-b=2v*2

and, using inequality (1.13.6), this implies

1.13.8 c-b < 2uv

Substituting for a from (1.13.1) implies

1.139 <c-b<a

Hence, if a is defined as the even valued member of the triple (a, b, ¢) as defined by
(1.13.1), then the Root Gap of a Pythagorean triple is always less than the base
modulus a.

To prove the case when a and b are swapped, such that b is now the even member of
the triple and a is the odd member

rearranging (1.13.9) gives
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1.13.10 c-a<b

If we swap a (1.13.1) with b (1.13.2) such that we now have

1.13.11 b=2uv

1.13.12 a=u"2-v"2

then since we have just proven (1.13.9) when using (1.13.1) for a and (1.13.2) for b,
then with the definition of a and b now swapped, i.e. b now defined by (1.13.11) and a
now defined by (1.13.12), then (1.13.10) is also proven. Hence the Root Gap (c - b) is
always less than the modulus a for a Pythagorean Triple.

1.14Theorem: Prime Base a, Root Gap =1

If the base a is prime then the Root Gap for a Candidate Pair (b,c) is unity for any
FLT counter-example or Pythagorean triple.

Proof

Starting with the FLT equation (1.1.1) and re-arranging for a in terms of ¢ and b we
get

1.14.1 a®n=c™n-b"n

Expanding c¢”n - bn binomially and assuming n >= 2 then

1142 a™n=(c-b)(cMn-1)+..+bNn-1))

By (1.10.1) this can be expressed in terms of the Root Gap, Rg

1.143 a™n=Rg*(cMn-1)+..+bNn-1))

The right hand side of (1.14.3) factors in two terms and, since the base is prime, each
of these terms must be some power of a with no other factor involved. This implies
Rg must be of the from a”k for some integer k, k >=0.

1.14.4 Rg = a’k

But, by Theorem (1.12), if the Root Gap is greater than or equal to the base, then the
Quotient Gap is greater than unity, i.e. if Rg >= a then Qg > 1. Conversely, if the
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Quotient Gap is unity, the Root Gap must be less than a, i.e. if Qg = 1, then Rg < a.
However, by (1.14.4), the only value for Rg less than a is unity since a is prime.
Hence, if a is prime and the Quotient Gap is unity, then the Root Gap must also be
unityand k =0 in (1.14.4).

The consequence of this proof is that the two values b and ¢ must be '‘Consecutive
Identical Residues', section (1.11). That is, if a is prime and Rg = 1 then, by (1.10.1)
c=b+1

Note that Qg cannot be zero since 0 <a < b < ¢ and (b,c) are a Candidate Pair (mod
a’™n). Hence b and ¢ have identical residues and cannot therefore have identical
quotients q, p such that Qg = g - p = 0 unless b = ¢ which is false since b < ¢ by
convention.

Alternative Proof

)

This proof can also be presented without recourse to Theorem (1.12). Let us suppose

the Root Gap is not unity. The next smallest value it can be isawhen k =1 in
(1.14.4).

If we let k =1, then

1.145 Rg=a

and therefore, by the definition of the Root Gap (1.10.1),

1146 c=a+b

and substituting for Rg and c into the rhs of (1.14.3) we get, for some integer
coefficients k1, k2, .. kr > 0,

1.14.7 a’n=a*(a™Mn-1) +
k1*a™(n - 2)*b"2 +
k2*a™(n - 3)*b"3 +
ot
kr*a™(n - r - 1)*b"r +
ot
+n*bMn-1))

Upon multiplying through the rhs bracket by a, the first term is a*n which cancels
with the Ihs a*n leaving

1.148 0=a*(kl*a"(n-2)*b"2 +
k2*an(n - 3)*b"3 +
ot
kr*a™(n - r - 1)*b"r +
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ot
+n*bN(n-1))

This equation can only have a solution if a = 0 or the outer bracket is zero. However,
since a > 0,and all terms inside the bracket are greater than zero, this equation cannot
be satisified. Therefore our original assumption that Rg = a is false and we are left
with the conclusion that either Rg = 1 or Rg > a. However, if we let Rg = a™k, k >1,
we will arrive at the same contradiction as for (1.14.8) and so the only solution left is
k =0, i.e. Rg = 1. Therefore we conclude that if the base a is prime then the Root Gap
IS unity.

Both proofs were given using the expansion in (1.14.2) which assumed n >= 2. Hence
the Theorem is valid for both Pythagoras and FLT. However, there is a simpler Proof
for the Pythagorean case, given here for completeness.

Starting with the expansion of (1.14.2) for n = 2 we have

1.149 a"2 =(c + b)(c - b)

and we see that a"2 factors simply into (c+b) and (c- b)

If a is prime then, since a2 has two factors (c + b) and (c - b), one of them must be
unity since they cannot both be the same as (c + b) > (c - b) for all ¢ > b > 0 which is

true by assumption. The unity factor must therefore be the smallest factor of the two,
namely (c - b) i.e.

11410 c-b=1

But the lhs of (1.14.10) is the Root Gap (1.10.1) hence, if a is prime, any triple
(a, b, ¢) that satisfies the Pythagoras equation has a Root Gap of unity.

Remark

Unfortunately we cannot restrict our studies in this paper to prime base only, we must
also consider composites. This is because, if we restricted the study to prime base
only, we would need to observe not just unity Quotient Gaps but also those where the
Quotient Gap is a perfect power. Conversely, by considering only composite a, we
can limit ourselves to searching for unity Quotient Gaps only. This is because if there
is a perfect power, Quotient Gap = I"n, (mod a”™n), i.e.

1.14.11 c”n-b™n =I1"n*a"n

then defining

11412 a'=la

equation (1.14.11) can be re-written in unity Quotient Gap form, (mod a*n).
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1.1413 c™n-b™n=2a"n
This shows there is a composite a' = la, such that (a', b, ¢) is an FLT counter-example.
That is, any triple (a, b, c), where (b,c) is a Candidate Pair (mod a"n), and such that

the Quotient Gap is a perfect square, I"n, has a 'normalised’ form (la, b, ¢) such that
the Candidate Pair (b,c) mod (la)*n has a unity Quotient Gap.

1.15Theorem: Composite Middle Value

The middle value b of an FLT counter-example is always composite.

Theorem (1.12) proves that if the Quotient Gap for a Candidate Pair (b,c) (mod a™n) is
unity, i.e. (a, b, ¢) is an FLT counter-example, then the Root Gap must be less than
the base, i.e. if Qg = 1 then Rg < a. Theorem (1.18) then goes further to prove that if
the base is prime then the Root Gap is always unity. By alternatively studying the
Dual problem, i.e. the Candidate Pair (a,c) (mod b”n), we can prove that the base b is
always composite.

The Dual Root Gap, Rg', for a Candidate Pair (a,c) (mod b™n), is defined as

1151 Rg'=c-a

We can re-arrange the inequality of Theorem (1.12) on the Root Gap to give a Dual
equivalent, Rg' where

1.152 Rg'=c-a<b

By rearranging the FLT equation (1.1.1) for b in terms of a and ¢

1.15.3 b"n=c*n-a™n

and expanding the rhs binomially, assuming n >= 2, then

1.15.4 b =(c-a)(cM(n-1) +..a*n-1))

we can get a 'Dual’ equivalent expression of (1.14.3) linking Rg' and b

1.155 b*n=Rg * (cM(n-1) +..a*n-1))

If we assume b is prime then we can conclude that Rg' is unity by the same argument
as in Theorem (1.14). However since a < b < ¢ and they are all integers, this implies
c-a>=2.1.e. Rg >=2 which contradicts the assumption that Rg' is unity if b is
prime. So, we conclude that b cannot be prime and must therefore be composite.

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 36
R J Miller, sections1to7_18122004.doc Issue 0. Draft D



Since the binomial expansion (1.15.4) is valid for n >= 2, this Theorem is valid for
both the Pythaogorean and FLT cases.

1.16 Residue Tables

Fortunately much, if not all, of the findings in this paper can be verified
experimentally (but not proven) with a computer. The key aid in the study of Repeat
Residues is the generation of 'Residue Tables'. These allow a relatively quick visual
inspection of finding Repeat Residues for a specific base and exponent.

A Residue Table is a 5-column table of residues r where x*n =r (mod a”n) for x =0
to x = (a*n) - 1. Note that the quotient p is also tabulated.

A Residue Table can be interpreted as either Standard or Dual. Both tables have the
same structure and are identical except for the modulus and, as a consequence, the
number of entries. A Standard Table has a modulus a”n, the Dual Table has modulus
b”n. However, whether a Residue table is Standard or Dual is actually just a matter of
interpretation. For example, if one generates a table of residues (mod 3"2) and
identifies elements b = 4, ¢ = 5 as having identical residues (mod 3"2) (as they do)
then, since the base a = 3 is less than the middle value of the triple b = 4, this table
could be interpreted as a Standard Residue table with respect to the Pythagorean triple
(3,4,5). Alternatively, if one was examining a Residue Table (mod 4”2) and identifies
that elements b = 3, ¢ = 5 as having identical residues (mod 4°2), then since the base
b = 4 is the middle value of the triple (3,4,5), the table can be regarded as a Dual table
with respect to the Pythagorean triple (3,4,5).

1.16.1 Standard and Dual Residue Tables

The columns in a Standard (and Dual) Residue Table are as follows:

Columnl: x (0 <=x<a™n)
Column2:  x™n

Column 3: residue r r = x”n (mod a”™n)
Column 4: residuer r=x"n (mod a)

Column5:  quotientq X =p*atn +r

Strictly speaking, we have used the residue r and quotient p as used for a base a. In the
dual case, we should write residue 1’ and quotient p’ for the dual equivalent residue
table for base b. However, this is not done and please keep in mind that all residues r,
r’ and quotients p, p’ (and often a and a’) are all essentially one and the same
meaning, just different context.

An example Residue Table is shown below for the casea=5,n=2

Residue Table a = 5, n = 2
b 4 X" n residue residue quotient
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0 0 0 0 0
1 1 1 1 0
2 4 4 4 0
3 9 9 4 0
4 16 16 1 0
5 25 0 0 1
6 36 11 1 1
7 49 24 4 1
8 64 14 4 2
9 81 6 1 3
10 100 0 0 4
11 121 21 1 4
12 144 19 4 5
13 169 19 4 6
14 196 21 1 7
15 225 0 0 9
16 256 6 1 10
17 289 14 4 11
18 324 24 4 12
19 361 11 1 14
20 400 0 0 16
21 441 16 1 17
22 484 9 4 19
23 529 4 4 21
24 576 1 1 23
25 625 0 0 25

Notes

The residue (mod a), column 4, is also shown in addition to the residue (mod a”™n),
column 3, since it is useful in the study of residues (mod a”n). For

example, if there are two values x and y such that they are congruent (mod a”n), i.e.
y"n = x”n (mod a”n), then they are also congruent (mod a), i.e. y*n = x"n (mod a).
For large a, the identification of x,y with identical residues (Repeat Residues) (mod

a’™n) can be visually identified quicker by first checking those with identical residues

(mod a). If x and y are such that they do not share an identical residue (mod a), then
they will not have an identical residue (mod a™n). For small a, very approximately
a =100, this is not particularly necessary but it can be useful when a is very large.

As a specific example of Repeat Residues, one can see in the table above that x = 12,

when squared, has the same residue (19) as for x = 13 when squared, i.e.

1272 = 19 (mod 572) and 1372 = 19 (mod 52). The pair (12,13) thus form a
Candidate Pair. Inspection of the quotients reveals that forx =12, p=5

(1272 =5*5"2 + 19) and for y=13,q =6 (132 =6*25 + 19) and thus g - p =1 and

therefore meets the Quotient Condition. Since the Candidate Pair (12,13) meets both
the Residue and Quotient Conditions we can conclude from the Sufficiency Theorem

(2.5) that (5,12,13) is a Pythagorean triple. From this we can see that by studying
Residue tables, (mod a”*n), we can identify Pythagorean Triples of the form (a, b, c)

where (b,c) is a Candidate Pair which meets the Residue Condition, by definition, and

simultaneously satisfies the Quotient Condition.

The x = 25 (5"2) residue is shown primarily for completeness: 25 = 52 = 0 (mod
572), and confirms that, for reasons of computational checking, the x = 25 entry is
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identical to that for x = 0. Of course, for any integer i, (@*n + i)*n = i*n (mod a’*n) so
that the entire set of residues for 0 <= x < an repeat, in the same sequence, for

a’™n <= x <2a’™n, 2a™n <= x < 3a"n etc. which is why we need only tabulate the first
a’™n entries, 0 <= x <a”"n.

1.17Dual Residue Condition

So far, most of the focus has been on residues (mod a™n) where a is the smallest of an
integer triple (a, b, c). However, the FLT equation (1.1.1) is interchangeable in a or b.
Whilst keeping with the convention, a < b < ¢, we can effectively double up the
Quotient and Residue Conditions, (1.2.3) and (1.4.3) respectively and obtain Dual
equivalents.

The Dual equivalent of the Residue Condition (1.2.3) is

1.17.1 c¢™n=a"n (mod b*n) (the 'Dual Residue Condition’)

This shows that for any pair (a,c) of a triple (a, b, ¢), the residue a*n (mod b”n) is
equal to the residue cn (mod b”n).

The reciprocal nature of the Residue Conditions (1.2.3) and (1.17.1) are quite
restrictive. Individually they are easily satisfied for either base a or b and all
exponents and lead to a GFLT equation, section (1.8). Taken together, they are much
more restrictive but, nevertheless, give rise to a more general Diophantine equation
which we have tentatively named the Modified FLT equation ‘MFLT’

1.17.2 ¢™n =a"n + bn + k*a*n*b™n

This does have solutions and is briefly discussed in section (Error! Reference source
not found.), albeit it is the subject of a separate paper ref. [5].

1.17.3 Duality of Candidate Pairs (b,c) and (a,c)

If (a, b, ) is an FLT counter-example then both (b,c) (mod a™n) and (a,c) (mod b”"n)
are Candidate Pairs.

This statement is really just a formalisation of the Standard Residue Condition (1.2.3)
and the Dual Residue Condition (1.17.1).

If (a, b, ¢) is an FLT counter-example then, by taking residues (mod an) of the FLT
equation (1.1.1), we obtain the Residue Condition (1.2.3). Since this shows that b”n is
congruent to ¢cn (mod a”*n) they therefore have equal residues and, by definition,
(b,c) (mod a”™n) is thus termed a Candidate Pair. However, equally, we can take
residues, (mod b”™n), of the FLT equation (1.1.1) and obtain (1.17.1). Since this shows
that a™n is congruent to ¢*n (mod b”n), they therefore have equal residues and, by
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definition, (a,c) (mod b”n) is termed a Dual Candidate Pair. Hence both (b,c) (mod
a™n) and (a,c) (mod b”n) are Candidate Pairs; the Candidate Pair (a,c) (mod b™n) is
the Dual equivalent of (b,c) (mod a™n).

1.18 Dual Quotient Condition

By analogy with (1.3.1) and (1.3.2) the Dual Residue Condition implies that a*n and
cn can be written as follows (the primed values denote Dual):

1.18.1 a*n=p*b*n+r

1.18.2 c*n=qg*b*n +r'
where p' and ' are 'quotients’ and 'r' is the residue identical to both.

However, before continuing to derive the Dual Quotient Condition, since a < b by
convention, we see that p'in (1.18.1) is zero when we keep with the convention that r’
IS zero or positive. Note that a zero residue is of no interest since it implies a and b, or
b and c, contain a common factor, i.e. they are not co-prime.

Thus, with p' defined as zero,

1.18.3 p'=0

then (1.18.1) shows that

1.18.4 r'=a™n

and therefore and (1.18.2) can be re-written

1.18.5 ¢c*n=qg™*b™n +a™n

Substituting for ¢*n from (1.18.5) into the FLT equation (1.1.1) and cancelling the
residue r' ( = a™n) we get

1.18.6 b™n=q*b"n

and dividing throughout by b”n we obtain a Dual Quotient Condition
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1.18.7 g'=1 (the Dual Quotient Condition)

Whereas in the Standard Quotient Condition we have two quotients p, q each greater
than unity, but with the condition g - p = 1, for this Dual Quotient Condition we must
have p' identically zero and q’ identically unity. So, if we study a Dual Table, we need
only look for values ¢ where the quotient g' is unity. At the pointx =b thenq' =1
since xn = 1*b”n and at the point x = 2b then ' = 2”*n since x*n = 2”*n*b. Therefore
somewhere in between x = b and x = 2b the quotient q' becomes greater than unity
and we can end our search for a value x = ¢, such that ¢*n = a”n (mod b”n).

1.19Bmax

The Quotient Condition places an upper limit on the value of b in a Candidate Pair
(b,c) (mod a™n).

1.19.1 Theorem

Given a Candidate Pair (b,c) (mod a”n) there exists a value Bmax, in general non-
integral and an element of the Reals such that, for b >= Bmax, the Quotient Condition
can never be met.

This is equivalent to the following statement upon any FLT counter example:
If (8, b, ¢) is an FLT counter-example, odd exponent n >= 3, 1 <a<b <c, then the
middle value b is always less than a value Bmax where Bmax is defined via the
relation:

n*Bmax”(n - 1) = 2*a’n
Proof
For a given value of b, Candidate Pair (b,c), to minimise the Quotient Gap, we need to
minimise the Root Gap. This is almost self-evident since, for any given triple (a, b, c),
if Rg = k such that ¢ - b = k by (1.10.1), then ¢*n - b”n = (b + k)n - bn = Qg*a”n,
by (1.8.1), and therefore Qg is minimised if k = 1. The value of k cannot be zero since
this would imply b = ¢ which is not a valid Candidate Pair (it would mean a = 0).
Thus, if the minimum Root Gap is unity then, by (1.10.1), the values b and c are

consecutive

1.1911c=b+1

In which case b and c are termed 'Consecutive Identical Residues’, (1.11). The
Candidate Pair is thus (b, b + 1) and, by (1.8.1), the Quotient Gap is given by
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1.19.1.2 Qg*a™n = (b + 1)*n - b*n
Since we wish to disregard all Candidate Pairs for which the Quotient Gap is greater

than unity, we wish to find a maximum value b, denoted by Bmax, such that for all
b > Bmax the Quotient Gap satisifies the following condition

1.19.13 Qg >=2

A binomial expansion of the rhs of (1.19.1.2), gives us the following inequality such
that for all n >= 2,

1.19.1.4 (b + 1)*n - b™n > n*bA(n - 1)

If we choose a value b = Bmax whereby Bmax is defined via the relation

1.19.1.5 n*Bmax”(n - 1) = 2*a™n

where the lhs of (1.19.1.5) purposefully matches the rhs of (1.19.1.4) when b = Bmax,
then inequality (1.19.1.4) implies

1.19.1.6 (Bmax + 1)*n - Bmax”n > n*Bmax”(n - 1) = 2*a"n

and this implies the Quotient Gap at b = Bmax, by (1.19.1.2), satisifies the inequality

1.19.1.7 Qg*a”n > n*Bmax”(n - 1) = 2*a™n
i.e. if b = Bmax, then Qg > 2 since the a’*n factor cancels in (1.19.1.7).

The Bmax value in (1.19.1.5) is generally non-integral and real-valued. For example,
ifa=7,n=3, then Bmax is 15.12 to 2dp. We can actually round this down to the
nearest integer since rounding up, as we shall show below, can only give an even
larger Quotient Gap. However, doing this means that we must consider values of

b <= Bmax instead of b < Bmax. We will assume throughout that Bmax is not
rounded to an integer and, generally, remains real-valued and non-integral.

It remains to show that if b >= Bmax then Qg >= 2 always holds true.

To do this, we have to show that if (b, b + 1) is a Candidate Pair with Quotient Gap
Qgand (b + k, b + k + 1), integer k, k > 0, is another Candidate Pair with Quotient
Gap Qg' then the integral Quotient Gap Qg' is greater than or equal to Qg, i.e. the
Quotient Gap either remains the same or increases as b increases, but never decreases.

Note that for both Candidate Pairs we have only chosen a Root Gap of unity in each
case. Since we have reasoned (but not rigorously proven) that the minimum Quotient
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Gap occurs for a minimimum Root Gap of unity then more general Candidate Pairs
with non-unity Root Gaps need not be considered.

With the Quotient Gap Qg for Candidate Pair (b, b + 1) given by

1.19.1.8 (b +1)*n-b"n =Qg*a™n

and the Quotient Gap Qg’ for Candidate Pair (b + k, b + k + 1) given by

1.19.19 (b+k+1)*n-(b+k)*n=Qg™*a"n

then we have to show that, for all k > 0,

119110 Qg >=Qg

which, by multiplication by a*n and re-arranging, is equivalent to showing that

1.19.111  Qg*a’n - Qg*a’n >= 0

Without going into the algebra, it can be shown, by the binomial expansion of
(b +k)*nand (b + k + 1)*n that for all b >=1, k >= 1, n >= 1, the following inequality
holds true

1.19.1.12 (b+k+21)"n-(b+k”™>=(b+1)n-bn

then, by comparison with (1.19.1.8) and (1.19.1.9), this implies (1.19.1.10) is true for
allb>=1k>=1,n>=1,

With 1 <a < b < c by convention (0.3.3), b = 3 is actually the smallest middle value
under consideration. Similarly, n = 2 is the smallest exponent. The value of k is
arbitrary but, for the smallest possible Root Gap, as prior stated, k = 1.

Thus we have shown that Qg >= 2 for all b >= Bmax where Bmax is defined by
(1.19.1.5), rounded down to the nearest integer.

1.19.2 Notes

What about the other value c in a Candidate Pair (b,c)? Since b must actually be less
than Bmax the maximum value for ¢ is b + 1 when the Root Gap is minimal, i.e.

Rg = 1. In terms of Bmax, this value of ¢ is INT(Bmax)+1 where the 'INT" function
denotes truncation to the nearest integer, see (0.4.2). What we actually have are the
two conditions:
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1.19.2.1 b < Bmax

1.19.2.2 ¢ <= INT(Bmax)+1

Which might then beg the question, why not call (1.19.2.2) Cmax and use that instead
since ¢ > b by convention? Firstly, equation (1.19.1.2) was written in terms of b not ¢
hence it would not seem right to then call it Cmax. Secondly, C’max is used for the
Dual equivalent condition, see (1.20).

Lastly, for the two smallest exponents under consideration, for Pythagoras (n = 2) we
get for Bmax

1.19.2.3 Bmax = a2

and for the smallest, odd FLT exponent, n = 3, we get

1.19.2.4 Bmax = _/(2*a"3/3) (where' /' denotes the square root)

1.19.3 Example

11931 n=3,a=7

Using (1.19.2.4) for the n = 3, a = 7 case, we get for Bmax

1.19.3.2 Bmax = 15.2 to 1dp.

If we look at the Residue Table for n = 3, a = 7, of which the entries 7 <= x <= 21 are
reproduced below, we see that the quotient values (last column) from x = INT(Bmax)
(=15) onwards are 9, 11, 14, 17, 19, 23, 27 with corresponding Quotient Gaps
increasing from 2 (=11 - 9) to 4 ( = 27 - 23) and therefore always greater than or
equal to 2. Notice that the Quotient Gap for x < Bmax jumps by 2 (Qg =5 - 3) for

x =11 and x = 12. However, this is a spurious jump and the Quotient Gap between

x =14 and x = 15 is back to unity with quotients 8 and 9 respectively. Around Bmax,
these spurious jumps tend to occur and are due to truncation in integer arithmetic. If
we worked in real valued quotients the Quotient Gap would increase monotonically.

Residue Table a = 7, n = 3
X x"n residue residue quotient
(mod a”n) mod a
7 343 0 0 1
8 512 169 1 1
9 729 43 1 2
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10 1000 314 6 2
11 1331 302 1 3
12 1728 13 6 5
13 2197 139 6 6
14 2744 0 0 8
15 3375 288 1 9
16 4096 323 1 11
17 4913 111 6 14
18 5832 1 1 17
19 6859 342 6 19
20 8000 111 6 23
21 9261 0 0 27

Given that INT(Bmax) = 15 for n = 3 and a = 7 and, coupled with the knowledge that
b must be composite by Theorem (1.15) and also have one or more factors of the form
2In+1, see section(2.2.5), this does not leave much room for a possible value of b. The
smallest value of 2In+1 is 7 (hence a = 7), and since b cannot equal a, which is prime
anyhow, the next smallest composite it can be is 14. But this is a multiple of the base
a and so has a zero residue. We cannot go any higher than INT(Bmax) = 15 so we
conclude that there is no Candidate Pair for n = 3, a = 7 and, consequently, no FLT
counter-example. Of course, this just rules out a = 7, it doesn't dismiss the entire

n = 3, cubic exponent case.

1.19.4 Theorem: Bmax <a*n/2

The value Bmax is always less than a®n / 2 for n >= 3, a >= 2.
Proof

Assume this is true then

1.19.4.1 Bmax<a™n/2

Raising to the (n - 1)’th power and multiplying by n, so as to make the lhs identical to
(1.19.1.5), we get

1.19.4.2 n*Bmax™(n - 1) <n*(@™n/2)*(n - 1)

And substituting for n*Bmax”(n - 1) from (1.19.1.5) implies

1.19.4.3 2*a™n <n*@@™n/2)(n- 1)

Dividing throughout by a”n we obtain the inequality

1.19.44 2<n*@/2)n-2)
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For n = 2, we see that this leads to a contradiction 2 < 2, so it doesn't hold forn=2. In
fact Bmax = a2 for n = 2, see (1.19.2.3).

For n = 3, we see that 2 < 3*a/ 2 which is true for a >= 2. Since a = 2 is the minimum
value of the base a throughout this paper, Bmax is always less than a*3 / 2 for n = 3.
[Note that by the '2In+1' constraint put on the base a, see (2.2.5), a = 7 is actually the
minimum practical value of a].

In general, for any exponent, n >= 3, the following inequality is always satisified for
alla>0

1.19.45 (@/2)Mn-2)>=a/ 2

Multiplying throughout by n we get

1.19.4.6 n*(a/2)(n-2)>=3*a/2

and if we impose the constraint on a that

11947 a>=2

which is satisified by convention (0.3.3.1) then the rhs of (1.19.4.6) is such that

11948 3*al/2>=2

and so combining (1.19.4.5) and (1.19.4.8) we get the inequality

1.1949n*(@/2)"n-2)>2

which shows that for all n >= 3 and a >= 2, inequality (1.19.4.4) is met and so Bmax
<anr2/2

Almost needless to say, this a*n / 2 value is a poor upper bound for Bmax. It could be
made much tighter. However, it is not required herein.

1.19.5 Theorem: Bmax >aforn>=2

The value Bmax is always greater than a for n >= 2 and a of the form 2In+1.

Proof
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Rearranging (1.19.1.5)

1.19.5.1 Bmax®(n-1) =2*a(n-1)*a/n

Taking the (n - 1)'th root of both sides [the symbols ‘(n - 1) /' denote the (n - 1)'th
root] we get

1.195.2 Bmax=a*( (n-1)_/(2a/n))

Therefore, by (1.19.5.2), if the (n - 1)’th root of (2a / n) is greater than unity, then
Bmax will be greater than the base a. If a is of the following form

1.1953a=2In+1

then this is easily seen since

1.19.5.4 2a/n =41+ (2/n)

and foralln> 2, if | >= 1, then

1.195541+(2/n)>1

so that forall n> 2, if | >= 1, (1.19.5.2) becomes

1.19.5.6 Bmax > a

Combining this result with Theorem (1.19.4), we get a range for Bmax, a = 2In+1,
n>21>=1as

1.195.7 a<Bmax<a™/2

1.20C'max

Just as there is an upper limit 'Bmax’, section (1.19), on the value b in a Candidate
Pair (b,c) (mod a”*n), so too is there an upper limit on the value c in the Dual
Candidate Pair (a,c) (mod b”n).

1.20.1 Theorem: C’max
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Given a Dual Candidate Pair (a,c) (mod b”n), there exists a value C'max, such that for
¢ > C'max, the Quotient Condition can never be met.

The proof is actually much simpler than that for the Standard case of Bmax as given
in Theorem (1.19.1).

Proof

In the dual case it is not the Quotient Gap that has to be unity but simply the absolute
quotient value q' (1.18.7) which has to be unity. This is because the smaller quotient p'
(1.18.3) is always zero. Thus to achieve a Dual Quotient Gap of unity we simply set a
limiton g’ as

1202 gq'<?2

Inserting this limit into (1.18.5) we get the inequality

1.20.3 ¢™n < 2*b™n + a’n

Now since a < b and n >= 2, by convention, then

1.20.4 a®n < b™n

and so inequality (1.20.2) is equivalent to

1.20.5 ¢™n < 3*b™n

Defining C'max as

1.20.6 C'max”n = 3*b”n

then inequality (1.20.5) becomes

1.20.7 ¢c™n < C'max”™n

So that for all ¢ < C'max we have an absolute quotient q' such that q' < 2 and the Dual
Quotient Condition is satisfied.

1.20.8 Notes
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By (1.34.4) we see that C'max is always less than the n'th root of 3 multiplied by b. As
a rule of thumb, without accurately computing the value of C'max, a good limit, for
the two smallest, odd, prime exponents,n=3andn=>51s

1209 n=3,C’max <(3/2)*b

1.20.10n =5, C’'max < (5/4)*b

[Note that although it appears C’max < (n/(n- 1) )*b, this is not so for prime n >=7.
Neither is a more lenient C’max < ( (n+1) / n )*b]. For large n they are reasonable
approximations BUT for an upper bound such that C’max is always below, use
C’max < (5/4)*Db, i.e. the n =5 result].

This means that in the cubic exponent case (1.20.9), when examining a Dual Residue
table for Repeat Residues (a,c), we need never look any further thanb <c <3b/ 2.
Contrast this with a Standard Residue Table (mod a™n) where we have to search for
Repeat Residues up to Bmax which, by (1.19.5.2), can be many times larger than the
base a, when a is itself large. However, as good as this may seem, it is actually
illusory in that the absolute value of c is the same in both dual and Standard cases.
This is because the derivation of Bmax, Theorem (1.19.1), also puts a restriction on
the value of c in the Candidate Pair (b,c) (mod a”*n), see (1.19.2.2). This c value is the
same 'c' as in the Dual Candidate Pair (a,c) (mod b”n). Hence the value of c is subject
to both the C'max restriction (1.20.6) and the Bmax restriction (1.19.1.5). If b is its
largest possible value, b = INT(Bmax), then c can only be equal to INT(Bmax) + 1 if
the triple (a,b,c) is to be an FLT counter-example.

1.21Summary of Conditions

A summary of all the conditions and constraints, developed so far, on a triplet (a, b, c)
were it to be a an FLT counter-example.

1.21.1 The Standard Residue Condition (1.2.3), Candidate Pair (b,c)

b”n = ¢”n (mod a’*n)
1.21.2 The Standard Quotient Condition (1.4.3)

If (0®n=p*a™n+r)and (c*n=qg*a™n+r)theng-p=1

1.21.3 The Dual Residue Condition (1.17.1), Candidate Pair (a,c)

a’™n = c¢n (mod b"*n)

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 49
R J Miller, sections1to7_18122004.doc Issue 0. Draft D



1.21.4 The Dual Quotient Condition (1.18.7)

If (c"n=q*b™n +a™n)thenqg =1

1.21.5 The Root Gap Constraint, Theorem (1.12)

c-b< a

1.21.6 The Root Gap (1.10.1) is unity if the base is prime, Theorem (1.14)

c-b=1

1.21.7 The Standard Root Gap (1.10.1) divides the Standard Base

Although not explicitly prior stated, from the factorisation of the FLT equation
(1.14.2) we can deduce that the Standard Root Gap (c - b) divides the Standard Base
a, .e.

(c-b)la

1.21.8 The Dual Root Gap (1.15.1) divides the Dual base b

As for (1.21.7), we can similarly deduce, by factorisation of the term ¢*n - a*n ( =
b”~n), that the Dual Root Gap (c - a) divides the Dual Base b, i.e.

(c—-a)|b

1.21.9 The Dual base b is always composite, Theorem (1.15)

1.21.10 The Dual Root Gap Rg’ (1.15.1) is always greater than unity

By convention (0.3.3), a< b <, so that

(c—a)>=2

1.21.11 There is a value Bmax such that, for all b >= Bmax, the Quotient Gap Qg of
a Standard Candidate Pair (b,c) mod a™n is always greater than unity, Theorem
(1.19.1)

Forall b >=Bmax, Qg >1
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1.21.12 There is a value C'max such that, for all ¢ >= C'max, the Dual Quotient Gap
Qg' of a Dual Candidate Pair (a,c) mod b™n is always greater than unity,
Theorem (1.20.1)

Forall c >=Cmax, Qg' > 1
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2 Mechanisms for Repeat Residues

The first section of this paper started with the FLT equation (1.1.1) placing two
conditions, the Residue and Quotient Condition, upon any possible solution triple

(a, b, ¢) for exponents n >= 2. These conditions were proven to be met with respect to
Pythagorean triples (1.6) and we expanded upon the conditions to impose some
tighter constraints upon any potential FLT counter-example.

We showed that key to meeting the Residue Condition were Candidate Pairs (b,c) and
(a,c) where cn = b”™n (mod a”*n) and c*n = a”*n (mod b”*n) respectively. Theorem
(1.12) constrained these Candidate Pairs and lead us to the study of Residue
Sequences, i.e. the residues x*n (mod a"n), 0 <= x < a™n, which is where we start the
work in this section. We are particularly concerned with how residues repeat within a
narrow range of the base, a in the Standard case, b in the Dual case, and therefore
generate Candidate Pairs which may also meet, or come close to meeting, the
Quotient Condition.

We will see that even-exponent Residue Sequences possess the necessary symmetry
such that integers b and c of a Candidate Pair (b,c) are almost back-to-back, i.e.
consecutive. Using this symmetry for Pythagoras we proceed to derive the analytic
solution for Pythagorean triples. We also then look at the quartic case (n = 4) which
also possesses even exponent symmetry but, of course, no FLT counter-examples.

Since Residue Sequences for odd exponent lack the symmetry of even exponents, we
can then no longer rely upon such symmetry to guarantee us an abundance of
Candidate Pairs which have any chance of meeting the Root Gap Constraint, Theorem
(1.12), and, consequently, the Quotient Condition. We shall see that odd exponent
Residue Sequences do have a general Skew-symmetry but it is shown this cannot
produce FLT counter-examples. Instead, we investigate another known ‘2In+1’
mechanism whereby residues can repeat, Candidate Pairs can form, and some may
even satisfy the Root Gap constraint. All these investigations yield yet more
constraints which are summarised at the end of the section.

Finally, whilst even and odd exponents are treated separately, it is mentioned, in
advance, that the two can be unified under a single scheme we term ‘Unity Root
Mappings'. The subject of Unity Roots and their Mappings is discussed fully in
section (3).

2.1 Introduction

Before starting, please keep in mind that whilst much of the work throughout this
paper uses the Standard base a, it could equally be the Dual base b or, as we shall see
later, the Skew base c.

The simplest form of repetition of residues, equation (1.8.6.1) repeated below, was
introduced to obtain quick solutions to the General FLT Equation (1.8).
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2.1.1  (@*n + x)*n =x"n (mod a™n)

This shows that a residue x always repeats at (an + x) (mod a’*n) for all a and n.
Theorem (1.12) shows that such repetitions, where the Root Gap is greater than the
base, can never satisfy the Quotient Condition (1.4.3).

Since there do exist solutions to the Pythagoras Equation there must be Repeat
Residues, at least for n = 2 with a Root Gap less than the base, and so mechanism
(2.1.1) cannot be that responsible for generating Pythagorean triples.

We consider alternative mechanisms which can produce repetition of residues within
the [0, a*n) interval and, in some cases, within an interval less than the base for all n,
and for some specific forms of the base, thereby meeting the Root Gap Constraint
(1.12).

2.1.2 Definitions

Before continuing, the following definitions are used throughout this paper.

2.1.2.1 Residue Sequence

A Residue Sequence, as defined herein, is a sequence of residues r_i, index i, modulus
a’n, given by

2.1.2.1.1 r_i=i"n(mod a™n)

for integer i in the range

21212 O0<=i<a™ifnlla

or

21213 O<=i<aMn-1)ifn]|a

The term ‘Sequence’ is used in preference to ‘Set’ because its members may not not
all be unique and the ordering is important.

2.1.2.2 Minimal Residue Sequence

A Residue Sequence is termed a ‘Minimal Residue Sequence’ if the exponent divides
the base as given by (2.1.2.1.3).
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Such a Residue Sequence is prefixed 'Minimal' because it is the smallest sequence of
residues that repeats in its entirety, and in the same order, n times within the interval
[0, a™n).

Thus, for any value X, the equivalent of (2.1.1) is

2.1.2.2.1 (@(n-1)+x)™n=x"n (mod a™n)

Because the exponent divides the base, unless the base is identically equally to the
exponent, i.e. a = n, then the base is composite.

Because this natural repetition of all residues in a sequence is at a Root Gap a’(n - 1),
rather than a™n, the Quotient Gap of a Candidate Pair (b,c), where b = x,

c =a™(n-1) + x, will be smaller than if the Root Gap were a™n, as in (2.1.1).
Nevertheless, this is still not adequate to meet the Root Gap Constraint. Note that a
Root Gap of a*(n - 1) would give Rg = a, if the exponent n were to equal to 2, for

n >= 3 this gives Rg >= a’2.

2.1.2.2.2 Example

The simplest, non trivial FLT case is the cubic exponent with base a = 3, modulus
3"3. Here the exponent is equal to the base and so the size of the Minimal Residue
Sequence is 33 /3 =372, i.e. 9. So the Minimal Residue Sequence comprises
residuesr_i,0<=i<9.

2.1.2.3 Maximal Residue Sequence

A Residue Sequence is termed a ‘Maximal Residue Sequence’ if the exponent n does
not divide the base, as given by (2.1.2.1.2).

If the base a is prime then all non zero residues are unique and a Maximal Residue
Sequence is of size a™n. It is termed Maximal since, by (2.1.1), it is the largest
possible Residue Sequence, (mod a”n), that doesn’t repeat in its entirety.

2.2 Overview of Repeat Residue Mechanisms

2.2.1 Introduction

There are four possible mechanisms such that a residue r for a value b, as given by

2.2.1.1 b™n =r (moda™n)

can repeat at a point ¢, within an interval [0, a*n), whereby
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2.2.1.2 c¢™n=r(mod a™n)

When we talk of 'Repeat residues’, the zero residue, r = 0, is ignored. Any integer
multiple k of the base a is such that (ka)*n = 0 (mod a”*n) as can be seen in the
examples in section 13. We could, for example, pick a Candidate Pair (b,c) whereby
b =ka, c = (k + 9)a, integral s, s > 0, which would have the common residue 0.
However since the modulus is a*n, the common factor of a would cancel, i.e. the
triple (a, b, ¢) would be co-prime in pairs which is discounted by convention (0.3.4).

2.2.2 The exponent n divides the base

When the exponent divides the base, i.e.

2221 n|a

then the Residue Sequence obtained is a Minimal Residue Sequence (2.1.2.2), and
residues naturally repeat at a reduced interval of a®(n - 1), rather than a”*n, such that
for a value X,

2.2.2.2 (aMn-1)+x)™n =x"n(mod a™n)

Because this natural repetition of all residues in a sequence is at a Root Gap a’(n - 1),
the Quotient Gap of a Candidate Pair (b,c), where b=xandc=a™n-1) + xin
(2.2.2.2), will be smaller than if the Root Gap were a™n, as in (2.1.1). Nevertheless,
this is still not adequate to meet the Root Gap Constraint, Theorem (1.12). Note that a
Root Gap of a®(n - 1) would give Rg = a if the exponent n were to be equal to 2. For
n >= 3 this gives Rg >= a"2.

By the arguments in the above paragraph, this mechanism for Repeat Residues is
insuffcient, by itself, to produce FLT counter examples. However, if the base a (or b
in the Dual case) were to be composite, such that not only does n | a but a has a factor
of the 2In+1 form (section (2.2.5)), then the base could yield possible Candidate Pairs.

With the form of the base a expressed by (2.2.5.10), we see that the factor ‘x” would
have to be such that n | x. For FLT, the smallest case under consideration is the cubic
exponent and the smallest value of (2In+1) would therfore be 7 (where I =1, n = 3).
So the smallest possible composite value for a, with a Minimal Residue Sequence,
would be a = 21.

2.2.3 The base is composite

Because of reasons expressed at the end of Theorem (1.14), a composite base has to
be a consideration. Nevertheless we shall show that, whilst it can give Repeat
Residues within a Maximal Residue Sequence, these occur for the factors of the base
and do not therefore satisfy co-primality in pairs, convention (0.3.4).
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We shall assume none of the factors is of the ‘2In+1’ form. If they are the arguments
still apply but we also have to consider the ‘2In+1° mechanism for Repeat Residues
given in (2.2.5) which concludes that such composite bases can not then be
eliminated.

Stated without proof.

Let us define the base a as comprising two factors k and m, i.e.

2.23.1 a=k*m

where each factor can either be prime or composite and neither is of the 2In+1 form.
Furthermore we will assume the exponent n does not divide the base a, i.e.

2232 nlla

Then, if b is a multiple s, integer s, s>0, of the factor k, i.e.

2233 b=s*k

and c is defined as follows for integer t, t>0,

2.2.3.4 c¢=s*k + t*k*m”n

we assert that ¢ is a Repeat Residue of b and (b,c) is a Candidate Pair, i.e.

2.2.3.5 c¢”n=Db"n (mod a™n)

Of course, we can interchange factors k and m to get a similar result for multiples of
the factor m.

This assertion is not too difficult to see since, if we re-write ¢ as follows with the
factor Kk,

2.2.3.6 c¢=k*(s+t*m”"n)

and raise c to the power n, binomially expanding the rhs bracket and take residues of
the rhs (mod a”*n) ( = mod k”*n*m~”n) we would get

2.2.3.7 c¢™n =k”n*s*n mod (km)"n

i.e.
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2.2.3.8 c¢™n = (k*s)*n = b*n mod (km)”*n = b”n (mod a"n)

The smallest interval of repetition (of the Residue), i.e. the Root Gap (c - b) is now,
fort=1in(2.2.3.4),

2.2.39 Rg=k*m™n

We can see this Root Gap is considerably less than the maximum a”n, hence we get
Repeat Residues within the Maximal Residue Sequence. Before discussing further, we
have to look at the case where the exponent divides the base, in which case we can
reduce the Root Gap even further.

Using the same equations as above, except now the exponent n divides the base a by
dividing the factor m, i.e.

22310 n|m

and with ¢ now defined as

2.2.3.11 ¢ = s*k + t*k*(m”n) / n

then

2.2.3.12 ¢n = b”n (mod a™n)
i.e. ¢ is a Repeat Residue of b and (b,c) is a Candidate Pair

We see that, if the exponent divides the factor m, then the smallest interval of
repetition of the Residue, i.e. the Root Gap, is now, for t =1 in (2.2.3.11), given by

2.2.3.13 Rg = k*m”~(n - 1)

We can see this Root Gap is considerably less than the maximum a”n. Nevertheless,
before this seems like a good mechanism to try and get a small Root Gap and with it,
a consequently small Quotient Gap, we should note that we have already exceeded
our constraint of ‘co-primality in pairs’ (0.3.4) since GCD(b, ¢) = s. Therefore this
repetition of residues will not give us true primitive FLT counter-examples.

If this wasn’t enough to eliminate this case, we can see from (2.2.3.13), that even the
reduced Root Gap (2.2.3.13) cannot be less than or equal to the base a (a = k*m)
unless the exponent n = 2. Even then the Root Gap is only equal to a and not less than
a, so the Root Gap Constraint, Theorem (1.12), cannot be met.
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The conclusion is that, whilst we still consider composites, we are only interested in b
and c values such that GCD(b, a) = GCD(c, a) = 1.

2.2.4 The exponent is even

Since an even exponent, barring the Pythagorean case, is always composite, we would
generally dismiss even exponents for FLT, convention (0.3.2). However, the quartic
case (n = 4) is considered primarily since the symmetry arguments we use in the
Pythagorean case equally apply to any even exponent. Of course, the quartic case was
proven by Fermat himself, actually prior to the cubic proof, Euler, 1753.

An even power exponent guarantees, by the symmetry of the Residue Sequence it
produces, that a residue will repeat at least once within the [0, a*n] interval.
Furthermore, and key to Pythagoras, this repetition can occur for back-to-back values
(actually roots, see (1.10.2) and Consecutive Residues (1.11) ) i.e. those values around
the symmetry point. These residues have a Root Gap of unity giving them a good
chance of having a unity Quotient Gap. For odd, prime base a there is one such
symmetry point at (a*2 - 1) / 2 and so there is always at least one Candidate Pair. For
even base there are additional symmetry points at a*2 / 4 and 3*a*2 / 4 and
subsequently more Candidate Pairs — something not guaranteed for odd exponent.

Concluding, an even exponent is a very import criteria for repetition of residues and
its symmetry aspects and consequences are fully detailed in section (2.4).

2.2.5 The base is of the 2In+1 form

Because an odd exponent does not give a symmetric Residue Sequence as obtained
with an even exponent, Repeat Residues do not come guaranteed for odd exponents. It
would be nice if that were the end of the story since we could then conclude, using
Theorem (1.12), that FLT was true. Of course this is not so. For certain base a,
modulus a’*n, Repeat Residues do occur within the interval [0, a*n) and, indeed,
within an interval of much smaller size, i.e. within the base a. This is because there
can be multiple, unique roots to the following congruential equation

2.25.1 x"n=r(mod a™n)

The key point is that if there is a root x = b and another root x = ¢ then they share the
same residue and hence (b,c) form a Candidate Pair (this has been prior mentioned in
section (1.10) ). Note that not all bases have multiple roots. For most bases we only
get a single root and consequently no chance of a Candidate Pair either. However, for
some bases, which we will now discuss further, multiple roots means Candidate Pairs.

Equation (2.2.5.1) is a special form of the general polynomial congruence, (mod P)
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2252 rn*>x™M+r_n 1*xMn-1)+..r 1*x+r 0=0 (mod P)

An inportant theorem on integer solutions to this polynomial congruence is that due to
Lagrange.

2.2.5.3 Lagranges Theorem on Congruences

Lagrange’s Theorem of Congruences states that:

a polynmial congruence (2.2.5.2), degree n, (mod P), where n and P are prime, cannot
have more than n solutions and, if the modulus P is of the form

22531 P=k*n+1

then there are exactly n solutions.

In the case of our Unity Root equation (2.2.5.1) there is always one root for odd,
prime exponent which is the trivial root +1. For the only prime, even exponent, n = 2,
there are always two roots for prime modulus and these are +1 and —1.

If we consider odd exponent, n>=3, then, for integer m, m >0, n is of the form

2254 n=2m+1

so that the base modulus P (2.2.5.3.1) is of the form

2255 P=2k*m+k+1

If k is odd this would make P even but, since P is prime, then k must be even and
hence, for some integer I, | >0, k is of the form

2256 k=2l

Substituting for k in (2.2.5.3.1) we arrive at the form for the modulus P as

2257 P=2In+1

Hence, if we are to get multiple roots and therefore Candidate Pairs, for odd, prime
exponent n, n >= 3, prime modulus P, we require P to be of the ‘2In+1’ form given by
(2.2.5.7). A more intuitive approach to the derivation of this form is given in Section
(2.5.7).
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That said, in this paper we are interested in modulus a*n (or modulus b”n, ¢*n in the
Dual and Skew cases) where the base a, b or ¢ may also be composite. Indeed, by
Theorem (1.15), the Dual base b is always composite. Fortunately, the extension to
composite base can be constructed from the work on prime base and some further
discussion is given in section (2.5.14). However, we state here, without proof, that for
odd, prime exponent Repeat Residues will occur within the (0, a*n] interval if the
base is prime of the ‘2In+1’ form or composite with one or more prime factors of the
‘2In+1" form. Furthermore, unlike any of the other Repeat Residue mechanisms for
odd exponent, (see (2.2.2) and (2.2.3) ), this mechanism is the only one with the
potential to generate Repeat Residues with a Root Gap of less than the base, see
Theorem (1.12), i.e. it is the only mechanism that can generate possible FLT counter-
examples.

We finish this section by introducing two new constraints on the form of the Standard
base a and Dual base b as concluded from the discussions.

For integers x and k

2258 x>=1

2259 k>=1

The value a is either prime (x = 1) or composite (x > 1) with one or more factors of
the form (2kn + 1), i.e.

2.2.5.10 a = x*(2kn + 1)

For integers y and | satisfying the following inequalities,

2.2511y>=2

22512 1>=1

then, by Dual considerations, we can also constrain b such that it is always composite
(y > 1, see also Theorem 1.15) with one or more prime factors of the form 2In+1, i.e.
b is of the form

2.2.5.13 b = y*(2In + 1)
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2.3 Key Mechanisms

Summarising section (2.2), there are only two cases which give rise to Repeat
Residues such that the Root Gap is less than the base, these are

2.3.1 The exponent n is even, arbitrary base

2.3.2 The exponent n is odd and the base is either prime of the form 2In+1 or
composite with one or more prime factors of the form 2In+1. This applies to
both the Standard and Dual base, a and b respectively.

2.4 Even Exponent

2.4.1 Introduction

Even power exponents n = 2m, where m is integral, m > 0, produce a symmetric
sequence of residues since for any x and m we have

2.4.1.1 x™2m) = (@(2m) - x)(2m) mod a(2m)

and so the residue at x is identical to that at a™(2m) - X, i.e. there is a symmetry about
the mid-point a*(2m) / 2.

In particular, for the Pythagorean case, where m = 1, (2.4.1.1) becomes
24.1.2 x"2=(a"2-x)"2 (mod a"2)

For odd a, the Residue Sequence is Maximal (2.1.2.3), i.e. length a*2, and has a half
integral mid-point at

2413 x=a"2/?2

Two integers b and c, either side +/-y / 2 (integer y, y > 0) of the midpoint a2 / 2, and
given by

2414 b=@"2-y)/2

and
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2415 c=@2+y)/2

form a Candidate Pair (b,c) since

24.1.6 ¢"2=Db"2 (mod a"2)

Because the Residue Sequence is symmetric, all points +/-y / 2 about the mid-point
also have the same residue. This gives rise to many such Candidate Pairs with a Root
Gap, Rg =y, and therefore, by Theorem (1.12), to have any chance of satisfying the
Quotient Condition we must have y < a.

2.4.2 Examples, n =2, odd base a

2421 a=3,n=2

See the Residue table in section (7.1.1).

The Residue Sequence mid-point is (3°2) / 2 = 4.5, the integers either side are b = 4
and ¢ = 5 and their squares are congruent (mod 3°2), i.e. 4"2 = 52 (mod 3"2).

Furthermore, the Residue table shows that 4°2 = 1*372 + 7 and 52 = 2*3"2 + 7 and
hence the quotients, p and g, equations (1.3.1) and (1.3.2), are 1 and 2 respectively,
giving a Quotient Gap of 1. Therefore, the Candidate Pair (4, 5) satisfies the Quotient
Condition and the triple (3,4,5) is a Pythagorean triple.

Since a is prime we see the Root Gap, Rg =5 - 4, is unity, confirming Theorem (1.14)

2422 a=5n=2

See the Residue table in section (7.1.3).

The Residue Sequence mid-point is (572) / 2 = 12.5, the integers either side are b = 12
and ¢ = 13 and their squares are congruent (mod 52), i.e. 122 = 1372 (mod 5"2).

Furthermore, the Residue table shows that 1272 = 5*572 + 19 and 1272 = 6*5"2 + 19,
and hence the quotients, p and g, equations (1.3.1) and (1.3.2), are 5 and 6
respectively, giving a Quotient Gap 1. Therefore the Candidate Pair (12,13) also
satisfies the Quotient Condition and the triple (5,12,13) is a Pythagorean triple.

Since a is prime (a = 5) we see the Root Gap, Rg = 13 - 12, is unity confirming
Theorem (1.14).

For even a the Residue Sequence is Minimal, i.e. length a2 / 2. This is because the
exponent, n = 2, divides the base. The entire Minimal Residue Sequence is also
symmetric about its mid-point which is thus at a*2 / 4. It should also be noted that the
Maximal Residue Sequence, of length a”2, is always itself symmetric about its mid-
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point a*2 / 2. If we concentrate on the Maximal Sequence first, for even n, the mid-
point is integral and the two central values, either side of this mid-point, denoted by b
andc,areb=(@"2-1)/2andc=("2+1)/2.

2.4.3 Examples, n =2, even base a

2431 a=4,n=2

See the Residue table in section (7.1.2).

The Maximal Residue Sequence mid-point is (472)/ 2 = 8, the integers either side are
b =7 and ¢ = 9 and their squares are congruent (mod 4/°2), i.e. 7°2 = 972 (mod 4"2).
The Residue table shows that 742 = 3*4"2 +1 and 972 = 5*472 +1 and hence the
quotients, p and g, equations (1.3.1) and (1.3.2), are 3 and 5 respectively, giving a
Quotient Gap of 2. Since the Root Gap is not unity, the Candidate Pair (7,9) does not
satisfy the Quotient Condition and therefore the triple (4,7,9) is not a Pythagorean
triple.

In this same example the Minimal Residue Sequence mid-point is (4"2) / 4 = 4 and
the integers either side are b = 3 and ¢ = 5 and their squares are congruent (mod 4"2),
i.e. 3"2 =52 (mod 4”2). This case is, of course, the Pythagorean triple (3,4,5) that
was considered in the Example (0). In that case, however, the base (a = 3) was odd. In
this case, we are considering the even base (a = 4) and so we are actually looking at
the Pythagorean triple (3,4,5) in a Dual aspect, whereby the Residue Table base is the
middle value of the triplet (= 4) rather than the more usual Standard case whereby the
base is the lowest member of the triple (= 3).

Looking at the Dual Residue table, (mod 4°2), we see the quotient p' forb =3is 0, i.e.
3N2 = 0*4"2 + 372, as expected by equation (1.18.3). Similarly, since

572 = 1*472 + 372, the quotient q' is 1. Therefore the Quotient Gap in this Dual case
is still unity sinceq'- p'=1, g' =1, p'= 0 and, as expected, the triplet (3,4,5) is a
Pythagorean triple.

This latter, even base example confirms all the Standard and Dual conditions

summarised in section (1.21).

2.4.4 Pythagorean Triples - An Analytic Solution via Symmetry

Using the Symmetry present in the Residue Tables, (mod a”2), we can derive the
analytic equation from which to generate all Pythagorean Triples.

For even base a, modulus a"2, we have a symmetry point a*2 / 4 which is an exact
integer. Either side of this mid-point +/- y, y integral, y > 0, we have identical
residues and, consequently, Candidate Pairs (b,c) where b and c are
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2441 b=a2/4-y

2442 c=a2/4+y

It can be verified that b”2 is congruent to ¢2 (mod a*2), i.e. (b,c) are indeed a
Candidate Pair, since

2443 b2=ar2/4-2@2]4)y +yr2

2444 ¢N2=ar2]4+2(@2]4)y +yr2

Defining r' as

2445 r=(a"2/4+y"2) (mod a*2)

and taking the residues of (2.4.4.3) and (2.4.4.4) (mod a"2), we get

2446 b"2=r -(a"2/2)y(moda’2)

2447 cN2=r +(a"2/2)y (moda"2)

and since, for any integery,

2448 (ar2/2)y=-(a2/2)y (mod a"2)

then we see that (2.4.4.6) and (2.4.4.7) are identical, i.e.

2.4.4.9 b"2=c"2 (moda"2)

Therefore, for all integer values of y, the values b and c, as defined by (2.4.4.1) and
(2.4.4.2) respectively, form a Candidate Pair (b,c).

Subtracting (2.4.4.6) from (2.4.4.7) gives

24410 c"2-b"2=y*an2

We see that the Quotient Gap is given by y and will not meet the Quotient Condition
except when y = 1. Therefore, although (b,c) is a Candidate Pair (mod a”2), it would
seem that it is only a genuine solution, i.e. a Pythagorean triple, if y = 1. However, by
defining y as a perfect square
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24411 y=k"2

and then transforming a to composite a' defined by

24412 a' = ka

Then (2.4.4.10) becomes

24413 c"2-b"2 =a"2

and we see that (2.4.4.13) has a unity Quotient Gap (mod a”*2) and (a',b,c) is a
Pythagorean Triple.

The values of b and c, as given in(2.4.4.1) and (2.4.4.2), now become, using (2.4.4.11)
for y but keeping with a and not a',

24414 b=2a"2/4-k"2

24415 c=a"2/4 +k"2

Lastly, the Pythagorean Triple (a',b,c) was generated assuming an even base a. Re-
defining a in terms of integer I, | > 0, where | is odd or even

24416 a=2I

Substituting for a from (2.4.4.16) into (2.4.4.12), (2.4.4.14) and (2.4.4.15) then a', b
and ¢ become

24417 a' = 2Kl

24418 b =172 - k"2

24419 c=1"2+ k"2

And so we finally obtain the standard analytic solution to the Pythagoras Equation
given by equations (2.4.4.17), (2.4.4.18) and (2.4.4.19), where k and | are integers,
| > k >0, with no odd or even restrictions.

Remarks
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a' is no longer necessarily the smallest member of the triple (a',b,c). This is a labelling
issue, we could choose to interchange a', b and ¢ so that ¢ > b > a' and then rename

a' = a. For example, with | = 3, k = 12, equations (2.4.4.17) to (2.4.4.19) give a' = 12,

b=5and c = 13. We see a' is composite and now greater than b. We could arbitrarily
re-assigna=>5,b =12 and c = 13.

That the association of y to a perfect square, k"2, was made in (2.4.4.11) shows that
not every pair, equidistant by y about the symmetry point (a2 / 4), can be a
Pythagorean triple. Indeed, only when vy is a perfect square is this so. Thus, Candidate
Pairs appear +/-1, +/-4, +/-9, ... +/-k"2, about the symmetry point and the Pythagorean
triples are (ka, b, ¢). Following from this, the Quotient Gap (mod a"2) is only unity if
k is unity and this gives us only one solution about the symmetry point a*2 / 4. Of
course, there are many solutions for composite a' = ka, k >1.

For example, if a = 8, the symmetry point is 82 / 4 = 16. The two values either side,
k=+/-1,are b =15, c = 17 and, indeed, (8, 15, 17) is a Pythagorean Triple (mod 8"2).
On the other hand, if we let k = +/- 22, then the two values, b and c, either side of the
symmetry point are 12 and 20. Studying the Residue Table (Section 7.1.x TBD), we
see that the residues are identical since 122 = 20”2 = 16 (mod 8"2), as would be
expected for a Candidate Pair (12, 20), but that the quotients are 2 and 6 respectively,
giving a Quotient Gap of k"2 = 4, also as expected. Thus, the Candidate Pair (12, 20)
is not part of a Pythagorean Triple (mod 872) but it is (mod a*2) where a' is the
composite k*a = 2*8 = 16.

Studying the residue table (mod 16”2) (not supplied in this paper), we observe that the
pair (12, 20) have identical residues mod 1672 (122 = 16”2 = 144 mod 16”2) and
that the Quotient Gap is unity so that we have the non-primitive Pythagorean triple
(12, 16, 20). It is termed non-primitive because each element has a common factor of
4, i.e. it does not satisfy co-primality in pairs. However, dividing a, b and ¢ by this
factor gives the primitive triple (3, 4, 5) where a, b and ¢ are now co-prime in pairs.

We know equations (2.4.4.17) to (2.4.4.19) will give us all Pythagorean Triples, see
for instance ref. [6], subject ‘Diophantine Equations’. However, the derivation above
started by assuming an even base when we could have used an odd base instead. The
derivation using an odd base is done in the section (2.4.6). However, on the even-base
derivation alone, and without recourse to other proofs, could we have been guaranteed
sufficiency that these three equations will give us all Pythagorean Triples including
the odd ones? The answer is yes because the derivation was made for all even
numbers, not just a subset. Suppose (X,y,z) is a Pythagorean triple where x or y is odd,
then there is a corresponding, improper solution (2x,2y,2z) with a common factor of
2. Whilst it is a non-primitive solution, it remains valid and both 2x and 2y are now
even. This solution will always appear for some choice of | and k since the equations
are valid for all even numbers - either | or k are both odd or both even. Therefore, for
certain non-primitive even solutions, we can divide throughout by two and obtain all
the odd solutions.

Because every residue table (mod a*2), where a is odd or even, has at least one
Pythagorean Triple and since the set of even numbers is infinite then so too is the set
of Pythagorean triples. This conclusion is reached without any analytic solution.
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2.4.5 More on Symmetry

For odd a there is only the symmetry point at the half integer value a*2 / 2. For even a
there are actually three symmetry points, one at the mid-point a*2 / 2, another at

a2 / 4 and the third at 3*a™2 / 4. This latter point at 3*a*2 / 4 is the mirror image
point of the symmetry point at a*2 / 4.

The symmetry point a*2 / 2 for odd a is half-integral. If it were divided again, it
would give a quarter fraction. In such a case the smallest integer not larger than it
would be 1 /4 below the mid-point, and the smallest integer not less than the mid-
point would be 3/ 4 above from the mid-point. These two points would not
technically be symmetric about a*2 / 4 for odd a. Consequently, we do not see the
symmetry point a*2 / 4 in the residue tables for odd a that we see for even a.

One might think that for an even value of the base modulus such as a = 2”s, integer s,
s>2, there might be an even smaller symmetry point at, say, a*2 / 2”s. In fact there are
symmetry points but only for even x (x*2 (mod a*2), x> 0), consequently, they are
termed 'partial symmetry points'. About these partial points one can find Candidate
Pairs which manifest themselves as non-primitive solutions. These pairs do not appear
to be symmetric about the usual symmetry point about which the entire Residue
Sequence is symmetric. By studying another residue table to a different and smaller
base, e.g. a’ =a/ 2", t > 0, the same Candidate Pair can be found at the more
familiar, symmetric location, i.e. either side of a symmetry point a*2 / 4.

For example, in the a = 16 table (not supplied), there is a partial symmetry point at
1672/ 2”4 = 16. If one looks at the points b = 16 - 4 and ¢ = 16 + 4 one can see that
they have equal residues and that their Quotient Gap is unity. This is therefore a non-
primitive Pythagorean triple (12,16,20) which is actually just the infamous (3,4,5)
triple. The (3,4,5) triple can be identified in the Residue table for a = 4 - the proper

symmetry point being a*2 / 4 = 4 and the corresponding Candidate Pair lying either
side of the standard a2 / 4 symmetry pointatb =3, c=5.

2.4.6 Odd Sequence Pythagorean Triples

We shall show in this section that we can also obtain the standard analytic solution for
Pythagorean triples by analysis of an odd base a.

By symmetry about the mid-point, for any value x, we have

24.6.1 (a2 -x)"2 =x"2 (mod a"2)

Expanding the Ihs and cancelling x*2 from both sides

2.4.6.2 aM2*a’2 - 2a"2*x = 0 (mod a"2)
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For some integer k this implies

2.4.6.3 an2*(a"2 - 2x) = k*a"2

let a”2 / 2 > x then k > 0. By cancelling the a*2 term in (2.4.6.3) we get for k

2464 ar2-2x=Kk

For a Pythagorean triple, if we let k = 1 and solve for x then

2465 x=(@2-1)/2

This implies a is odd for k = 1 so that a*2 - 1 on the rhs is even and x is integral. If we
subtract both sides from a2, we get

2466 af2-x=(@2+1)/2

And, identifying b with x in (2.4.6.5) and ¢ with a*2-x in (2.4.6.6), then we have a
Pythagorean triple for odd a where

2467 b=@2-1)/2

2468 c=(@2+1)/2

These two points (b,c) lie either side of the midpoint a*2 / 2 of the Residue Sequence
x"2 (mod a"2), 0 <=x < a.

The smallest, non-trivial, odd value for a is 3 and substituting for a in (2.4.6.7) and
(2.4.6.8) givesb =4,c =5, i.e. (a, b, c) is the (3,4,5) triple. The next smallest odd a is
5 which, using the same equations, gives the Pythagorean triple (5,12,13), a = 7 gives
(7,24,25), a = 9 gives (9,40,41), etc.

For the more general solution, odd a, if we let k = 1”2, instead of 1, in equation
(2.4.6.4) above and solve for x

2469 x=(@2-12)/2

and subtracting both sides from a2, we get
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2.4.6.10 a"2 -x = (@2 + 12) / 2

Defining a' = la and identifying b with x in (2.4.6.9) and ¢ with a"2 - x in (2.4.6.10),
then we have a Pythagorean triple (a',b,c) for odd a where

246.11a' =1la

2.4.6.12 b= (@a"2-12)/2

2.4.6.13 c= (a2 +172) /2

These two points (b,c) lie +/-1"2 about the midpoint a*2 / 2 of the Residue Sequence
x"2 (mod a*2), 0 <= x < a.

In the first derivation of b and c, equations (2.4.6.7) and (2.4.6.8) respectively, the
value of |, as in (2.4.6.12), was set to 1 and so the base a had to be odd to ensure a"2-
1 was even, divisible by 2, and therefore give integral values for b and ¢. We do not
have this restriction now since we can make | odd or even. If | is odd then a must be
odd. Alternatively, we can have even | and even a. However, odd a, even | is not

possible and neither is even a, odd | otherwise b and c are non-integral.

If we let both a and | be even then, for integers u,v > 0,

24.6.14 a=2u

24.6.151=2v

and, substituting for a and | in equations (2.4.6.11) to (2.4.6.13), we get

2.4.6.16 a' = 4uv

2.4.6.17 b =2(u"2 - v*2)

2.4.6.18 ¢ = 2(U2 + v2)

We now see this is gives non-primitive triple (a',b,c) because 2 is a common factor of
a',b and c. Dividing throughout by 2 we finally get the familiar equations
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2.4.6.19 a' = 2uv

2.4.6.20 b = (U2 - vA2)

2.4.6.21 c= (U2 +Vv*2)

which are identical in form to those obtained from the even series. We can thus get all
the Pythagorean triples for both even and odd base starting either with an even base
and deriving an even series or starting with an odd base and deriving an odd series,
both of which can be transformed to a standard form common to both. All done by
assuming symmetry about a point a*2 / 4 for even base a, and about a point a*2 / 2 for
odd base a.

24.7 Symmetrya=2,n=2

The a = 2 case actually has a trivial solution (0,2,2), i.e. 2*2 = 2”2 + 0"2. One can see
from the Residue Table below, that the symmetry pointa®2 /4 =1272 /4 =1 does
exist. However, this means that the points immediately either side are b =0 and c = 2.
The zero value for b is essentially trivial and we are left witha =2, b =0, ¢ = 2, which
is trivially a*2 = ¢"2. Fortunately, this case presents no contradiction or exception to
any of the conclusions or derivations.

Residue Table a = 2, n = 2

X X" n residue residue quotient
(mod a”™n) mod a

0 0 0 0 0

1 1 1 1 0

2 4 0 0 1

3 9 1 1 2

4 16 0 0 4

Because of its triviality, the a = 2 case is not considered and we are start with the
lowest non-trivial, primitive Pythagorean triple which is (3,4,5) with a base a = 3.

2.4.8 Even Power Exponent,n =4

Although even exponent, n >2, is of no real concern to this paper (see below for an
explanation), it is worth just looking at an example, a = 4, n = 4 to see the same even
exponent Symmetry in the Residue Sequence as was present in the Pythagorean case.
If, for no other reason, studying n = 4 might offer an insight into why this symmetry
alone cannot produce solutions for every even exponent.

The general reason not to consider even power exponents is that they are, of course,
composite and therefore unnecessary for any work on FLT excepting the case of
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n =4. The n = 4 case does require a proof, which Fermat himself supplied. This is
because, since there are solutions (a, b, ¢) to the Pythagoras equation, some of these
solutions may be of the form (s"2, t"2, u*2) and would therefore also be solutions to
the n = 4 case. With a =s"2, b =t"2, ¢ =u”2 and a"2 + b2 = ¢”2 this would also imply
SN+ th = uM, i.e. (s,t,u) is a triple solution to the FLT equation for the quartic
exponent.

Other exponent powers of the form 271, integer I, | >= 3, would be a composite
exponent of 272 and, since Fermat proved there were no solutions for the quartic case,
there is no need to prove FLT for higher powers of 2 and, indeed, any even exponent
n>=4

2.4.9 Examplea=4,n=4

Since, in this example, the exponent n divides the base a, i.e. n | a, we know that the
Residue Sequence is Minimal (2.1.2.2) with a size 44 / 4 = 64. Since this Minimal
Sequence is also symmetric about its mid-point, by virtue that n is even, this gives us
a symmetry point of 32, i.e., for integery, y > 0, residues forb =32 -yandc=32 +y
are identical, mirror images of each other,. A look at the Residue table for this case,
shown below, confirms this.

Residue Table a = 4, n = 4

X X" n residue residue quotient
(mod a”n) mod a
0 0 0 0 0
1 1 1 1 0
2 16 16 0 0
3 81 81 1 0
4 256 0 0 1
5 625 113 1 2
6 1296 16 0 5
7 2401 97 1 9
8 4096 0 0 16
9 6561 161 1 25
10 10000 16 0 39
11 14641 49 1 57
12 20736 0 0 81
13 28561 145 1 111
14 38416 16 0 150
15 50625 193 1 197
16 65536 0 0 256
17 83521 65 1 326
18 104976 16 0 410
19 130321 17 1 509
20 160000 0 0 625
21 194481 177 1 759
22 234256 16 0 915
23 279841 33 1 1093
24 331776 0 0 1296
25 390625 225 1 1525
26 456976 16 0 1785
27 531441 241 1 2075
28 614656 0 0 2401
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29 707281 209 1 2762
30 810000 16 0 3164
31 923521 129 1 3607
32 1048576 0 0 4096 <--- symmetry point x=32
33 1185921 129 1 4632
34 1336336 16 0 5220
35 1500625 209 1 5861
36 1679616 0 0 6561
37 1874161 241 1 7320
38 2085136 16 0 8145
39 2313441 225 1 9036
40 2560000 0 0 10000
41 2825761 33 1 11038
42 3111696 16 0 12155
43 3418801 177 1 13354
44 3748096 0 0 14641
45 4100625 17 1 16018
46 4477456 16 0 17490
47 4879681 65 1 19061
48 5308416 0 0 20736
49 5764801 193 1 22518
50 6250000 16 0 24414
51 6765201 145 1 26426
52 7311616 0 0 28561
53 7890481 49 1 30822
54 8503056 16 0 33215
55 9150625 16l 1 35744
56 9834496 0 0 38416
57 10556001 97 1 41234
58 11316496 16 0 44205
59 12117361 113 1 47333
60 12960000 0 0 50625
61 13845841 81 1 54085
62 14776336 16 0 57720
63 15752961 1 1 61535
64 16777216 0 0 65536

If one looks at the Quotients it can be seen that the Quotient Gap already exceeds

unity for values of x as small as x = 6, which has a quotient of 5. The x =5 value has
a quotient of 2 hence, if b =5 and ¢ = 6 had identical residues, which they don’t, then
they wouldn't meet the Quotient Condition and could not be an FLT counter-example.

Computation of Bmax, equation (1.19.1.5) with n =4 and a = 4, gives, upon rounding
down to the nearest integer, Bmax = 5. This confirms our findings in the Residue
Table above and therefore, for all values x > 5, we can rule out any FLT counter-
examples for triples of the form (4, b, ¢),c > b >4, i.e. the a=4, n = 4 case has no
solutions. Nevertheless, since there are many Candidate Pairs, there are many GFLT
solutions.

For example, about the symmetry point x = 32, the values b = 31 and ¢ = 33 have an
identical residues of 129

2.4.9.1 33M =31 =129 (mod 4"4)
and the quotients are 3607 and 4632 respectively since
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2.4.9.2 31" =3607*4"4 + 129

2.49.3 33M =4632*4" + 129

subtracting 3174 from 33”4 and re-arranging gives a GFLT solution

2.4.9.4 33M =1025*4" + 31™M

In fact, we can get a smallest possible Quotient Gap of 5 for a = 4 since, by examining
the Residue Table, we see that the residue of 16 at x = 2 repeats at x = 6, i.e. (2,6)
form a Candidate Pair (mod 4"4).

2.4.95 6™ =2/ =16 (mod 4M)

and the quotients are 0 and 5 respectively since

2496 2" =0*4"4 + 16

24.9.7 6" =5*4" + 16

subtracting 24 from 6”4 and re-arranging gives a GFLT solution

24.9.8 6" =5%4"M + 2/

By dividing throughout by the common factor 24 we get the relation

2499 3M=5*2M +1

which could have been identified from the Residue Table (mod 274), i.e. base a = 2,
and identifying (1,3) as a Candidate Pair mod 2/4.

In the above example for base a =4, b = 2, ¢ = 6, we noted that all three values a,b
and c have a common factor 2 and are not co-prime in pairs. Algorithmically
speaking, it is a waste of time to look at residue values of x that have a common factor
with the base a. It is more straightforward to look at all x co-prime to a. If a is even
then we need only look at odd x. We see that the residues x4 (mod 4”4) are unique
for odd x, 0 <= x <32, i.e. X below the symmetry point. Whilst it might be thought that
this is always the case for x co-prime to the base, this is not always true for the case
where the base is odd and of the In+1 form (section (2.5.8)). For example, if n = 4,

a =5, whilst the symmetry rules remain for odd base, i.e. the Residue Sequence is
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only symmetric about the point a*4 / 2, the In+1 mechanism guarantees four roots,
whereas symmetry for an odd base only gives two. We therefore conclude that
somewhere there are two other non-symmetric repetitions of the same residue.

The smallest example of this occurs whena =5, n =4 and, hence,a=41+1,1=1.
For the Candidate Pair (38,41) where we see that

38" = 3336*5™4 + 136
and

417N = 4521*5™M + 136
therefore

417N = 38™M4 + 1185*574,

Neither 38 nor 41 lie either side of the only symmetry point 5*4 / 2 and thus they are
the two, non-symmetric roots of four possible roots. The other two points are easily
obtained by symmetry about the centre point 54 / 2. The point symmetric to 38 is
587 and the point symmetric to 41 is 584. In all, therefore, we have four roots 38, 41,
584 and 587 all such that, when raised to the fourth power, they are congruent (mod
5") with resiude 136.

Notice that in the Residue Table the Quotient Gap also rapidly increases with x and
any chance of a Unity Gap is also hopeless for all x>2. That leaves only x = 0 and

x =1 which do not have identical residues. x = 0 is not allowed anyhow since it gives
the zero residue and, therefore, the a = 2, n = 4 case has no FLT counter-examples.
This is perhaps not surprising but it is a nice, simple dismissal of the a = 2, n = 4 case.

The growth of the Quotient Gap with increasing exponent should be tempered with
some caution. The rapid growth is seen above because the base is small relative to the
exponent. It is possible to choose a value for the base, sufficiently large, that the
growth in the Quotient Gap is effectively tamed.

2.4.10 An Analytic Solution for n =4?

Although trying to find an analytic solution for the quartic exponent is doomed to
failure, using the same technique as in (2.4.4) for the Pythagoras Equation, we can at
least see the consequences of such an attempt.

For even base a, divisible by 4, i.e. a = 41, integer I, | > 0, we have a Minimal Residue
Sequence symmetry point (a™4) / 4 which is an exact integer. Either side of this mid-

point +/-y, y integral, y > 0, we have identical residues and, consequently, Candidate

Pairs (b,c) (mod a"4).

24101 b=(™M)/4-y
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24102c=@™)/4+y

Raising b and c to the fourth power and subtracting c*4 - b4 gives

2.4.10.3 cM - b = y*(aM4)*(a”8/64 + y2)

This is much like the Pythagoras expression, equation (2.4.4.10) and, by comparison,
we see that the Quotient Gap Qg is given by

2.4.10.4 Qg = y*(a™8/64 + y"2)

We see that Qg is similar to the Quotient Gap for Pythagoras (Qg = y) but with an
extra factor (a"8/64 + y"2). In the Pythagorean case the Quotient Gap was controlled
solely by y so we could choose to make it unity. In this case we would have an instant
Pythagorean triple. Alternatively, we could make y a perfect square, as in (2.4.4.11),
and obtain a solution for a modified base a', see equation (2.4.4.12). Either way, we
obtained Pythagorean triples.

The extra factor (a8/64 + y"2) on the rhs of (2.4.10.4) rules out any hope of making
the Quotient Gap unity. Even with y = 1, the smallest possible value of the factor is
(a"8/64 + 1) and Qg = (a"8/64 + 1). If there were to be any analytic solution, we must
set the factor to a perfect quartic, i.e.

2.4.10.5 kM = y*(a"8/64 + y*2)

However, we have seen several times that if, for some base a, we obtain a Candidate
Pair with a Quotient Gap that is a perfect power, namely a quartic, say I"4 when n = 4,
then there is always a composite base, a' = la, such that the same Candidate Pair has a
Quotient Gap of unity when using this new base, modulo (la)*4.

Nevertheless, in moving to a new, composite base a' we have also moved the
symmetry point from a4 / 4 to a”*4 / 4 and we no longer have global symmetry of the
Residue Sequence (mod a’*4) about the original symmetry point a4, instead it is now
about a”*4 / 4. This also occurs in the Pythagorean case. Remember that a is an even
base, hence symmetry at a*4 / 4. If it were odd, the symmetry would be about a4 / 2.

So, in the quartic case, we have the potential for a Candidate Pair with a Unity
Quotient Gap if we move to a composite base. However, we then lose the original
symmetry point. Alternatively, if we keep with symmetry, as above, we still have
Candidate Pairs but we now have to consider the possibility that they have a non-unity
Quotient Gap which is a perfect power. This was also the case for Pythagoras.

In summary, it would be nice if we could dismiss n = 4 instantly since, for arbitrary
base, the Quotient Gap of points about the symmetry points will never be unity. We
are stifled from this conclusion since the Quotient Gap can quite legitimately be a
perfect power.
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Further study of this case, even exponent, n >= 4 remains open.

2411 Summary Even Power Exponent

We have seen that the symmetry in the Residue Sequences for an even exponent
generates numerous Candidate Pairs (b,c) (mod a”n), whereby b and c are mirror
image points about the symmetry point: a*n / 2 for odd a; (a"n) / 4 for even a.

In the Pythagorean case, for every base except a = 2, there is at least one Candidate
Pair (b,c), whereb=(a"2-1)/2andc=(a"2+1)/2forodda, andb=a"2/4-1
and c = a2 /4 + 1 for even a, such that the Candidate Pair (b,c) also meets the
Quotient Condition and therefore (a, b, ¢) is a Pythagorean triple.

For all higher, even power exponents, n = 4 and beyond, we know there are no
solutions (Fermat himself proved n = 4, the remainder indirectly proven by Wiles [1])
but, since the symmetry in Residue Sequences exists for all even power exponents,
there still exists numerous Candidate Pairs (b,c) centred around a symmetry point,
albeit we can be sure that none of them meets the Quotient Condition. In fact, at least
intuitively, by studying residue tables for n = 4 we can see that the Quotients for such
Candidate Pairs (those about symmetry points) grow rapidly and a Quotient Gap of
unity is impossible. Nevertheless, this is not to say the Quotient Gap cannot be a
perfect power. With FLT proven this is obviously never the case although that has not
been proven here.

2.5 Odd Exponent

2.5.1 Skew-Symmetry

For odd power exponents, the point symmetry seen for even exponents is replaced by
a skew-symmetry.

A Skew-Symmetric sequence of residues is such that any point X, integer X,

0<=x<=(a™n)/2,i.e. xis less than or equal to the mid-point of the Residue
Sequence, satisfies the relation

25.1.1 (a™n-x)™n=-(x"n) (mod a™n)

That is the residues x*n (mod a”*n), for x values in the lower half of the Residue
Sequence, are the negative of those in the upper half. In effect, the residues in the
upper half are 'conjugate’ to those in the lower half and vice versa.

2.5.1.2 Definition: Conjugate
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The value (a™n - x) is termed 'conjugate’ to the value x when it satisfies (2.5.1.1).
Conversely x is also conjugate to (a™n - x).

Because the residues in one half of the Residue Sequence are conjugate to those in the
other half they cannot be identical, unlike even exponent residues, except when they
are zero - which is discounted by convention. Note that for even base the mid-point,
a™n /2, is asingle point and is effectively identical to itself.

If the residues in the lower half are unique then they are unique in the upper half and
the entire Residue Sequence is unique. It would seem, therefore, that we cannot obtain
a single Candidate Pair that will meet the Residue Condition, i.e. if the residues are all
unique in the lower half then there are no Candidate Pairs (no identical/Repeat
Residues) and, in one clean sweep, we could prove FLT for odd n! Of course, the
assumption of unique residues in one half of a Residue Sequence is fallacious. A
Residue Sequence with a unique set of residues is quite common but, for certain base
(the '2In+1' form), Repeat Residues do exist for odd exponent and odd base which can
also meet the stringent Root Gap Constraint given by Theorem (1.12), namely that the
Root Gap must be less than the base. However, before discussing this, we shall show
that skew-symmetry can offer some alternate views on FLT and has links to the
complex plane.

If we denote the value b with x in (2.5.1.1) and c as its mirror image about the centre-
point, i.e. c =a™n - b, then (2.6.1.1) becomes

2.5.1.3 b™n=-c"n(mod a™n)

We see that this is of the same form as the original Residue Condition (1.2.3) but with
a negative sign, i.e. the residues are not identical but conjugate to each other.

2.5.1.4 Definition: Skew Candidate Pair

A pair (b,c) that satisfy the congruence (2.5.1.3) is termed a 'Skew Candidate Pair'.
Rearranging (2.6.1.3)

2.5.1.5 b™n+c”n =0 (mod a™n)

which implies, for integer K,

25.1.6 b*n+cn=k*a"n (the Generalised Fermat Equation, section (1.8.2) )

If k were to equal unity we would have an FLT counter-example (a, b, c). However,
by convention, a < b and a < ¢ and we will see that k >= 2, as follows.

By expanding b”n and c¢”n in the quotient, remainder form
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2517 b*n=p*a™n-r

2518 c™n=qg*a™n+r

and adding b”n and c"n we get

25.1.9 b +c*h=(g+p)*atn

Comparing (2.5.1.9) with (2.5.1.6) we see that k is given by

25110k=q+p

By analogy with (1.3.3), which defines a Quotient Gap as the difference of q and p,
we define a Quotient Sum, 'Qs' as follows

25111 Qs=qg+p 'Quotient Sum, Qs'

The value k in (2.5.1.10) is thus synonymous with the Quotient Sum

25.1.12 Qs =k
If we assume a < b, a < ¢, which can be made by initial choice of x such that x > a,

(b =x"n,c=a"n-xin (2.6.1.1)), then the quotients g and p in (2.5.1.7) and (2.5.1.8)
are such that

25113 q>=1,p>=1

and therefore the Quotient Sum satisfies the inequality

25.1.14 Qs>=2

That is, the Quotient Sum is always greater than or equal to 2. Alternatively stated, the
coefficient k in the Generalised Fermat Equation is always greater than or equal to
two.

Because of this, the triple (a, b, c) is clearly not an FLT counter-example. However, k
could be a perfect power in a similar fashion to (1.8.3)

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 78
R J Miller, sections1to7_18122004.doc Issue 0. Draft D



25115 k=1I"n

We would then have a triple (b, c, 1a) which would be an FLT counter-example, i.e.

2.5.1.16 b™n +c*n = (la)™n

However, we now see that la > b and la >c and we get a new skew-symmetry in the
residues similar to (2.5.1.3) as follows

2.5.1.17 b™n =-c¢”n mod (la)*n

If we re-label ¢ with a and la with c, we get the 'Skew Residue Condition’

2.5.1.18 b*n =-a™n (mod c™n) (the Skew Residue Condition)

And we see that we can achieve the same result by taking residues (mod c”n) of the
original FLT equation (1.1.1). This Skew Residue Condition completes a trio of
Residue Conditions, the other two being (1.2.3), (1.17.1) for the moduli a*n and b”n
respectively.

Reverting to (2.5.1.14), this Quotient Sum Condition shows that a general skew-
symmetry (mod a’*n) cannot generate FLT counter-examples. Nevertheless we see
that from (2.5.1.18) a Candidate Pair (a,b) (mod c”*n) does satisfy a skew-symmetry
condition. We have to conclude from this that Skew Candidate Pair (a,b) (mod c”n),
must be produced via a different mechanism to that of skew-symmetry about a mid-
point, as given by (2.5.1.1). Indeed, since both a and b are less than ¢, when taking
residues a*n (mod c) and b”n (mod c), the residues must be skew-symmetric, i.e.
satisfy (2.5.1.18), within the interval c. This is effectively a Root Gap condition,
analogous to that for a standard Candidate Pair (b,c) (mod a”*n), see (1.10). Since this
is not possible via a general skew symmetry of the form (2.5.1.1), the only mechanism
that can do this is when c is also of the 2In+1 form. This is quite a big conclusion,
because we now require all three values a, b and c to be of the 2In+1 form or have
prime factors of this form. That is, not only must a and b be of 2In+1 form, but now c
too.

2.5.2 Conclusion

From the result in the last section on the form of ¢ we conclude that, for integer m,
arbitrary integer factor z, z >= 1, c¢ can take the form

2521 c=z(2mn+1)

where the integers m and z are such that a, b and ¢ remain co-prime, according to
convention (0.3.4), and have the following ranges

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 79
R J Miller, sections1to7_18122004.doc Issue 0. Draft D



2522 m>0,n>0

2.5.3 Summary

Skew-symmetry offers us an alternative view-point. It shows we could possibly arrive
at an FLT counter-example by studying skew-symmetric Residue Sequences, if we
keep in mind that the modulus is ¢”n, as opposed to studying symmetric Residue
Sequences, (mod a”*n) or (mod b”n).We have also seen that there is always a Skew
Residue Condition (2.5.1.18) equivalent of the Standard (1.2.3) and Dual Residue
Conditions (1.17.1).

That said, general skew-symmetry about a mid-point, as given by (2.5.1.1), can only
provide a pointer to a triple (b,c,la) with the largest element 'la’, composite, as in
(2.5.1.16). This triple will then have to satisfy the Residue and Quotient Conditions
for residues ¢n (mod b”n) and (la)*n (mod b”n). We are back to having to be able to
find Repeat Residues by a non-symmetric mechanism, namely, when the base a is
prime of the form 2In+1 or composite with one or more prime factors of the 2In+1
form.

It is worth looking back at both odd and even exponents since (2.5.1.18) shows us that
a skew-symmetry exists for both odd and even exponent if we take residues (mod
c™n) of the FLT equation (1.1.1). For odd exponent the minus sign in (2.5.1.18) can be
absorbed into 'a’ as follows

2.5.3.1 b*n=(-a)"n (mod c™n) (odd exponentn)

For even exponent we would have to put in a complex 'i' to achieve the same effect, as
follows

2.5.3.2 b"n = (ia)"n (mod c*n) (even exponent n)

In fact we could harmonise both (2.5.3.1) and (2.5.3.2) by using an 'nth root of unity u
defined by

25.3.3 u™=-1 (odd oreven exponentn)

such that

2.5.3.4 Db"n =(ua)™n (mod c™n) (odd or even exponent n)

It is of interest that the leap to usage of the complex plane and, in particular, the n'th
roots of unity, seems almost unavoidable when studying FLT. What is symmetric for
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even exponent in the integers is skew-symmetric in the complex domain. Conversely,
what is skew-symmetric for odd exponent in the integers, is skew-symmetric in the
complex domain.

The full depth of these observations is not discussed further in this paper as an aim of
this paper, when studying the FLT equation, is to work in integers and integer
constraints imposed by studying residues. Section (3) examines Unity Roots 'u’, where
u™n =1 (mod a”™n), which are modulo arithmetic equivalents of the complex roots of

unity. In fact there is an isomorphism between Unity Roots and the complex n'th roots
of unity.

2.5.4 Theorem: Summation of a Candidate Pair (b,c)

For odd exponent, if ¢ and b are such that, for integer I, 1 >0

2541 c+b=I*a"n

then

2.5.4.2 c™n+Db”™n =0 (mod a™n)

This theorem gives us a very simple method to construct Skew Candidate Pairs (b,c)
by simply choosing any two numbers b and c that satisfy (2.5.4.1). Note that this is
not the only method but it is a simple method valid for all odd exponents and arbitrary
base a. Another method uses the Repeat Residue properties for base a of the 2In+1
form.

Proof

Re-arranging (2.5.4.1) for c in terms of b

2543 c=I1*a"™n-b

Raising both sides to the n'th power and taking residues (mod a”*n) we find that

2.5.4.4 c™n=(-b)*n (mod a’n)

For odd exponent we can take the minus sign outside of the rhs bracket
2545 (-b)*n =-(b™n)

which gives
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2.5.4.6 c™n=-(b™n) (mod a™n)

And adding b™n to both sides we get

2.5.4.7 c¢™n+Db*n =0 (moda™n)

Hence, for some integer I, | > 0 we get

25.4.8 c™n+b*n=I1*a"n

and so the Theorem is proven.

2.5.5 Generalised Fermat Equation

The Generalised Fermat Equation, mentioned in (1.8.2) and (2.5.1.6) and reproduced
below, is a much-studied equation in Number Theory.

2551 b*n+c*n=k*a"n (the Generalised Fermat Equation)

For odd n, the skew-symmetry of residues b and ¢, (mod a”*n), as given by (2.5.1.3),
gives rise to an infinity of solutions.

If b is an arbitrary integer, 0< b < a”n, and c is defined as its ‘conjugate’

2552 c=a™M-b

then clearly

2.5.5.3 ¢™n=-Db"n (mod a’n)

and consequently, for some integer k, k > 0, also termed ‘Qs’, the Quotient Sum in
(2.5.1.11), we can write

255.4 c™n+Db"n=k*a™n

We showed in equation (2.5.1.14) that k (=Qs) was greater than or equal to 2.
Obviously, if it were 1, we would have an FLT counter-example.

The study of the possible values for Kk is outside the scope of this paper but a few
values for n = 3 and n =5 are given below. The values of k for which there are
possible solutions can be found at Mathworld, ref [4], keyword 'Generalized Fermat
Equation' (note the US spelling of Generalized with a ‘z”).
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For n = 3, the first few published values are

k={2,6,7,9,12,13, 15, 16, 17, 19, 20, 22, 26,
28, 30, 31, 33, 34, 35, 37,42, 43, 48, 49, 50...}

For n =5, the first few published values are

k ={2, 31, 33, 64, 211, 242, 244, 275, 486, 781, 942...}

Since Skew Candidate Pairs (b,c), constructed according to (2.5.4.1), are in
abundance, we can see that there must be many different values of the Quotient Sum
k. If ais odd, prime, and not of the 2In+1 form, there are in fact (a*n - 1) / 2 unique
pairs (b,c). So, for 0 <b < (a™n-1)/2, itis probable that there are also (a*n - 1) / 2
unique values for k. Of course, we needn't restrict ourselves to 0 < b <a”n and we
can construct a pair for any arbitrary value of b.

A general pair (b',c") is constructed for 0 <b < (a"n - 1)/ 2, integer I, m >= 0, as
follows. Let b’ and c' be defined as

2555 b'=1*a™n+b

2556 c=m*a™n-b

then we see that

2.55.7 ¢™n =-b'n(mod a’n)

and therefore, for some integer k

2558 b”n+c'n=k*a"n

i.e. the pair (b',c") is a Skew Candidate Pair with a Quotient Sum k.

2.5.5.9 Example

To see how k varies, take a simple example
Let

a=7,n=3,1=0,m=1
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then, by varying b from 1 to the mid-point at 171 (= (7"3-1)/2),1.e.0<b <172,
we get the following for b, ¢' and k

b=1b=1,c" =342,k =116623
b=2b"=2,c" =341, k =115603
b=3,b" =3, c' =340, k = 114589

b =169, b'=169, c' =174, k = 29431
b =170,b'=170, c' =173, k = 29419
b=171,b'=171,¢c' =172,k = 29413

The k value decreases monotonically from a high at b = 1 to a minimum at the mid-
point b = 171. We could see this by some algebraic manipulation of the differences
((b+21)"3-Db)/a"3). That aside, it is noticed that Kk is relatively large, especially
when looking at the published values for k which start at k =2. This is, of course, the
lowest possible value k could be without there existing an FLT counter-example. This
implies that our mechanism, shown above, to construct Skew Candidate Pairs is not
that which leads to such low values for k. As mentioned, in section (2.2), there are
several mechanisms for Repeat Residues. Whilst the 2In+1' form of the base is
strictly necessary to generate FLT counter-examples, where k = 1, other mechanisms,
such as the exponent dividing the base, can provide smaller values of k than those
listed above. Ultimately, however, it has to be the '2In+1" mechanism that is
responsible for producing the smallest k values.

When the exponent divides the base a, i.e. n | a, we obtain a Minimal Residue
Sequence of size n times smaller than a*n, i.e. a"n/ n or a*n - 1, see section (2.2.2).
By definition, consecutive Minimal Residue Sequences repeat n times within the full
0 <=x <a”ninterval. Hence, Repeat Residues and skew-symmetric residues repeat at
a much smaller interval. For instance, we can construct much more closely spaced and
smaller absolute values of b' and c' since a*n in (2.5.5.5) and (2.5.5.6) is replaced by
a™(n - 1).

To get some smaller k values, let | = 0and m =1 then, if n | a,

25510b' =D

25511 c=aMn-1)-b

To see how k varies in this case, take a simple example

2.5.5.12 Examplea=6,n=3

This example shows how a smaller value for k can be obtained when the exponent n
divides the base a.

let
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a=6,n=3,1=0,m=1

then the Minimal Residue Sequence size is 6”3 / 3 = 72. The midway point is 36 and
S0, repeating example (2.5.5.9), for a few values of b we get

b=1,b=1c¢ =71 k=1657
b=2,b'=2¢ =70, k=1588
b=3,b'=3,¢ =69 k=1521
b=33,b'=33¢c =39 k=441
b=34,b"=34,c' =38 k=436
b=35b=35¢c=37 k=433

b =36,b" =36, c' =36, k=452

We see that k is indeed a lot smaller if n | a.

However, we can get even smaller values for k by ensuring that, within the Minimum
Residue Sequence, there are also Repeat Residues. This we can do by making the base
composite of form a =n*m where the other factor m is both prime and of the 2In+1
form. For n = 3, the smallest such base is a = 3*7 since 3 | 21 and 7 is of the 2In+1
form where | = 1.

Using a computer, the following Skew Candidate Pairs have been extracted. Each
Skew Candidate Pair, in the (b,c) notation, has been tabulated below with the k value
in the second column.

(b, c) k
[17,37] 6
[28,35] 7o
[54,57] 37
[56,70] 56 *
[91, 98] 183 *

* These Skew Candidate Pairs have a common factor of 7. This tells us, by Theorem
(TBD) that, in fact, the a = 3, n = 3 case has the following Candidate Pairs, each with
the same Quotient Gap.

[13,14] 183
[4,5] 7
[8,10] 56

We see that the k value has been considerably reduced to more within the range of
published values. This was, of course, a one-off example and we might be able to
identify other published values for other examples of the base.

The first value, k = 6, is actually the second smallest published value for the exponent
n = 3. The lowest published value is 2. It would be nice to obtain a Skew Candidate
Pair that gives this k value - something we are working on.
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Lastly, in the same study, a Candidate Pair (51, 60) was identified that satisfies the
GFLT equation (1.9.1) and the Quotient Gap is 9, i.e.

6073 = 513 (mod 2173)
6073 = 5173 + 9%2113

It is actually of no coincidence that the pair [51, 60] = 3*[17, 20] since [17, 20] is a
Candidate Pair for the prime factor 7 and Theorem (TBD) proves that if (b,c) is a
Candidate Pair (mod s”n) then, for integers s and t, so too is the pair

(t*b, t*c) (mod (s*t)"*n).

2.5.6 Theorem: Standard and Skew Candidate Pair Duality

For every Candidate Pair (b,c), (mod a”*n), odd exponent n, that satisfies the GFLT
equation (1.8.1), there is an equivalent Skew Candidate Pair (b',c), where b' is the
conjugate of b (mod a”n), such that (a, b', c) satisfies the Generalised Fermat Equation
(2.5.5.2).

Proof

Since (b,c) are a Candidate Pair then, by definition

2.5.6.1 c¢”n=Db"n (mod a™n)

hence,

2.5.6.2 c™n-b™n =0 (moda’n)

For odd exponent, this can be re-written

2.5.6.3 c¢™n+ (- b)*n =0 (mod a™n)

Defining b' as the conjugate of b

2564 b'=a™Mm+-b

then
25.6.5 b'=-b(moda™n)

and raising both sides to the n'th power gives
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2.5.6.6 b"”n=(-b)*n (mod a™n)

Substituting for (- b)*n from (2.5.6.6) into (2.5.6.3) we get

2.5.6.7 c¢™n+Db”n=0(mod a"n)

and therefore, for some integer k, k > 0,

25.6.8 c¢™n+b"n=k*a™n

Taking residues (mod a”n) of (2.5.6.8) gives

2.5.6.9 c¢”™n=-(b"*n) (mod a™n)

and we see that (b',c) form a Skew Candidate Pair and that, by (2.5.6.8), the triple
(a, b', ¢) is therefore a solution to the Generalised Fermat Equation (2.5.5.1).

Notes

This Theorem establishes a correspondence between our GFLT Equation (1.8.1) and
the Generalised Fermat Equation (2.5.5.1) i.e. a solution to one provides a solution to
the other and any result arising from one can be applied to the other.

It is easier to work with Candidate Pairs (b,c), rather than their skew-symmetric
counterparts (b',c), because identifying b' entails matching a residue c”n (mod a”™n),
with a conjugate counter-part b', defined by (2.5.6.4). Whereas finding a Candidate
Pair (b,c) involves simply finding two matching residues without any negation of
sign, (b to -b in (2.5.6.4)), and then addition of a*n as in a*n + -b - also in(2.5.6.4)).

2.5.6.10 Example
n=3,a=7

Let b =20, c = 17 where, by design, (17, 20) is a Candidate Pair (mod 7/3) and
therefore satisfies the following congruence relation

20"3 = 1773 (mod 7/3)
By (2.6.8.4) we get a value for b’ of 326 since
b'=7"3-17 =326

Thus, by Theorem (2.5.6), the Skew Candidate Pair (b',c) = (326,20) satisfies the
congruence relation (2.6.8.9)

2073 = -326"3 (mod 713)
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and the triple (7, 326, 20) satisfies the Generalised Fermat Equation (2.5.5.1) where
the integer k is 101032

2073 + 326”3 = 101032*773
This completes our discussion on skew-symmetric matters and we revert back to the

2In+1 form and a more intuitive discussion on where hence it originates.

2.5.7 Why 2In+1?

A rigorous proof of the 2In+1 form comes via Lagrange’s Theorem, see section
(2.2.5) for a brief background to it. Also see Davenport [6] for a more formal
explanation.

As a start we will consider prime bases and discuss composite bases later since the
theory for composites is essentially that of its prime factors.

That the base is prime and of the form 2In+1, integer I, | > 0, can be thought of as a
divisibility condition on the base a, i.e. (2In + 1) | a, that guarantees repetition of non -
zero residues x”n (mod a™n) within an interval 0 <= x < a”n. More importantly, some
residues may repeat within a much smaller interval less than the base value a. The
latter, smaller interval of size a allows for the possibility that any Repeat Residues
may meet the Quotient Condition (1.4.3) by virtue of Theorem (1.12).

For prime a, the number 'm' of unique, non-zero residues 'r', (mod a), as defined by the
following equation, for integer x, 0 <= X < a,

25.7.1 x"™n=r(mod a)

and subject to the condition

2572 n|(a-1)

is given by

2573 m=(a-1)/n

Since for every root X, residue r, there is always a conjugate root (a - x), residue -r, the
condition (2.6.9.3) has to be tightened to

2574 2n|(a-1)

That is, for some integer I, | > 0, the base a must be of the form
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2575 a=2In+1

If n does not divide (a - 1) there are 'a’ unique residues for prime a, i.e. if n!| (a - 1),
then m = a.

In other words, the '2I' of '2In+1" is the number of unique, non-zero residues,

x™n (mod a), prime a, 0 < x < a. The residues can be paired off since, for each unique
residue r, there is a conjugate -r and hence the factor of 2 in '2I'. Each unique, non-
zero residue occurs n times and the +1 accounts for the single zero residue r = 0 at

x = 0. Lastly, (a - 1) must be divisible by 2n and hence a = 2In+1 for integer I, | > 0.

2.5.7.6 Example

Ifa=7,n=3, then m =2 and there are two ( = (7 - 1) / 3) unique, non-zero residues
(actually +1 and —1 where —1 =6 (mod 7) ). The zero residue, x = 0, is the third and
only other residue.

2.5.7.7 Example

Ifa=13,n=3,thenm=4(=(13-1)/3)and, including zero, there are five unique
residues (0, +1, - 1, +8, -8).

2.5.7.8 Example

Ifa=>5,n=3thensince 6! (5-1), m=5 and, including zero, there are five unique
residues (0, +1, +2, +3, +4).

2.5.7.9 Example

Ifa=11,n=>5thensince 5| (11 - 1), m =2 and, including zero, there are the
minimum three unique residues (0, +1, - 1 where -1 = 10 (mod 11) ).

2.5.8 Odd and Even Exponent Comparison

The 2In+1' condition applies to odd exponents and, for even exponents, the condition
is a slightly more relaxed 'In+1' form. So far we haven't discussed this In+1 form
since, in this paper, we really wanted to show that a symmetry argument and not
Lagrange's Theorem is, in the case of the even exponent, n = 2, the responsible
mechanism for generating Pythagorean triples. Furthermore, this symmetry argument
leads to the standard analytic solution for such Pythagorean triples. On the other hand,
for odd exponent, the symmetry is replaced by skew-symmetry which can only give
us solutions to the Generalised Fermat Equation (section (1.8.2)) but not FLT counter-
examples.
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That there are exactly n solutions for a prime base P is not of particular significance in
the arguments herein. The only matter of real importance is that there is always more
than one root. This is so for even power exponents since they always possess at least
two roots by virtue of symmetry in the Residue Sequence. Two solutions is enough to
generate Repeat Residues, i.e. a Candidate Pairs. This would also be true for any even
exponent n >= 4. So whether there are more than two solutions is of little
consequence to the symmetry arguments presented. Nevertheless, four or more roots
would only increase the likelihood of more Repeat Residues. Counteracting this bonus
is the problem that as the exponent grows the Quotient Gap also grows rapidly for
Candidate Pairs centred upon these symmetry points. Albeit, this hasn’t been
rigorously proven and this is slightly deviating from the point.

For odd exponent we don't have the point symmetry in the Residue Sequence and we
do need another mechanism to Repeat Residues within a constrained range, that of the
base, Theorem (1.12). This other mechanism is possible through the requirement that
the base is of the '2In+1' form.

To generate solutions, in the Pythagorean case, the In+1 form is n = 2I+1 since n = 2.
That is, any prime, odd base will suffice to give exactly two solutions and hence
Repeat Residues. Since we know that in all Pythagorean Triples (a, b, ¢) one member
of the pair a and b is odd this confirms the In+1 requirement. For example, with the
prime base a = 3, we know that (3, 4, 5) is a Pythagorean triple and we know

472 =52 (mod 372) i.e. (4, 5) are two solutions which could arise as a consequence
of the two Unity Roots. This might seem to confirm the In+1 mechanism as providing
Repeat Residues.

[Note that in all our work the modulus (the n'th power of the base) is usually a™n, i.e. it is never
actually prime but composite with a single factor ‘a’ when a is prime. However, this does not change the
arguments on the number of roots for prime base. The base can be of the form In+1 or be composite
with one or more factors of the In+1 form. For n = 2, this would only mean the base has one or more
odd factors].

However, by duality arguments in section (1.17.1), we could get a similar result for
the Pythagorean triple (3, 4, 5) using the base b = 4 since 32 = 5"2 (mod 4”2). But
now the base is not of the In+1 form and neither is its factor 2 of that form. Therefore
we have Repeat Residues (4, 5) that do not arise by the In+1 argument but, rather, by
the symmetry of an even power exponent. The same applies to the Pythagorean triple
(8, 15, 17) with base a = 8 and, in fact, it applies to any triple with the base a of the
form a = 27k, k >= 2 does not adhere to the In+1 form. Contrast this with a general
odd exponent, whereby ALL members of the triple (a, b, ¢) must be of the 2In+1
form. We are forced to conclude that the 'In+1' form, arising from Lagrange's
Theorem, is not wholly responsible for Pythagorean triples.

If we study the n = 4 case, the smallest base of the In+1 form is 5. The residue table
for n =4, a =5 confirm there are four Unity Root solutions (see (7.2.2)) and we can
find all other Repeat Residues in sets of four. Hence, any pair out of the four repeats
could be a potential Candidate Pair. Nevertheless, Fermat himself proved that there
are no solutions for the n = 4 case and we therefore know that we won't find any
candidate Pairs that meet the Quotient Condition. It is slightly sad that solutions stop
at n = 2! It would be nice if they stopped at n = 4 since we might be able to confirm
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symmetry arguments for any solutions. On the other hand, if there were solutions, it is
unlikely that FLT would have remained unproven for such a long time.

In concluding, the In+1 form, that produces n roots and therefore more than one
Repeat Residue for n >= 2, is valid for odd and even exponents. But, at least for n = 2,
it would not seem able to explain ALL Pythagorean triples. In particular those where
the base is of the form 2”s, s > 1 and hence have no odd factors of the 2I+1 form. On
the other hand, all Pythagorean solutions can be explained by symmetry in a Residue
Sequence arising from an even power exponent.

We thus conclude tht it is a symmetry in the residue sequence that generates
Pythagorean Triples and that Lagrange's Theorem is not the responsible mechanism
for all solutions.

2.5.9 Repeat residues (mod a)

To re-cap, by Theorem (1.12), it is a necessity that for any FLT counter example

(a, b, ) the residues for a Candidate Pair (b,c) repeat within an interval, termed the
'Root Gap', section (1.10), of size less than the base a, i.e. 0 < Rg < a. Dual arguments
also apply for the Candidate Pair (a,c) (mod b™n). For even exponent this is an easy
requirement since the residues are symmetric about a mid-point. In particular, those
immediately either side of the mid-point are essentially back-to-back with a Root Gap
of 1 for odd base a and 2 for even base a. Such Candidate Pairs are numerous for
Pythagoras and such pairs also meet the Quotient Condition, hence there are
numerous Pythagorean Triples. For even exponent n >2, i.e. n = 4 etc, the symmetry
is still present and there are also numerous Candidate Pairs. Nevertheless, such pairs
no longer meet the Quotient Condition since the exponent causes the guotients to
grow rapidly. On the other hand, such a large Quotient Gap could still be a perfect
square.

For odd n, there is no longer an automatic supply of Repeat Residues since the
symmetry is no longer present. Nevertheless, there is the ‘2In+1° mechanism to give
Repeat Residues (mod a) and, consequently, also the possibility they may repeat

(mod a”*n) within the Root Gap interval 0 < Rg < a. Thus, also providing a Candidate
Pair (b,c) that satisfies the Quotient Condition and which might, ultimately, be an FLT
counter-example.

If a residue repeats (mod a”*n) it always repeats (mod a(n - 1)), (mod a™(n -2)) etc
down to (mod a), i.e. if (b,c) is a Candidate Pair then b and c also have identical
residues (mod a(n - 1)), (mod a”*(n -2)) etc. all the way down to (mod a).

This is easily seen since, given that b and c are a Candidate Pair (b,c), where

25.9.1 b*n=r(moda™n)

and
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2.5.9.2 ¢”n=r(mod a™n)

then, expressed in the quotient, remainder form b”n, and c”n are

25.93 b=p*atn+r

2594 c™n=qg*a™n+r

and, by rearranging the quotients, we see that

2595 b= (p*a)*ar(n-1) +r

2596 c™n=(g*a)*a*(n-1)+r

and so

2.5.9.7 b =rmodarn-1)

2.59.8 c™n=rmoda™(n-1)

Thus, b and ¢ are congruent (mod a’(n - 1)), i.e.

2.5.9.9 b =c* moda™n-1)
and therefore form a Candidate Pair mod a’(n - 1).

We can continue in this way down to n =1, i.e. (mod a), such that

2.5.9.10 b*n =c”n (mod a)

and hence b and c also form a Candidate Pair (mod a).

All Candidate Pairs (b,c) (mod a”*n) are therefore also Repeat Residues (mod a). The
converse is rarely true, i.e. most Repeat Residues (mod a) are not Candidate Pairs
(mod a*n). Nevertheless, if a residue does not repeat (mod a) it will not repeat (mod
a’™n). Thus, we do need repetition of residues (mod a) as a starting point to find
residues (mod a”*n). Alternatively stated, if the residues x*n (mod a) are all unique,
which they are if condition (2.5.7.4) is false, i.e. (a - 1) is not divisible by 2n, then
there will be no Repeat Residues x*n (mod a”*n) within an interval of size a.
Consequently, there will be no Candidate Pairs (b,c) (mod a”n) such that the Root
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Gap is less than a and, by Theorem (1.12), the Quotient Condition will never be met
for any Candidate Pair (mod a”n).

We now look in more detail at the repetition of residues (mod a), where a is prime.

Considering the residues r for values of x, 0 <= x < a, given by the following

2.5.9.11 xn =r (mod a)

Firstly, for any n, odd or even, and any base, composite or prime, there is always a
zero and unity residue since, forx =0and x =1,

2.5.9.12 0"n =0 (mod a)

2.5.9.13 1"n =1 (mod a)

Additionally, for odd n, there is always a negative Unity Root since

2.5.9.14 -1"n =- 1 (mod a)

Thus, for odd n, n >= 3, the minimum number of unique residues (mod a) is 3 and
they are - 1, 0 and +1.

The zero residue occurs only once and is its own conjugate, i.e. -0 = +0. On the other
hand, for each occurrence of residue +1, there is a corresponding 'conjugate’ residue -
1 since if

2.5.9.15 x*n =1 (mod a)

then

2.5.9.16 (a-1)*n=-1(mod a)

The values of x which have a unity residue +1 are given by solving the following
Diophantine equation

2.5.9.17 x*n =1 (mod a)

Obviously x =1 is always a solution as in (2.5.9.13). If (2.5.9.17) were an algebraic
polynomial x*n =1 it would, by the Fundamental Theorem (ref TBD) have n roots.
For such a polynomial, these Unity Roots are termed the nth roots of unity. For odd n,
n - 1 of these n roots are complex and one is real, namely x = 1.
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In the case of the Diophantine polynomial (2.5.9.17), where we want unique integer
solutions, there are not always n of them for arbitrary a. If, however, there is a Unity
Root other than x = 1, then there will be n of them. In other words, there is either one
or n Unity Roots for certain values of a. Similarly, if there is a negative Unity Root
other than x =- 1 then there will be n of them. For prime a there will also be a single
solitary zero root (mod a) and so we have thus accounted for 2n+1 residues. Since
there can at most be 'a’ residues (mod a), unique or otherwise, the 2n+1 residues must
fit into this set. As a minimum then, a must be of size 2n+1 for odd n.

Thus, for any odd, prime base of the form 2n+1 there will always be 2n values of x
which have a residue of +1 or -1 and a single zero root. This leaves no room for any
other residues and the only n'th order residues (mod a) are {0, +1, -1}.

The smallest odd exponent under consideration is n = 3 and, if a = 7, hence 2n+1=7,
we will only get the residues 0, +1 and -1 and no others. Looking at the first seven
entries in the Residue table for a = 7, n = 3 (fourth column in the table below)
confirms this. Note that -1 = 6 (mod 7) hence the appearance of 6 and not -1 in
column 4.

Residue Table a = 7, n = 3

X X" n residue residue quotient
(mod a”n) mod a
0 0 0 0 0
1 1 1 1 0
2 8 8 1 0
3 27 27 6 0
4 64 64 1 0
5 125 125 6 0
6 216 216 6 0
Notes

Although the residues (mod a) repeat within the interval 0 <= x < a, the residues (mod
a’™n) do not repeat. In fact, residues x*n (mod a), prime a, 0 <= x < a will not repeat
since x”n < a’n. This applies to all a, prime or composite, arbitrary exponent n. Hence
there are never Repeat Residues (mod a™n) in any interval where

k*a™n <= x < (k*a’n) + a, integer k, k >= 0, i.e. they are all unique. One consequently
would not look for Candidate Pairs (b,c) within this particular interval. Furthermore,
the minimum gap between repetition of a residue (mod a) is therefore a. In such a
case, by Theorem (1.12), any Repeat Residues (mod a) cannot meet the Quotient
Condition and, hence, a unique Residue Sequence (mod a) is of no consequence re
possible FLT counter-examples.

The case a =7, n = 3 is one of an infinite set of cases where there are only three
unique residues 0, +1 and -1. a = 7 is the smallest possible prime value. Ifa=3 or 5,
the Residue Sequence is unique - fora =3 itis {0, 1, 2} and, for a = 5, the sequence is
{0, 1, 3, 2, 4}. This is also the case for any prime that is not of the 2In+1 form. In the
case a = 7 the integer 'l' in (2.5.7.5) is 1. We can see from (2.5.7.5) that for any case
where a=2n + 1, i.e. | = 1, there will only be three unique residues (mod a). The fact
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that, for any x, prime base a, 0 < x < a, it's residue x*n (mod a) will be either +1 or -1
can form the basis of a primality test ‘MFST’ which we have detailed in section (4.5).
MEST is an abbreviation of '‘Modified Fermat's Small (Little) Theorem'. However, it
is basically the more commonly known 'Strong Pesudo-Prime Test'.

To quickly recap, if a is prime and of the 2n+1 form then there are guaranteed n Unity
Roots such that x*n = 1 (mod a) and also n conjugate Unity Roots such that x*n =-1
(mod a). Additionally, there is the single zero root x = 0. The entire set of residues
x"n (mod a), 0 <=x<a, is {0, +1, -1}. Since there are multiple roots for each non-
zero residue, each residue effectively repeats (mod a) and, from the discussion
following (2.5.9.10), this may mean that there are some Repeat Residues (mod a”n)
which might meet the Quotient Condition and hence would be FLT counter-examples.

So far we have restricted ourselves to the residues 0, +1 and - 1. If ais of the 2In + 1
form where | >1, then there will be other residues r, equation (2.5.9.11) where |r|>1,
which also repeat. For instance, if a =13, n = 3, then | = 2 and, of the 13 possible
residues, one will be zero, three will be +1, three will be minus —1. This leaves six
possible non-zero, non-unity residues remaining. In fact, there are only two other
unique residues for a = 13, n = 3 since they too will repeat three times each and thus
account for the remaining six. These two residues are 5 and 8 and the residue 8 is
actually conjugate to 5 (mod 13) and vice versa, i.e. -5 = +8 (mod 13). The entire
residue set is thus {0, +1, -1, +5, -5}. Note that in the language of n'th order residues,
+1, +5, -1 and -5 are cubic residues of 13. For even exponent, n = 2, this is the much-
studied subject of '‘Quadratic Residues', see ref [6] for more details on the subject.

The first 13 entries xn (mod a), 0 <= x <13, are shown in the residue table below,
fourth column. Note that 12 = -1 (mod 13) hence the residue value 12 is shown
instead of -1.

Residue Table a = 13, n = 3

b4 x™n residue residue quotient
(mod a”n) mod a
0 0 0 0 0
1 1 1 1 0
2 8 8 8 0
3 27 27 1 0
4 64 64 12 0
5 125 125 8 0
6 216 216 8 0
7 343 343 5 0
8 512 512 5 0
9 729 729 1 0
10 1000 1000 12 0
11 1331 1331 5 0
12 1728 1728 12 0
13 2197 0 0 1

The key point here is not the specific value of the extra, unique residues 5 and 8 but
that they also repeat n times where n = 3. In other words, we have yet more Repeat
Residues (mod a) in addition to the +1 and - 1 residues that might also repeat (mod
a™n). A glance at the table above shows that not only do they repeat but, for example

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 95
R J Miller, sections1to7_18122004.doc Issue 0. Draft D



in the case of r = 8, we see that the repeats occur for consecutive values of x = 5 and

X = 6. This gives a unity Root Gap and, should this repetition also occur (mod 13"3),
then we would have a Candidate Pair (5,6) with a Root Gap of unity that would have a
good (ish) chance of meeting the Quotient Condition. Of course, as shown above,

x =5and x =6 are NOT such that 5*3 = 6”3 (mod 13"3) so (5, 6) is not a Candidate
Pair (mod 13”3). However, since all residues x*n (mod a) repeat at

(x + k*a)*n (mod a), we know that the residue for x =5 will repeat at 5 + k*13,
similarly the residue at x = 6 will repeat at 6 + k*13 and maybe, therefore, there exists
some integer k such that (5 + k*13)"3 = (6 + k*13)"3 (mod 13"3) in which case the
pair (5 + k*13, 6 + k*13) is a Candidate Pair (mod 13"3). In a dream-world of FLT
counter-examples, such a pair might meet the Quotient Condition!

That the other unique, non-zero residues (mod a) also repeat n times when a is prime
is basically because, for certain residues r, there are n integer roots to the equation
(2.5.9.11). Since each root has a conjugate there are n roots for r and always n roots
for -r, each residue pair r and -r consumes 2n roots. If we started with the basic
residue set {0,+1,- 1}, prime a, a = 2n+1 and then added another root for residue r, the
residue set would then be {0, +1, -1, +r, -r} and we would have to accommodate
another 2n values of x, hence a grows from2n+1toa=(2n+1) + 2n, i.e.
a=(2*2n) + 1. Any value of a between 2n + 1 and 4n + 1 would not be able to fit
enough integer roots. We can therefore see that if we keep incrementing the base by
2n and, ensuring it remains prime, it will always be of the 2In+1 form and will
provide multiple (copious) Repeat Residues.

2.5.10 Repeat residues (mod a”n)

The previous section (2.5.9) discussed Repeat Residues (mod a). However, that is a
stepping stone to what is really required namely, Repeat Residues (mod a”*n).

The transition from residues (mod a) to (mod a”*n) is actually very simple. This is
because we have not actually changed the degree of the Diophantine equation, only
the modulus from a to a*n. If we can handle all values of a then amongst them would
be those where a was a perfect nth power, e.g. a = k™n.

The condition that the base is prime, of the form 2In+1, remains for now as regards
derivation of some equations. A discussion on composites is deferred to Sections
(2.5.14) and (3.9.2). Nevertheless we shall assume the results can be extended to
composites and will often refer to the base as either prime of the 2In+1 form, or
composite of 2In+1 form.

To meet the Root Gap Constraint (1.12) we require, by necessity, that residues repeat
within an interval of size a and this can only occur if the residues repeat (mod a). For
repetition of residues, therefore, the value of the base remains constrained to prime of
the form 2In+1 or composite with one or more prime factors of form 2In+1.

Considering the residues x*n (mod a”*n), 0 <= x < a”n.
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2.5.10.1 x*n =r (mod a’*n)

As for section (2.5.9), we know that for odd n, and any base, composite or prime, the
0, +1 and -1 residues are always present.

2.5.10.2 0"n =0 (mod a™n)

2.5.10.3 1”*n =1 (mod a"n)

2.5.10.4 -1"n = -1 (mod a’*n)

Since the modulus a™n is effectively composite, with the single factor a repeated n
times, we now have multiple zero residues at integer multiples of k (mod a”™n), i.e. for
integer k, k >= 0, (k*a)*n = 0 (mod a"n). Since zero residues now occur at intervals of
a throughout the entire range 0 <= x < a’n, the number of zero residues 'Nz' is now
given by

25.105Nz=a™n/a

and we have a’(n - 1) of them

2.5.10.6 Nz=a*n-1)

This leaves the number of available non-zero residues 'Nnz' as

2.5.10.7 Nnz=a"n - Nz

Substituting for Nz from (2.5.10.6) into (2.5.10.7) gives

2.5.10.8 Nnz =a*(n-1) * (a- 1)

and substituting for a from (2.5.7.5) into (2.5.10.8) gives

2.5.10.9 Nnz = a”(n-1) * 2In

The number of non-zero residues is consequently a multiple of 2n which is a
requirement for repeat residues (mod a”*n).

As for (mod a), there can be n Unity Roots, (mod a™n), given by solving the following

Diophantine equation
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2.5.10.10 x"n = +1 (mod a™n)

and, for each occurrence of the residue +1 at root X, there is a corresponding
‘conjugate’ residue -1' (mod a”*n) at root (a”*n - x), hence there are also n conjugate
roots

2.5.10.11 x"n = -1 (mod a™n)

Similarly, and more generally, if there is a root x such that

2.5.10.12 X™n = +r (mod a)

then there are n of them and there will also be n conjugate roots (an - x) where

2.5.10.13 (@ n - x)n = -r (mod a"*n)

Exactly as for the (mod a) case, we see that a root and its conjugate occupy 2n values.
Since we make no distinction on the non-zero residue r, (2.5.10.12), all pairs of roots
X, -X for residues r, -r respectively, will occupy some multiple of 2n and thus we
require the number of non-zero residues to be a multiple of 2n. Indeed equation
(2.5.10.9) shows us this is the case if the base is of the form 2In+1.

[Note that 2In+1 could actually be composite here. However, referring right back to Lagrange's
Theorem and in particular, equation (2.2.5.7), the base used in that derivation is assumed prime. We
require the primality condition for the case (mod a) and we will keep with it for this (mod a”n)
discussion. In fact, the base can be composite of 2In+1 form but only if it also has one or more factors
of 2In+1 form. If it is composite of 2In+1 form but has no factors of this form then it will not produce
the desired repetition of residues and we therefore reject those cases since they will not produce repeat
residues with an interval of the base, see the previous section (2.5.9). For example, if n=3 then a=25 is
composite of 2In+1 form but has a repeat factor of 5 which is clearly not of 2In+1 form. We would
therefore reject this case since all the residues X3 mod 5, 0 <= x < 5 will not repeat.]

Returning to the main discussion, we see that, for every non-zero residue r which is an
nth order residue (mod a”*n), there will be n roots if the base is prime of the form
2In+1 or composite with at least one prime factor of the form 2In+1.

Conversely, if the base is not of the desired form then each residue r is unique and
occurs once only if the base is prime. Alternatively, if the base is composite, with no
factors of the form 2In+1 and/or it is not divisible by the exponent n, Repeat Residues
can occur but not within the Root Gap requirement, and these cases have been prior
rejected, see section (2.2). For composites, with a prime factor of the form 2In+1, we
are only interested in values of x which are co-prime to the base for the reason of ‘co-
primality in pairs' (0.3.4).

Notes
The 'Unity Root' equation (2.5.10.10) is of key importance in the further development

of this work, primarily on unifying all the mechanisms for repetition of residues for
both odd and even exponent. This subject is discussed extensively in section (3).
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2.5.10.14 Exponentn =3, basea=5

The base a = 5 is the smallest value for a such that it is neither composite nor is it
divisble by the exponent. Since it is not of the form 2In+1 then, from what has been
said prior in this section, all its non-zero residues x*n (mod a”n) should be unique in
the 0 <= x <53 interval. The residue table, section (7.1.4), confirms this. For each x,
where X is not a multiple of 5, there is a unique, non-zero residue r.

2.5.10.15 Exponentn =3, basea=7

This is the smallest case for both the base and odd exponent, which permits Repeat
Residues within the constraints of the Quotient Condition. The Residue Table is given
in section (7.1.5).

The first and, as we shall see later, most important residue is r = 1 for which the Unity
Roots are found by inspection to be 1, 18 and 324. That 324 = 18”2 is actually no
surprise since Unity Roots are cyclic. This is fully discussed in Section (3).

If we look at the residue r = 8 as an example of a non-unity residue, we see this
residue repeats three times at x = 2, x = 36 and and x = 305. Indeed, those residues
that do repeat repeat three times, as expected, since the exponent n = 3. This can be
verified by picking a value for x at random, except where x is a multiple of 7 and
therefore has a zero residue, and checking the repetition of its residue (mod a™n)
occurs three times, including its first occurence at x.

Since a =7, n = 3 has Repeat Residues, do any residues repeat within an interval of
size a? The answer is yes - the smallest x for which this occurs is x =17, r =111
which repeats again at x = 20 and x = 306. Therefore, assigning b = 17 and ¢ = 20, the
pair (17, 20) is a Candidate Pair (mod 7/3) with a Root Gap, Rg =3 (=20 - 17). Not
surprisingly, the Quotient Gap is not unity but 9 (= 23 - 14) since the quotients are

p =14 and q =23 for b =17 and ¢ = 20 respectively, see column 5. Because the pair
(17, 20) do have identical residues they are a solution to the GFLT equation, see
Example (1.8.8).

Actually, the Candidate Pair (17, 20) (mod 7/3) could be rejected immediately,
without recourse to checking the Quotient Condition, for three separate reasons a) to
c) outlined as follows:

a) Theorem (1.15) asserts that the middle value ‘b’ of the triple (a, b, c) is always
composite. Here the middle value of the triple (7, 17, 20) is 17 which is prime so we
can reject it immediately. Note that even if b were composite, the Dual Residue
Condition (1.17.1) implies that the middle value must have one or more prime factors
of the form 2In+1.

b) By the Dual Residue Condition (1.17.1), the pair (7, 20) (mod 1773) is not a Dual
Candidate Pair since 73 1= 20”3 (mod 17/3).

c¢) By Theorem (1.14) since a is prime, the Root Gap must be unity but, since the Root
Gap here is 3 (= 20 - 17), we can reject (17, 20).
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Including the Quotient Condition, and reasons a) to c) above, we have four reasons to
reject (17, 20) as a potential FLT counter-example. Even without any reference to
other published FLT work, that Candidate Pairs such as (17, 20), with a Root Gap less
than the base, appear nowhere near in abundance to those for even exponent would
hopefully make one appreciate the scarcity of any potential FLT counter-examples.

For each Candidate Pair there is always a conjugate Candidate Pair since every X, has
a conjugate a™n - x. Thus the Candidate Pair conjugate to (17, 20) is (323, 326) which
shares the residue r = 232,

By Theorem (1.14) we could reject this pair (323, 326) immediately since it has the
same, non-Unity Root Gap as (17, 20) and will not therefore meet the Quotient
Condition.

The residue r = 232 (above) is conjugate to the residue r = 111, common to (17, 20).
However, as x becomes much larger than the base, here x = 323, the quotients are
growing rapidly for each increment in x. The quotient p for b = 323 is 98245 and the
quotient g for ¢ = 326 is 101008 and so the Quotient Gap is 2763 - nowhere near
unity. This emphasizes that even for the smallest of exponents any Candidate Pair
must be found near the start of the table.

However, all is not quite lost yet. With a =7, n = 3. The pair (17, 20) is not the only
Candidate Pair with a Root Gap less than the base. In fact, there is always at least two
‘Consecutive Identical Residues', see sections (1.11) and (4.2).

The residue r = 309 at x = 120, repeats at x = 121. Thus (120, 121) is a Candidate Pair
with a Root Gap of unity. So too is the Conjugate pair (222, 223) whereby

222 =773 - 121 and 223 = 73 - 120. However, it is evident that even at x = 120, the
Quotient Gap is 127 (= 5164 - 5037). Furthermore, b = 120 is far geater than Bmax
which is 18.5, to 1 dp, for a base a = 7, see Example (1.19.3).

This simple example highlights the numerous tests that can be applied to any
Candidate Pair. Firstly one has to identify a Candidate Pair (b,c). The Root Gap has to
be unity for prime base, i.e. the pair (b,c) must be consecutive (c = b + 1); by the Dual
Residue Condition, the pair (a,c) must also be a Candidate Pair (mod b”n).
Furthermore, both a and b must be of the 2In+1 form and b must also be composite.
By the Skew Residue Condition, the pair (a,b) must be a Skew Candidate Pair and ¢
must also be of the 2In+1 form.

We can put an upper bound 'Bmax’ (1.19) on the value b, above which the Quotient
Gap between consecutive X, i.e. x and x + 1, is always two or greater, i.e. any
Candidate Pair cannot meet the Quotient Condition. Hence, if b >= Bmax, the
Candidate Pair can be rejected. Similarly, for the Dual Residue table, we can put an
upper bound on the value of ¢ (C’max, section (1.20)) for the Candidate Pair (a,c)
(mod b”n) such that the absolute value of the quotient, q' is always two or greater.

This concludes our discussion on the repetition of residues (mod a”n) and we now

make a quick digression into Conjugate Candidate Pairs. Section (2.5.14) returns to a
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short discussion on composite base and Section (2.5.15), following it, discusses the
Dual base b. [Note that we shall re-order the sections in a later issue of this work.]

2.5.11 Theorem: Conjugate Candidate Pairs

If (b,c) is a Candidate Pair (mod a”n), then the Conjugate Pair (a*n - c, a"n - b) is also
a Candidate Pair (mod a™n).

Proof

By the arithmetic of congruences, the Conjugate Candidate Pair satisifies the
following relation

2.5.11.1 (a™n - b)*n = - b"n (mod a™n)

2.5.11.2 (a™n - ¢)™n = - c”n (mod a”™n)

But since (b, ¢) are, by definition, a Candidate Pair then

2.5.11.3 b™n = c¢”n (mod a™n)

And so equations (2.5.11.1) and (2.5.11.2) imply that

2.5.11.4 (a™n-b)*n=(a™n - c)*n (mod a"n)

Hence (a™n - b)*n and (a”n - ¢)n are congruent (mod a”*n) and are therefore a
Candidate Pair (mod a’*n).

2.5.12 Theorem: Conjugate Pair Root Gap

The Candidate Pair (b,c) (mod a”*n), odd exponent n, has the same Root Gap as the
Conjugate Candidate Pair (a™n - c, a™n - b).

Proof

Since b < ¢ by definition then

25121 a*n-c<a™-b

and since, by Theorem (2.5.11), a*n - c and a*n - b are a Conjugate Candidate Pair
then the Root Gap is, by analogy with (1.10.1), given by
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25122 Rg=(@™n-b)-(a™n-c)

which reduces to

25123 Rg=c-b.

But, by (1.10.1), the Root Gap of the Candidate Pair (b,c) is also (c - b) and hence the

Root Gap of a Candidate Pair is the same as that of the Conjugate Pair.

2.5.13 Theorem: Conjugate Pair Bmax

If (b,c) (mod a"n) is a Candidate Pair, odd exponent n, such that b < Bmax, then the
Conjugate Candidate Pair (b',c") (mod a™n), where b' = a”n - b and ¢' = a*n - ¢, cannot

meet the Quotient Condition.

Proof

If b <a™n/ 2 then the conjugate value, b' = a™n - b, is such that b' >=a”n / 2. But for

all n>=3, if

2.5.13.1 b < Bmax

and, using (1.19.1.5),

2.5.13.2 Bmax < (a™n) / 2

then (2.5.13.1) implies

25133 b<(a™n)/2

The conjugate value b' is defined as

25.13.4 b'=(a™)-b

Using inequality (2.5.13.3) this implies

25.135b'>a™/2

and, using (2.5.13.2), we have
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2.5.13.6 b' > Bmax

Hence if b < Bmax then the conjugate value b’ is such that b’ > Bmax and therefore,
by Theorem (1.19.1), any Conjugate Candidate Pair (b',c") has a Quotient Gap greater
than unity.

The practical side of this result is that we need not investigate a Conjugate Candidate
Pair (b',c') (mod a™n) if we have rejected the Candidate Pair (b,c) (mod a*n) where

b < Bmax. This can be extended for b >= Bmax. Defining the Quotient Gap of the
pair (b,c) as Qg, and that of the conjugate pair (b',c') as Qg' then, if b’ > ¢', by the same
arguments in the proof of Theorem (1.19.1), Qg' > Qg.

2.5.14 Composite Base

The Remark at the end of Section (1.14) states that we have to consider composite
base if we wish to restrict ourselves to unity Quotient Gaps. This is a shame but, if we
were to restrict ourselves exclusively to prime a, we would have to widen our
investigations to accommodate Quotient Gaps that are a perfect power.

That said, the transition from prime base to composite is minimal. Instead of the base
being prime, of form 2In+1, the only requirement for composite base is that it has one
or more prime factors of the form 2In+1.

Examining a residue table for prime base a, a of the 2In+1 form, will show each and
every residue repeats n times. If we look at a simple composite 2a, then the residue
table mod (2a)"n will still have all the original residues (mod a™n), albeit multiplied
by 2n. For example xn (mod a”*n) maps to (2x)"n (mod (2a)"n). Although the
residue value changes from r to (2*n)*r, any Repeat Residue y*n (mod a”*n), such that
x™n = y~n (mod a™n) will still be a Repeat Residue (mod (2a)"*n) such that

(2x)™n = (2y)"*n (mod (2a)"*n). In essence, a Candidate Pair (mod a™n) is also a
Candidate Pair (mod (2a)"n). That said, even in this simple composite example,
Candidate Pairs such as (2x, 2y) (mod (2a)n) have a common factor '2' giving the
triple (2x, 2y, 2a) a common factor of 2, i.e. co-primality in pairs is lost. We would
then be better off reverting to studying the residues (mod a™n) where a is the original
prime factor. We could, of course, study the prime factor 2*n too. It would be nice to
dismiss all composites so easily. However, what we really have to consider, for a
composite like 2a are those values of x that are co-prime to 2a, i.e. GCD(x, 2a) = 1.
Such co-prime x do have Repeat Residues too when the composite base has a factor
of the form 2In+1. In brief, we needn't have prior stressed primality of the base,
merely co-primality between all three member a, b or c, regardless of which one is the
base.

However, returning to composites, although no proof is supplied here we can at least
reason as per section (2.5.7) why Repeat Residues still occur for x, co-prime to the
composite base. Reverting to the simple example of the composite 2a, where a is
prime of the form 2In+1. From what has been said in the prior paragraph, half of the
sequence of residues x*n (mod (2a)"n), 0 <= x <2a, (all the even values x) are
basically the same as in the (mod a”*n) case but multiplied by a factor 2"2.
Consequently, if two even values (b,c) repeat (mod a”*n), they repeat (mod (2a)"*n).
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We are not interested in these values because they contain a common factor of 2
shared with the base and therefore any potential FLT counter-example triple (b, c, 2a)
IS not co-prime in pairs - we may as well revert to studying residues (mod a’*n).

The even half of the residue sequence is of size 2In+1 and so too, not surprisingly, is
the odd half x since if a = 2In+1, then 2a = 2*(2In + 1) and 0 <= x < 2a. For odd x
(not divisible by prime a either), there is a residue r such that x*n =r (mod (2a)"n).
This is an nth order Diophantine equation and, for x co-prime to the base, has n
solutions. Similarly, there will be a conjugate residue -r with n conjugate solutions -X,
where (-x)*n = -r (mod (2a)"*n). For each residue r and -r, there are n values for x and
n values for -x and we can see that by identical arguments to those used in (2.6.9), we
can accommodate, without gaps, an integral number of them in the 2In+1, odd half of
the Residue Sequence, allowing for the zeros, (mod a”*n). If the odd half, and
therefore also the even half, were not of the 2In+1 form then there might be n roots for
some residues and only say 2 or 3 roots for others. This would leave a rather
asymmetric pattern and beg the question, why favour some residues and not others? In
fact, it is a case of all or nothing. For an arbitrary value r there are either n solutions x,
such that x*n = r (mod (2a)"n), or there are none when r is not an n’th order residue of
the modulus. Obviously, not every integer value 0 <= r <2a can have a solution since
there simply wouldn't be enough space if any one residue repeated more than once.
The only other acceptable scheme occurs if a is NOT of the 2In+1 form. In which case
every X has a unique residue r and vice versa, excepting the zero residues occurring
for any x”n divisible by (2a)™n.

2.5.15 Dual Case (mod b”"n)

So far most discussion has been on Repeat Residues (mod a) or (mod a™n). However,
the same arguments apply equally in the Dual case of Repeat Residues (mod b) or
(mod b”™n).

Thereom (1.15) asserts that the middle value 'b' of a triple (a, b, c) is always
composite and, since the modulus of a Dual Residue Table is b™n, this implies the
modulus is consequently composite. From discussions in (2.5.7) and (2.5.14), if there
are to be any Repeat Residues a and ¢ such that the Dual Candidate Pair (a,c) (mod
b~n) can meet the Quotient Condition, the base b must have a prime factor of 2In+1
form. However, since a is either prime of the form 2In+1 or is composite with a prime
factor of the form 2In+1, the 2In+1 factor cannot be the same for both a and b
otherwise they would not be co-prime.

Section (1.20) discusses the upper limit C’max on the value of ¢ in a Dual Candidate
Pair (a,c). Notably that this limit, relative to the base b, is much less than that for a
standard table where the base is a. This is because in a Dual Residue Table one need
not look for a value of ¢ beyond C'max. In a standard Residue table, (mod a”*n), the
value of Bmax, which is an upper limit on the middle value b, is many times greater
than the base a, see Theorem (1.19.1). Nevertheless, the value of c is the same in each
Candidate Pair (a,c) and (b,c) and so the absolute search range for Repeat Residues is
the same in both Standard and Dual residue tables.
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2.6 Summary of Conditions

This section is a summary of all the conditions and constraints developed in this
section and placed upon a triplet (a, b, ¢) were it to be an FLT counter-example.

For integers x and k

26.1 x>=1

26.2 k>=1

the value a is either prime (x = 1) or composite (x > 1) with one or more factors of the
form (2kn + 1), i.e.

2.6.3 a=x(2kn+1)

For integers y and |

264 y>=2

26.5 1>=1

the value b always composite with one or more prime factors of the form 2In+1, i.e.

26.6 b=y2In+1)

For integers z and m

267 z>=1

268 m>=1

the value c is either prime (z = 1) or composite (z > 1) with one or more factors of the
form (2mn+1), i.e.

269 c=z(2mn+1)
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The Skew Residue Condition (2.5.1.18), Candidate Pair (a,b) (mod c”n)

2.6.10 b™n =-a"n (mod c"n)
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3 Unity Roots

Sections (1) and (2) focussed on the study of Residue Sequences x*n (mod a’n),

0 <=x < a’n, in the pursuit of Candidate Pairs (b,c) where b”*n = ¢n (mod a”n) or
Dual Candidate Pairs (a,c) where a*n = ¢*n (mod b”n), which could possible meet the
Root Gap constraint (c - b < a) imposed by Theorem (1.12). Of principal study in the
previous section was how residues repeat within a sequence. For even exponents the
repetition was attributed to symmetry and, for odd exponents, the repetition was
attributed to the ‘2In + 1° mechanism. Perhaps unsurprisingly, by Lagrange’s
Theorem (2.2.5.3), both mechanisms are shown in this section to be unified by the
concept of Unity Roots u, where u*n =1 (mod a”*n) or (mod b”n). In particular,
Candidate Pairs can be generated through a mapping mechanism ¢ = u*b (mod a”™n).

The pursuit of Unity Roots (mod a”*n) also leads to Unity Roots (mod a) and the study
of the Unity Root Polynomial, exponent n, denoted by ‘f(u)n’, which is a cyclotomic
polynomial with many of its own interesting properties. These properties are explored
in this section as a digression from the main theme of this Paper. In particular, the
factor properties of f(u)n and applications in such areas as Mersenne Numbers.

Although analytically unsolved, we present an algorithm to obtain Unity Roots (mod
a”n), given the roots (mod a). We also detail how to obtain Unity Roots for
composites given those of its prime factors.

Of key note in this paper is the observation that the even exponent symmetry, which
we used to generate Pythagorean triples in section (2.4.4), can be viewed as a negative
Unity Root mapping and therefore a ‘flip” about the symmetry point.

Lastly, as for all previous sections, we summarise all the latest constraints upon any
potential FLT counter-examples that have arisen in this section.

3.1 Definition: Unity Root

A Unity Root is defined as an integer u, u > 0, such that foralla>0,n>0

3.1.1 u™ = 1(mod a™n)

Obviously u = 1 is a Unity Root for all a and n and is termed the 'trivial root'.
Normally we are more interested in the non-trivial roots, u > 1.

3.2 Introduction

As mentioned prior in section (2.6), but without any explanation, Unity Roots are
fundamental to the repetition of all residues.
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Section (2) split the analysis of the FLT equation (1.1.1) into two distinct cases
whereby the exponent was either odd or even. For the even case this was primarily
Pythagoras. The Pythagorean case makes a good example since it does have solutions,
i.e. Pythagorean Triples, in which to test the Residue and Quotient Conditions and
advance the work further. Nevertheless, Repeat Residues in both the two cases, even
and odd exponents (2.4) and (2.5), can be unified under one scheme, namely 'Unity
Root Mappings'.

3.2.1

3.2.2

3.2.3

For odd prime exponent n, prime base a, modulus a*n, the set U of Unity
Roots may comprise either a single Unity Root (+1) or n roots. For composite
base a, the number of Unity Roots is an integral power s of n, i.e. n*s where s
is the number of prime factors with n Unity Roots. This holds for all s >=0..

For even exponent n, arbitrary base a, there may either be two Unity Roots
U = {+1, -1} or the number of Unity Roots is a multiple of 2. The exact
number depends upon the composition of the base a. The only case or real
interest herein is Pythagoras for which the number of roots is discussed in
section (3.5). The main point to note is that, unlike odd exponent, there are
always at least two Unity Roots for n = 2, arbitrary base and that the -1 root,
not always present for arbitrary odd exponent, is the key to all the repeat
residues. See section (3.4) on Unity Root Mappings and (3.9) on such
mappings and Pythagoras.

A set of n Unity Root's is denoted by upper case U where U ={u 0,u_1,u 2,
.. u_(n-1) }, u_0 is the trivial root +1 and u_1 is the smallest non-trivial root,
usually shortened to the single letter ‘u’.

3.3 Properties

3.3.1 The n Unity Roots are cyclic. Thus, all roots can be generated from the
primitve Unity Root u, i.e. u is a generator.
ul0=u=1
ul=utl=u
u2=u"2
u_k=uk
u_(n-1) =u™(n-1)
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3.3.2 The Unity Roots form an n'th order cyclic group under multiplication, modulo
a’™n. The n'th roots of unity, which are generally complex, also form a cyclic
group of order n and, consequently, the two groups are isomorphic.

This is as near as this paper gets to complex numbers from where most work in
Diophantine equations usually proceeds onward to the algebraic extension of the
rationals to complex numbers.

Because of this isomorphism there are analogues between the work presented here
and that of algebraic number theory. In particular, the Unity Root Polynomial 'f(u)n’,
which is discussed extensively in section (3.6) of this paper is, for prime exponent n,
more generally known as a '‘Cyclotomic Polynomial'. Secondly, polynomial

factorisation into complex n'th roots of unity also has an analogue in congruential
arithmetic, section (4.1).

3.3.3 The smallest non-unity, 'primitive’ Unity Root is designated 'u’, or 'u_1". This
is a generator of the cyclic group and, unless otherwise stated, when we refer
to a Unity Root u we mean this smallest root u_1.

3.3.4 With u as the generator the complete set of Unity Roots is

3.34.1 U={u"0,ur,ur2,..uMn-1)}

with the first two cases written simply as

3342 u0=1

3.343 uM=u

then the set (3.3.4.1) becomes

3344 U={lu,u2,..uMn-1)}

3.3.5 Theorem: Unity Root > Base

The non-trivial, Unity Root u is always greater than the base a
Proof

A Unity Root is defined as a solution to the congruence
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3.35.1 u™-1 = 0 (moda"n)

which implies that, for some integer k

3.35.2 u™-1=k*a™n

and re-arranging this we get

3.35.3 u™=1+k*a™n

Since u > 1 for the generator root, we see that (3.3.5.3) implies

3.3.5.4 u™n>k*a™n

The value of k cannot be zero since this would imply u = 0. So, for positive u,

3.355 k>=1

which implies

3.35.6 k*a™n>=a"n

and inequality (3.3.5.4) becomes

3.35.7 u™>a™n

Taking n'th roots, we see that

3.358 u>a

and hence the smallest integer value u can take is (a + 1) and we conclude that the
Unity Root is always greater than the base.

3.4 Unity Root Mappings

Taking the defining equation for a Unity Root (3.1.1) and multiplying throughout by
b~n, where b is an arbitrary integer, 1 <b <a”n

3.4.1 u™*b™n = b”n (mod a™n)
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If we define a second integer ¢

3.4.2 ¢ = u*b(mod a™n)

then we see that (3.4.1) can be written in terms of c as follows

3.4.3 c¢™n = b"n (mod a™n)

But this result shows that ¢c”n and b”n are congruent (mod a”*n), hence they have
identical residues (mod a’*n) and thus form a Candidate Pair (b,c), i.e. c is a repeat
residue of b when defined by (3.4.2).

Alternatively expressed, we say that 'c is a Unity Root mapping of b (mod a”n)’, i.e. b
maps to ¢ under the Unity Root u (mod a’*n).

If there was only the single Unity Root, u = 1, ¢ would actually be identical to b and
the result would be trivial. However, for certain base and exponent, as prior stated in
(2.2.5), there can be n or more Unity Roots. Thus, if there are at least n Unity Roots,
u_k, 0 <=k <n, there are at least n repeat residues of b*n (mod a”*n) at location

¢ = u_k*Db, in accordance with (3.4.2). Since b is arbritrary, if we know all the Unity
Roots, we can obtain all the repeat residues for any value b. The problem of finding
Candidate Pairs (b,c), where c is defined by (3.4.2), is really just one of finding the
Unity Roots xn (mod a”n). Furthermore, these conclusions were made with no
reference to a specific form of the exponent n, it can be odd or even. We therefore
have a unified approach to finding Candidate Pairs (b,c) (mod a™n) or their Dual
counter-part pairs (a,c) (mod b”n) by determination of the Unity Roots for the
modulus, a*n or bn respectively.

The problem seemingly becomes a lot simpler. It certainly is a lot simpler in that, with
a unified approach, we only have to identify the Unity Roots to generate Candidate
Pairs instead of visual inspection of a residue tables search for values with identical
residues. Better still, because the Unity Roots form a cyclic group, we only need to
find one of them in order to be able to generate all n. In other words, a single Unity
Root (mod a”n), will allow us to determine the repetition of every residue (mod a™n)
known to occur. What we cannot do, however, is determine the initial set of residues,
we can only determine their repeat occurences. Whilst it would seem that
determination of a single Unity Root will unlock the secrets of Repeat Residues and
Candidate Pairs, the determination of Unity Roots is not trivial and, currently, we
have no analytic solution for an arbitrary exponent. Fortunately, an algorithmic
method to find the roots does exist and is detailed in section (3.7.3)

Since FLT is true, we can see that there must be one or more properties of the Unity
Roots that constrain the value of c in (3.4.2) such that the Candidate Pair (b,c) can
never satisfy the Quotient Condition. The reality is that, whatever the value for u, it
always generates a value ¢ such that either the Root Gap (1.10.1) is greater than a or,
when the Root Gap is smaller than a, e.g. for Consecutive Identical Residues, the
value of c is still beyond Bmax+1, Section (1.19), Theorem (1.19.1) and
consequently the Quotient Gap is larger than unity. Ultimately, by studying Unity
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Roots, we might be able to gain insight into why Candidate Pairs never meet the
Quotient Condition and why there are no FLT counter-examples, i.e. why FLT holds
true.

Although for general exponents, n > 2, we currently have no consistent explanation
for Unity Root values, we do nevertheless have one, non-trival case (n !'=1) to
examine, namely Pythagoras. This does have solutions and it does have Unity Roots.
It is discussed again in section (3.9).

3.4.4 Definition: Winding Number

By definition (3.4.2), the Unity Root mapping of b on to ¢, (mod a”*n), produces a
value c such that

3.44.1 c = u*b (mod a™n)

which implies for some integer w, w >= 0, termed the 'Winding Number'

3442 u*b=w*a™n+c

If w =0 we term it the Zero Winding Number and, if w > 0, we term it a non-Zero
Winding Number. We shall see that if the Candidate Pair (b,c) has a Zero Winding
number it cannot be an FLT counter-example.

3.4.5 Definition: Wrapover

If the Winding Number w, defined by (3.4.4.2), has a value greater than zero then the
mapping (3.4.4.1) is said to "Wrapover".

The winding number is effectively the same as a quotient and generally it is the
context that differentiates their usage. The term 'quotient’ is used when talking about
any arbitrary value xn written in quotient, remainder form, e.g. X*n = g*a™n +r,
where q is the quotient and r is the remainder. Winding number is currently used
exclusively for Unity Root mappings defined by the integer w in (3.4.4.2).

3.4.6 Theorem: Winding Number & Root Gap

A Candidate pair (b,c) (mod a”*n) cannot be an FLT Counter-example if the Unity
Root mapping of b on to ¢ has a zero Winding Number.

Alternatively stated, if the Unity Root mapping of b on to ¢, (mod a”n), produces a
value ¢ = u*b less than the modulus a”*n, i.e. ¢ a*n and has a Zero Winding Number
(3.4.4), then the Root Gap is always such that Rg >= a2 and hence, by Theorem
(1.12), the Quotient Condition can never be met.
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Proof

Using (3.4.2) for the value c in the Candidate Pair (b,c), the Root Gap (1.10.1) is
given by

3.4.6.1 Rg=u*b(moda™n)-b

If the value of u and b is such that the product u*b is less than the modulus, i.e. zero
winding, then

3.4.6.2 u*b<a™

and the Root Gap expression (3.4.6.1) becomes

3.4.6.3 Rg=(u-1)*b

Now, by Theorem (3.3.5), the Unity Root is greater than the base a, which for integers
implies

3464 u>=a+1

hence

3465 u-1>=a

and, multiplying throughout by b, we get

3.4.6.6 (u-1)*b>=a*b

Therefore, by comparison with (3.4.6.1), we can see that for a zero Winding Number
the Root Gap satisfies the following inequality:

3.4.6.7 Rg>=a*h

Since, by convention, b is chosen such that

3468 b>a

then we see that the Root Gap satisifies the inequality
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3.4.69 Rg>=a"2

And hence is is greater than the base a. Consequently, by Theorem (1.12), the
Quotient Condition can never be met.

To drive the point home, we can also say that a Candidate Pair must wrapover to be a
potential FLT counter-example, i.e. it must have a non-zero Winding Number, w >0
in (3.4.4.2).

3.5 Counting Unity Roots

For completely arbitrary exponent and base the number of Unity Roots can be
numerous and even multiples of the exponent. Nevertheless, we are primarily
interested only in odd, prime exponents and the singular, even prime exponent case
n = 2, for which the rules are relatively simple for either prime or composite base.
Unity Roots for composite base a can be determined from the prime factors and it is
therefore the determination of Unity Roots for primes that is the real issue and
difficulty.

3.5.1 Ifnisan odd prime, ais prime and not of the 2In + 1 form and n != a, then
there is one Unity Root in the interval [0, a*n) and that is u = +1.

3.5.1.1 Examples

n=3,a=2,U={1}
n=3,a=5U={1}
n=3,a=11,U={1}

3.5.2 Ifnisodd, prime, ais prime of the 2In + 1 form, then there are n Unity Roots,
u_0,u_1,u 2, ..u_(n-1) inthe interval [0, a™n).

3.5.2.1 Examples
n=3,a=7 U={118324}
n=3,a=13,U={1,1036,1160}
n=>5,a=11, U ={1, 37101, 46709, 104450, 133835}

n=5a=31,U={1, 13801549, 13979094, 15561847, 28629152}
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3.5.3 Ifnisodd, prime and n = a, there are n Unity Roots,u 0,u_1,u 2, .u (n-1)
in the interval [0, a™n) but there is only one Unity Root in the Minimal
Residue Sequence [0, a*(n - 1)), since n | a, see section (2.1.2.2). Of course, if
n = a, then a cannot be of the 2In + 1 form.

3.5.3.1 Examples

n=3a=3,U={1, 10, 19}

Here the Minimal Residue Sequence size is 3*3 / 3= 9 and the second root, u = 10, is
actually = 1 + 1*372, similarly, 19 =1 + 2*3"2.

n=5a=5,U = {1, 626, 1251, 1876, 2501}

Here the Minimal Residue Sequence is of size 55 /5 = 625 and the roots can be
written in terms of multiples of this value as follows:

626 =1 + 1*625

1251 =1 + 2*625
1876 =1 + 3*625
2501 =1+ 5*625

3.5.4 Ifnisan odd prime and a is composite with one or more factors of the 2In + 1
form then there are n Unity Roots for each prime factor of form 2In + 1 in the
interval [0, a*n) or in the interval [0, a*(n - 1)) according as to whether n !| a
or n | a respectively.

3541 n=3,a=14 U={1361, 1353}

Here a = 14 has the two factors 2 and 7, only the factor 7 is of the 2In + 1 form and so
there are three roots

3542 n=3,a=21U={1,361, 667}

Here a = 21 has only two unique factors, the factor 7 is of the form 2In + 1, the other
factor is 3 and since n divides the factor there are 3 Unity Roots for the factor 7 within
the interval [0, 213/ 3).

In the Maximal interval, 213, within which the residue sequence for
0 <=x < 2173/ 3 repeats three times, there are, as expected, repeats of these Unity
Roots at

U = {3088, 3448, 3754, 6175, 6535, 6841}

Since the exponent divides the base, with a Minimal Residue Sequence size of
2173/ 3 = 3087, the repeated roots can be expressed as
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U = {1+3087, 361+3087, 667+3087,
1+ 2*3087, 361 + 2*3087, 67 + 2*3087}.

3543 n=3,a=49,U={1, 34967, 82681}

Here a = 49 has only one unique factor, of the 2In + 1 form, i.e. 7, and so there are
only three roots.

3544 n=3,a=091
U = {1, 9948, 59320, 69267, 244903, 304222, 439401, 449348, 684303}

Here a comprises two unique factors 7 and 13, each of the form 2In + 1, hence there

are 9 (= 3*3) Unity Roots in the Maximal Residue Sequence of size 91”3.

3.5.,5 Ifnisan odd prime and a is composite, with no prime factors of the 2In + 1
form then there is one Unity Root, U = {+1}, in the interval [0, a*n) if n !| a or
one Unity Root, U = {+1} in the interval [0, a*(n - 1)) if n| a.

3.5.5.1 Examples

n!la

3552 n=3,a=4,U={1}
3553 n=3,a=8,U={1}
3554 n=3,a=10,U={1}
3555 n=3a=16,U={1}

3556 n=3,a=20,U={1}
nla
3557 n=3,a=3,U={1}

3558 n=3a=9 U={1}

3559 n=3,a=15U={1}
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3.5.6 Ifn=2andaisanodd prime then there are two and only two Unity Roots
U = {+1, -1} within the interval [0, a™n).

3.5.6.1 Examples

3562 n=2,a=3,U={1,8}
35.6.3 n=2,a=5U={1, 25}

35.6.4 n=2a=7U-={l, 48}

3.5.7 Ifn=2and aisan odd composite then there are two Unity Roots per odd,
unique prime factor within the interval [0, a*n).

3.5.7.1 Examples

3572 n=2a=9, U={l, 80}

35.7.3 n=2,a=15 U={1, 26, 199, 224}
3574 n=2a=21,U={1,197, 244, 440}
3575 n=2a=25U={1,624}

3576 n=2,a=105,U={1, 1126, 1324, 2449, 8576, 9701, 9899, 11025}

Here a factors into 3, 5 and 7 and each factor has two Unity Roots so there are 8 Unity
Roots in total.

3.5.8 Ifn=2and aiseven then n|aand so the Minimal Residue Sequence is half
of the Maximal, namely a*2 / 2. Within this interval the number of roots is
dependant upon the composition of a. For each unique, prime factor of a/ 2,
there are two roots.

The specific case n = 2, a = 2 is slightly anomalous: sincen=2and aiseven,a/2=1
and there is only one root in the interval 0 <u < 2”2/ 2, namely u = {+1}. In this case
the root u = 1 is equivalent to the u = -1 root and there is only a single root in the
Minimal Residue Sequence. Nevertheless, in the Maximal Sequence 0 <u < a2,
there are two unique roots +1 and +3 (3 = -1 mod 2°2). This is the only case where a
is even but only has one root in the interval 0 <u < 272/ 2. Since we know
Pythagoras has no solutions for a <= 2 it is of no consequence.
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3.5.8.1 Examples

3582 n=2a=4U={1,7}

Here a/ 2 has one,unique prime factor 2 hence there are only two Unity Roots within
the interval [0, 472/ 2).

3583 n=2a=6U={l 17}

Here a/ 2 has one, unique prime factor 3 hence there are only two Unity Roots within
the interval [0, 672/ 2).

3584 n=2a=8 U={l 31}

Here a / 2 has one, unique prime factor 2 hence there are only two Unity Roots within
the interval [0, 8”2/ 2).

3585 n=2a=10,u={1, 49}

Here a / 2 has one, unique prime factor 5 hence there are only two Unity Roots within
the interval [0, 102/ 2).

3586 n=2a=12,U={1, 17,55, 71}

Here a/ 2 has two, unique prime factors 2 and 3 hence there are four Unity Roots. In
fact, this is the smallest value for a to have 4 roots in the Minimal Residue Sequence,
[0, 1272 ] 2).

3587 n=2a=14 U={1,97}

Here a/ 2 has one, unique prime factor 7 hence there are only two Unity Roots within
the interval [0, 1472/ 2).

3588 n=2,a=16,U={1, 127}

Here a / 2 has one, unique prime factor 2 hence there are only two Unity Roots within
the interval [0, 1672/ 2).

3589 n=2a=18 U= {1,161}
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Here a/ 2 has one unique, prime factor 3 hence there are only two Unity Roots within
the interval [0,18"2 / 2).

35810 n=2,a=60, U ={1, 199, 449, 649, 1151, 1351, 1601, 1799}

Here a/ 2 has three, unique prime factors 2, 3 and 5 hence there are eight Unity Roots
within the interval [0, 60”2 / 2). In fact, this is the smallest value for a to have 8 roots
in the Minimal Residue Sequence. To get 16 roots, we have to go as far as a = 420,
since a / 2 factors into the four prime factors 2, 3, 5 and 7.

3.6 The Unity Root Polynomial

Returning to the defining equation for a Unity Root (3.1.1), we can re-arrange it to
become a problem in the determination of zero roots for the congruence

3.6.1 u™-1 = 0(moda™n)

This is the modular arithmetic analogue of the algebraic polynomial equation

362 uM-1=0

It is no surprise that both equations have the single root u = 1 and we can factor the
left-hand side of the expressions as follows

363 un-1=@Uu-1D)A+u+u2+.urn-1))

3.6.4 Definition: Unity Root Polynomial

The 'Unity Root Polynomial’, exponent n, denoted by f(u)n, is defined as
fun=>A+u+ur2+..uMn-1))

[Note that f(u)n is the sum of a geometric progression with n terms, the first term is 1

and the common ratio is u. We sometimes drop the suffix ‘n’ leaving just f(u) when it

is obvious as to its usage, i.e. when the exponent is obviously n].

Factoring (3.6.1) as per (3.6.3) and substituting for the Unity Root Polynomial f(u)n,
as defined by (3.6.4), we get

3.6.5 (u-21)*f(u)n = 0 (mod an)
At this stage we could solve the congruence for each separate bracket.
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3.6.6 (u-1) = 0(moda™n)

3.6.7 f(u)n = 0 (mod a™n)

Or we can solve the combined congruence (3.6.5) assuming neither bracket is
congruent to zero (mod a”*n). This situation has no analogue in the solution of
polynomials f(x). It is possible in modulo arithmetic to have solutions to the following
congruence equation where neither A nor B is zero but the product is congruent to
zero (mod C).

3.6.8 A*B = 0 (mod C)

For now, we will remain with the solutions to (3.6.6) and (3.6.7). Examination of the
case (3.6.8) is (TBD).

With u = 1 as the primitive solution to (3.6.6), the remaining (n - 1) solutions are
given by solving the following equation, for prime a (see further below),

3.6.9 f(u)n = 0 (mod a™n)

This equation is a Diophantine equation of order (n -1 ) which, as prior mentioned,
doesn't always have integer solutions. In fact, from section (2.5.7), only if a is of form
2In + 1 or composite with one or more factors of the 2In + 1 form does (3.6.9) have
integer solutions.

Note that if we treat f(u)n as a standard polynomial then its roots are the n'th roots of
unity, excepting u = 1 which has been factored out. In this case, the polynomial
always has n - 1 roots in the complex field.

Returning to equation (3.6.5). For some integer I, | >= 0, this equation can be written
as

3.6.10 (u- 1)*f(u)n=1*a™n

If (u-1)and a are co-prime, then (u - 1) | | which implies that, for some integer m
m >0,

36.11 (u-1)=m*|1

and, for some integer s, s > 0,
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3.6.12 f(u)n =s*a™n

3.6.13 Theorem

With f(u)n defined by (3.6.4) then u is a Unity Root (mod f(u)) and u is a Unity Root
(mod (u - 1)).

Proof

By (3.6.3)

3.6.13.1 uM-1=(u-21)*f(u)n

and, taking residues (mod f(u)n),

3.6.13.2 u™ -1 = 0 (mod f(u)n)

which can be alternatively expressed as

3.6.13.3 u™n = 1 (mod f(u)n)
and hence u is a Unity Root (mod f(u)n).

Similarly, by taking residues (mod (u - 1)),

3.6.13.4 u™M-1 = 0 (mod (u-1))

alternatively expressed

3.6.13.5u™M = 1 (mod (u- 1))

and hence u”n is a Unity Root (mod (u - 1)).

3.6.14 Theorem: Unity Root Sum = 0 (mod a*n)

The sum of the Unity Roots for prime base a is congruent to zero (mod a™n).

This is the modulo arithmetic analogue to the summation of the n'th roots of unity,
which always sums to zero.

Proof
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Considering the positive, Unity Roots, 0 < u < a”n, modulus a’*n, then, using (3.3.4.4),
if we sum these roots we get

3.6.14.1 Sum(U)=1+u+u"2+..uMn-1)

But by (3.6.4) we see that the rhs of this sum is identical to the Unity Root
Polynomial f(u)n, i.e.

3.6.14.2 Sum(u) = f(u)n

Hence, by (3.6.7)

3.6.14.3 Sum(u) = 0 (mod a™n)

and we see the sum of the Unity Roots, (mod a™n), is congruent to zero (mod a’n).
Notes

Since all roots u are such that 0 < u < a”n, equation (3.6.14.3) implies that for some
integer k, k>0

3.6.14.4 Sum(u) = k*a™n

For the n = 3 case we can be more specific and deduce that k = 1 in (3.6.14.4) if we
keep with positive roots, by convention (0.3.5.5), i.e.

3.6.14.5 Sum(u) = a"3

Writing the sum out in full

36146 1+u+u*2=2a"3

We know that there are three roots, one of which is 1. For certain a, the other two are
unique. The very largest they can be, when all positive, are a*3 - 2 and a*3 - 1 within
the range 0 < u < a”3. If we sum all three we get 2*a”3 - 2 and therefore, by
(3.6.14.4), k has to be 1 since the largest sum is still 2 short of 2*a”3.

If we express some Unity Roots in the positive form and others in the negative form
then we can get k = 0 and we then have an identical, analogous result to summing the
n'th roots of unity, which sum to zero. In the case of a cubic, where we have to solve a
quadratic to get the roots, see example (3.6.10) below, we automatically get one
positive and one negative solution, see (3.6.10.11) and (3.6.10.12) which, together
with the root u = 1, sum directly to zero.
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Since the left-hand side of (3.6.14.6) is f(u)3, we can substitute back for f(u)3 into
(3.6.10) to give

3.6.14.7 (u - 1)*a*3 = I*a"3

which, upon cancelling a*n from both sides, implies

3.6.148 (u-1)=1
We see from this that the value of the factor | for a cubic exponent, prime base a, is in

fact one less than the Unity Root.

3.6.15 Conjecture: Umin

The smallest, non trivial value of a Unity Root, Umin, is conjectured as satisfying the
inequality

3.6.15.1 Umin>(n-1) /(a™n -1) (theterm'(n-1)_/' denotes the n-1'th root)

This is a conjecture and not a rigorously proved theorem since a proper analytic study
of the error term has not been performed but taken from a reasonable estimate,
verified by computer.

Reasoning
Considering only positive, primitive Unity Roots, 0 < u < a”n, modulus a™n.
Using the sum of the roots, sum(u) as defined in (3.6.14.1), equation (3.6.14.4), for

some integer k, k > 0, gives

3.6.15.21+u+u”2+..uMn-1)=k*an

Since we are considering only positive, primitive Unity Roots, 0 < u < a”*n, the
smallest value for integer k is 1 so we can place the following inequality on the Ihs
sum(u) as follows

3.6.1531+u+ur2+..uMn-1)>=a™n

Forn> 2, u> 2, the largest term in the sum on the lhs will be u*(n - 1) and, for
increasing a, since u > a by (3.3.5), this term will becomes more dominant as a
increases. Therefore a first approximation to u, which is an over-estimate, can be
obtained by neglecting the first n - 1 terms on the Ihs to leave
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3.6.15.4 uMn-1) ~=~>=a"n (the '~=~'term denotes approximately)

The approximation is actually good for the numbers of interest. The smallest value of
a is 7 and the smallest exponent is 3. In this case, approximating u by the square root
of 7 gives u = 18.5 to 1dp. The actual value of u is 18.

If we denote the over-estimated error by e, the inequality can be re-written

3.6.155uMn-1)>=a™-e

As n and u become larger the approximation gets better, i.e. the over-estimated error
term e becomes smaller. In fact it can be shown that the error is approximately given

by

3.6.156e~=~1/(n-1)

For example, for n = 3, the error is approximately 1 / 2 and the error decreases as n
grows larger. This is actually a very good approximation of the error and computer
analysis reveals it is always less than 0.5203 for the worst case of n = 3. Thus, by
giving the maximum error of 1, we can conjecture that the minimum Unity Root value
'Umin' is given by the expression

3.6.15.7 Umin=(n-1) /(a™n-1)

As a consequence of this conjecture, it can also be shown that Umin > Bmax (see
(1.19) for Bmax) and so two Unity Roots can never form an FLT counter-example
since the minimum Unity Root exceeds the maximum permitted value of b in a
candidate Pair (b,c).

Lastly, a computer analysis of Umin and the error term for various u and n verifies
these findings at least for small base and exponent.

3.6.16 f(u) Factor properties

The factor properties of the unity Root Polynomial f(u)n are quite extensive and allow
us to say many things about the type and number of factors of f(u)n.

It has been prior mentioned that, for prime exponent n, f(u)n is what is known in the
subject of Number Theory as a 'Cyclotomic Polynomial’, reference Mathworld [4],
keword 'Cyclotomic Polynomial'. Some of the Properties of f(u)n presented here may
have analogous properties in the subject of Cyclotomic Polynomials, albeit a rigorous
cross check has not been performed.
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3.6.16.1 If f(u)n is prime then it is of the form 2In + 1 if u > 1.

Since, by Theorem (3.6.13), u is a Unity Root (mod f(u)n) and, since u '=1 + k*f(u),
integer k, k >= 0 then, by the arguments in sections (2.5.7) and (2.5.9), f(u)n must be
of the 2In + 1 form since it has a Unity Root other than the trivial u = +1. Note that
since f(u)n is prime, by definition, then n !| f(u) unless n = f(u) and n is prime.
However, it is not possible that n = f(u)n simply by the construction of f(u) except if
u=1. Ifu=1,then f(u) = n see property (3.6.16.4) and this Unity Root is always
present for any base a ( = n = f(u)n), not just those of the 2In + 1 form. Hence the
caveat on the u = 1 case.

3.6.16.2 If f(u)n is composite and u is not of the form 1 + k*n (see below) then every
factor is of the form 2In + 1

The reason we put in the caveat 'not of the form 1 + k*n' is because, as we shall see,
there can be one other legitimate factor equal to the exponent n, at locations 1 + k*n.
This arises by consideration of the next two properties.

Suppose f(u)n factors into two prime factors k and m

3.6.16.2.1 f(u)n = k*m

then by (3.7.5.1)

3.6.16.2.2u™n = 1 (mod k*m)
and thus

3.6.16.2.3u™n = 1 (mod k)
and

3.6.16.2.4u™n = 1 (mod m)

That is, we see that if u is a Unity Root for composite base f(u)n, then it is also a
Unity Root u™n of the prime factors k and m of f(u)n. If u is not of the form 1 + k*n,
then u is a non-unity, Unity Root of the primes k and m. But by property (3.6.16.1) we
see that with primes k and m as base in (3.6.16.2.3) and (3.6.16.2.4), they must
therefore also be of the form 2In + 1. This argument can be extended for when f(u)n is
composite with any number of prime factors and thus every one of the prime factors
must also be of the form 2In + 1 if u is not of the form 1 + k*n
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3.6.16.3 If P is a prime factor of f(u)n, i.e. P | f(u)n, then at a point u', where
u'=u + k*P, for some integer k, k > 0, then a | f(u’)n.

For example, if n =3, u = 3, then f(3)3 = 13. Let P = 13, i.e. the one and only prime
factor of 13, then at any point 3 + k*13, then 13 | f(3 + k*13)3. If k =1, u' = 16 and,
indeed, we see f(16)3 = 273 which factors as 3*7*13.

Proof of this comes from the general property of a polynomial f(x), degree n, with
rational coefficients c0, c1, .. cn as given by,

3.6.16.3.1 f(x) =c0 + c1*x + c2*x"2 + .. cn*X™n

such that if, for some value x = u, arbitrary modulus A,

3.6.16.3.2 f(u) = r(mod A)

then, for some integer k, k >=0

3.6.16.3.3 f(u+k*A) = r(mod A)

This is proven by showing that it is true for each term in (3.6.16.3.1), e.g. for the
general term .

If

3.6.16.3.4 cl*u®l = r (mod A)

then

3.6.16.3.5 cl*(u+k*A) = r(mod A)

If we expand the term (u + k*A)"l by the binomial theorem we will see that all terms
have a factor of A and hence are congruent to 0 (mod a). This leaves only the single
term u”n, hence

3.6.16.3.6 cl*(u +k*A)" = cl*u™ (mod A)

and, by comparison with (3.6.16.3.4),

3.6.16.3.7 clI*(u+k*A)™ = r(mod a)
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3.6.16.4 The value of f(u)n for u = 1 is always n since, by the definition of f(u)n
(3.6.4), it is simply a series sum of n terms where each term is unity when
u = 1. Hence the total sum is n, i.e. f(1)n = n for all exponent n.

This property shows us that f(1) is always divisible by the exponent and hence n | f(1).
In addition, property (3.6.16.3) shows that if n | f(1)n, then n | f(1 + k*n )n for all
integer k, k >= 0. We can thus arrive at the following factor property.

3.6.16.5 If f(u)n is composite and u is of the form 1 + k*n, then every factor is either
of the form n or 2In + 1.

Proof (TBD)

3.6.16.6 Any factor of f(u) of the form 2In + 1 appears n times within the region
0<=x<u.

Proof (TBD)

3.6.16.7 Any factor of f(u) of the form n appears once and only once within the
region 0 <=x <u.

Proof (TBD)

3.6.16.8 The value of f(u) is composite for any u if the exponent is even.

Let the exponent n be even, of the form

3.6.16.8.1 n=2m

then, by the definition of f(u), equation (3.6.4)

3.6.16.8.2 u™2m)-1=(u-21)*f(u)2m

the left-hand side factors as

3.6.16.8.3 u”(2m)-1=(u"m - 1)*(u m + 1)

and we can factor the term (um - 1) as

3.6.16.84 u™m-1=(u-1)*f(uym
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Substituting for (um - 1) from (3.6.16.8.4) into (3.6.16.8.3) gives

3.6.16.85 u”2m)-1=(u- 1)*f(uym*(u m + 1)

Equating (3.6.16.8.2) and (3.6.16.8.5) we get

3.6.16.8.6  (u-21)*f(uym*(u™m + 1) = (u - 1)*f(u)2m

Upon cancelling the (u - 1) term this leaves us with the relation

3.6.16.8.7 f(u)m*(um + 1) = f(u)2m

which shows us that f(u)2m factors into two terms f(u)m and (u"m + 1) hence, for any
even exponent, the value of f(u) is composite.

With regard to primality of f(u)n, this property (3.6.16.8) disposes of all even
composite exponents. The next property eliminates odd composite exponents.

3.6.16.9 The value of f(u) is composite for any u if the exponent is odd composite.

Suppose the exponent n is composite with two odd, prime factors k and m, i.e.

3.6.16.9.1 n=km

Let u be any arbitrary value then, by the definition of f(u)km

3.6.16.9.2 u”(km) = 1 (mod f(u)km)

which implies that

3.6.16.9.3 uNKkm) -1 = (u - 1)*f(u)km

But since u”(km) can also be written as either

3.6.16.9.4 u™N(km) = (uUrK)*m

or

3.6.16.9.5 u™N(km) = (U m)"k
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then u”k is also an m'th Unity Root of f(u)m, and u”m is also a k'th Unity Root of
f(u)k such that

3.6.16.9.6 (u"k) m = 1 (mod f(u)m)
and
3.6.16.9.7 (u"m)*k = 1 (mod f(u)k)

Substituting u”k for u in equation (3.6.16.8.4) gives

3.6.16.9.8 (U"k)*m - 1= (Unk - 1)*F(urk)m

Swapping the label m for k in (3.6.16.8.4) and substituting the term u™m for u in the
same equation gives

3.6.16.9.9  (UM)™K - 1 = (UM - 1)*F(uAm)k

All three equations (3.6.16.9.8), (3.6.16.9.9) and (3.6.16.9.3) have identical left hand
sides and can be equated so that

3.6.16.9.10 (UK - 1)*F(UAK)m = (UAm - 1)*furmk = (u - 1)*f(u)km

Since both k and m are odd, by definition, we can factor the terms in (u*k - 1) and
(um - 1) above, using the definiton (3.6.4) of f(u), we get

36.16.9.11  (Uk-1) = (u- 1)*f(u)k

3.6.16.9.12 (U"m-1)=(u-1)*f(um

And, upon substituting for (u~k - 1) and (um - 1) into (3.6.16.9.10) and cancelling
the common factor of (u - 1) we finally arrive at

3.6.16.9.13  f(u)km =f(u)k * f(urk)m = f(u)m * f(u"m)k

We see f(u)km is composite, comprising at least two factors and it also gives us a nice
identity from which to compute the value of any composite, f(u)km.

Notice that (3.6.16.9.13) is symmetric upon interchange of k and m, as would be
expected. Furthermore, if m and k are equal, we get

3.6.16.9.14  f(u)ym * f(u*m)m = f(u)m"2
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If u=1, we know that
f(I)m=m
f(1*m)m =m
f(1)m”"2 = m"2
and we see that (3.6.16.9.14) correctly verifies as
m*m = m”2
If u=2, we know that

f(Q)k =2°m - 1
f(2)m = 27k - 1

and inserting for f(2)k and f(2)m into (3.6.16.9.13), we get

(2"m - 1) * f(2"m)k = 2"km - 1
(2"k - 1) * f(2"k)m = 2”"km - 1

Since m and k are unique, the only way the rhs can factor in two ways, as above, is if,
for some integer d, 2*km - 1 is of the form

(2"m - 1)*(2k - 1)*d = 2"km - 1
For example, if m = 3, k =5, we find d= 151, since

(273 - 1)*(2"5 - 1)*d = 2715 -1

7*31*151 = 3276
The u = 2 case provides us with an instant factoring of the commonly factored number
2”n - 1, known as a Mersenne Number, see below. We can conclude from this
composite exponent property (3.6.16.9) that, if n is composite, 2”*n - 1 has at least two
factors. Conversely, if we wish to test to see whether 2*n - 1 is prime then we only

need consider values for which n is prime.

Numbers of the form 2”n - 1 are known as Mersenne Numbers and the result, just
mentioned, is a well known result on the subject, see Section (4.4).

3.6.16.9.15 Example

The smallest, odd, composite exponent occurs when k = m = 3 and thus n = km = 9.
u=2,k=3,m=3,n=km=9

f(2)3 =7 (prime)
f(273)3 = f(8)3 = 73 (prime)
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f(2)9 = 511 = 7*73
Hence
f(2)3 * f(2"3)3 = f(2)9
Repeating for u = 3, we get
u=3, k=3, m=3,n=km=9
f(3)3 = 13 (prime)
f(373)3 = f(27)3 = 757 (prime)
f(3)9 = 9841 = 13*757

Hence

f(3)3 * f(313)3 = f(3)9

If we go back to the derivation of the Unity Root function f(u), section (3.6.4), then
back substituting for f(u) into (3.6.3), we get an expression for the factorisation of
u™n-1as

3.6.16.9.16  u~n-1=(u- 1)*f(u)

The expression (un - 1) is quite a commonly seen function in mathematics and, since
we know the form of factors for f(u), we see from (3.6.16.9.16) this also gives us the
form of factors for u™n - 1. In the special case that u = 2, we get the Mersenne
numbers Mn = 2”n - 1. Since the factor (u - 1) is 1 for u = 2, the factorisation of
Mersenne numbers is one of factorising the Unity Root function when 2 is the Unity
Root of some base f(2). This particular case is discussed in more detail in Section
(4.4).

3.6.16.9.17  Every number f(u) is equivalent to a number comprising only n unity
digits when expressed in base u, i.e. f(u) base u is 1111...1.

For example, if u = 10, i.e. decimal base 10, all the numbers f(u) are of the form 1, 11,
111, etc for exponents n =1, 2, 3. A quick glance at table (3.7.7) confirms that all row
entries for u = 10 are indeed, 1, 11, 111 etc.

This is not difficult to show since, substituting for u = 10 in f((u)

f(10)=1+10+ 1072 + ...

Ie.
f(10) = 1 + 1*10 + 1*100 + ...
f(10) = 111...
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This also tells us that for a binary base, u = 2, all the digits are one, and hence
numbers of the form 2”n-1 have all their bits set.

3.6.16.10 Conjugate Unity Root function f*(u*)

If the exponent is odd then, for every Unity Root u,

3.6.16.10.1 u™n = 1 (mod a™n)

there is a conjugate root u'

3.6.16.10.2 u'=-u

such that

3.6.16.10.3 u”n = -1 (mod a™n)

Therefore, if there are n Unity Roots (mod a”*n), there are also n conjugate Unity
Roots. If U is the set of Unity Roots (mod a”n)

36.16.104 U={u0,ul, ..u (n1)}

then the set of conjugate Unity Roots, U', is simply the negation of the positive Unity
Roots.

3.6.16.105 U ={-u0,-ul,..-u(n-1)}

Generally, throughout this paper, we choose to work with the positive form of Unity
Roots. Nevertheless, many results and theorems for Unity Roots also apply to the
conjugate forms.

Of interest with regard to factoring, see further below, is the conjugate Unity Root
function f'(u) which we define by analogy with its Unity Root counterpart f(u),
equation (3.6.4).

Rearranging (3.6.16.10.3)

3.6.16.10.6 u”n+1 = 0 (mod a™n)

This is the modular arithmetic analogue of the algebraic polynomial
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3.6.16.10.7 u™M+1=0

We can factor the left-hand side of the expressions as follows

3.6.16.10.8 u™n+1=(U+D*1L-u+.. (-Du+..u"Nn-1))

and thus define the 'Conjugate Unity Root Polynomial’ f'(u)n as follows

3.6.16.10.9 f@In=@A-u"+.. (DU +...u™n-1))
This polynomial is an oscillating sum, valid for odd exponents only.

If we substitute for u' in terms of u from (3.6.16.10.2) into (3.6.16.10.9), we see the
two Unity Roots functions f(u) and f'(u’) are, related

3.6.16.10.10 f(-u)n = f(u)n

Because there is a 1:1 correspondence between Unity Roots and their conjugates, we
can assert that, if the base a is of the 2In + 1 form, there are n conjugate Unity Roots,
as given by the set U' in equation (3.6.16.10.5). Furthermore, since the factor
properties of the Unity Root function f(u) were derived by consideration of Unity
Root properties we conclude the same factor properties must also apply to the
conjugate Unity Root function. In particular, it shows us that the factors of f'(u’)n are
limited to the exponent n itself, or factors of the form 2In + 1. Unlike f(u)n, valid for
odd and even exponents, we have strictly only defined f'(u’)n for odd exponent.

Lastly, if we can make statements about the factors of f'(u’)n, then we can make
statements about the frequently used function u*n + 1, where n is odd.

Back substituting for f'(u’)n from equation (3.6.16.10.9) into (3.6.16.10.8), we get an
expression for the factorisation of u*n + 1 as

3.6.16.10.11 (u”n+1)=(u'+ 1)*f'(u)n
Thus, we see the factors of u”*n + 1 are (u' + 1) and f'(u")n when n is odd.

It would be nice, but unfortunately flawed, to think that we could use (3.6.16.10.11) to
make claims on the factors of Fermat numbers Fn defined via

3.6.16.10.12 Fn=272"n)+1

Unfortunately f'(u")n was defined exclusively for odd exponents and we see that the
exponent for Fn is always even, of the form 2/n.
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Examples

3.6.16.10.13 u'=2,n=3
2"3+1=3*3

Here u' + 1 = 3 and also the exponent, n = 3, divides f(2)3 =3

3.6.16.10.14 u'=2,n=5
2"5+1=3*11

Here u' + 1 = 3 and the other factor 11 divides '(2)5. The factor 11 is of the form
2iIn+1,n=51=1

36.16.10.15 u'=3,n=3
313+ 1=4*7

Here u' + 1 = 4 and the other factor 7 divides (equals) f'(3)3. The factor 7 is of the
form2In+1,n=3,1=1.

3.6.16.10.16 u'=3,n=5
3"5+1=4*61

Here u' + 1 = 4 and the other factor 61 divides (equals) f'(3)5. The factor 61 is of the
form2In+1,n=51=6.

3.6.16.10.17 u'=5n=3
S"3 +1=6*3*7

Here u' + 1 = 6 and the other factors 3 and 7 divide f'(5)3. The factor 3 is the same as
the exponent, and the other factor 7 is of the form 2In+1,1=1,n=3.

3.6.16.11  Primality Testing

Because we can make many statements on the factors of f(u), section (3.6.16), it
suggests we can deduce the composition or primality of f(u)n for various u and n. The
key properties in Section (3.6.16), with respect to factorisation, are summarised as
follows.
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3.6.16.11.1  If nis composite, then f(u)n is composite.

3.6.16.11.2  If x is a prime factor of f(u)n it is either of the form x =n or
x=2In+1,integer I, 1 >=1.

3.6.16.11.3  If x is a prime factor of f(u)n and x = n then x is always a factor of
f(u)n at locations u = 1 + k*n, integer k, k >=0.

3.6.16.11.4  If x is a prime factor of f(u)n and x = n then there is only one
occurence of the factor x = nin the interval 0 <= u <x and thatisatu =1.

3.6.16.11.5 If x is a prime factor of f(u)n and x = 2In + 1, integer I, | >=1, then it
will repeat n - 1 times in the interval 0 <= u < x.

3.6.16.11.6  If x is a prime factor of f(u)n and x = 2In + 1, integer I, | >=1, then it
will be located at the Unity Root locations in the interval 0 <=u <,
u™n =1 (mod Xx).

From these factor properties we can make the following assertion

For any number P = f(u)n, prime exponent n, to test the primality of P we only need to
perform trial division on P for all prime numbers of the form 2In + 1 less than the
square root of P.

The key point is that primes numbers of the form 2In + 1 are rarer than ordinary
primes because, of course, not every integer is of the 2In+1 form. Therefore any
primality test using trial division will not have to perform nearly as many trial
divisions when testing prime candidates f(u)n, as would have to be performed for any
arbitrary prime candidate, i.e. the trial division only divides by numbers of the 2In+1
form.

In the smallest exponent case, n = 3, there are 11 primes less than 100 of the form
61+1

{7,13,19, 31, 37,43, 61, 67, 73, 79, 97}

This is actually quite a lot but it is still less than the total of 26 primes, the primes not
of the form 61+1, less than 100 which are

{2,3,5,11, 17, 23, 29, 41, 47, 53, 59, 61, 71, 83, 89}

For larger exponent n, they become more scarce as, of course, do all primes.
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Primality testing of very large numbers, e.g. 1000 plus digits, cannot be exhaustively
performed by trial division since there are far too many primes and computational
capability is not sufficient to do all the necessary trial divisions in any reasonable time
span. Nevertheless trial division, using say the first million primes, is a good start to
quickly eliminate composites. If we pick a prime candidate of the form f(u)n then,
from what has just been said, we can go much further with the trial division, i.e. we
can start with a larger prime candidate than might ordinarily be chosen since the first
million primes, of the form 2In + 1, will reach to a much larger trial divisor than the
millionth prime.

Example
Let n = 1009 (prime)
The first 17 primes of the form 21*1009 + 1 are, for | = 1 to 99,

{10091, 12109, 30271, 40361, 42379, 64577, 72649, 88793, 94847, 121081, 125117,
131171, 149333, 155387, 163549, 179603, 199783}

If we over-estimated the density of these primes and said there were 20 in the range 0-
200000 we would have 1 prime every 10000. If we kept with this density we could
reasonably estimate that the first million primes of 21*1009 + 1 form would stretch all
the way to 10710. Thus, if we had a number of 20 digits, i.e. a maximum value of
10720 - 1, and hence a square root < 10710, then this tentative list of the first million
primes would be sufficient to provide an exhaustive divisibilty test for a number
constructed from f(u)1009. In fact, since the prime density decreases as the density of
ordinary primes decreases with increasing number size, this is a pessimistic argument
and the first million primes of the 21*1009 + 1 form would arguably stretch well
beyond 10710. That said, we have to keep in mind that any prime candidate we test
must be of the form f(u)1009, which has a term u”~1008 in the f(u) polynomial, and so
the prime candidate will not be a small number. Nevertheless, our first million trial
divisions will stretch to prime factors at least of size 10710, whereas the first million
ordinary primes are of order 107 (TBD - needs some verfification work - there are
about 6.6 million, use In(n) / n etc.)

The smallest prime candidate we can pick for f(u)1009 is when u = 2. In which case
we have the Mersenne number 'M1009', f(2)1009 = 271009 - 1 which has about 300
digits.

[Mersenne Primes are discussed again in more detail in section (4.4)].

If we wanted to perform an exhaustive prime divisibility test we would have to divide
by all primes of the form 21*1009 + 1 all the way up to approx 107150. Obviously,
this is not possible. Nevertheless, as a trial division, we could start by dividing M1009
by the 17 primes given above. Similarly for f(3)1009 and any number f(u)10009.

All that said, trial division is only a first stage and even for special numbers f(u)n,
with their considerably reduced number of prime factors, it will not currently suffice
for 1000 digit plus numbers.
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Following trial division, a second stage of primality testing, for example a Fermat
type test using MFST, Section (4.5), could then be employed to eliminate virtually all
composites. However, since the MFST test is Monte-Carlo based, and therefore some
composites could pass as primes, a more advanced primality testing algorithm has to
be employed to conclusively prove primality or otherwise. See (ref TBD) for more
details.

3.7 Determination of Unity Roots

3.7.1 Introduction

The determination of Unity Roots u, equation (3.1.1) is a problem in solving an (n -
1)'th order Diophantine equation for which, at least to the authors knowledge, there
appears to be no general analytic solution.

For the n = 3 case, see the example below, the problem reduces to the solution, in
integers, of a Quadratic. Similarly, for n = 4, the problem reduces to the solution,

again in integers, of a cubic. Since the quadratic solution is almost trivial we shall
give an example of a cubic Unity Root problem.

3.7.2 Example n=3

For the n = 3 case the Unity Root Polynomial is a quadratic so we can apply some
standard techniques.

By (3.6.4) the Unity Root Polynomial f(u)3 is

3.7.21 fu)3=1+u+u"2

And, by (3.6.7), the Unity Roots, (mod a"3) are obtained by solving

3.722 1+u+u"2 = 0(mod a"3)

This can be re-written in an algebraic form for some integer k, k >0

3723 1+u+u"2=k*a"3

And, in principle, we can solve this using the analytic solution for a quadratic
equation, albeit we do not know the value of integer k.

Comparing (3.7.2.3) with a standard quadratic equation
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3.7.24 Ax"2+Bx+C=0

we get for the coefficients A,B and C

3725 A=1,B=1,C=1-k*a"3

The quadratic discriminant D is defined by,

3.7.26 D=B"2-4AC

which, upon substituting for A, B and C from (3.7.2.5), gives

3727 D=4k*a"3-3

and, for non-complex solutions, this must satisfy

3.7.28 D>=0

and therefore, by (3.7.2.7),

3.7.29 4k*a"3-3>=0

This is clearly true for all a> 0, k > 0.

For integer solutions the discriminant must also be a perfect square as the general
solution is:

37210 u=[-B+-_/D]/2A

with the two solutions in positive and negative form

37.211u=(-B+ _/D)/2A

37212 u=(-B-_/D)/2A

Therefore we must have, for some integer I, | >0,

3.7.213D=1I"2

using (3.7.2.7) this implies
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3.7.2.14 (4k*a"3 - 3) = |2

To complete this cubic example, if we look at the specific case of a = 7 we see that if
k = 1 then (3.7.2.14) gives us an integer solution for | = 37 since

3.7.2.15 (4*7"3-3)=37"2

It seems remarkably fortuitous that the first value of k to try, i.e. k = 1, immediately
gives a perfect square result. This certainly isn't the case fora=13,n=3, (a= 13 is
the next ‘2In + 1’ prime after a = 7) we find that k = 489 and this gives u = 1036 or
-1037.

The significance of this good fortune, if there is any, currently eludes the authors.

Nevertheless, continuing with the solution for n =3, a =7, with | =37, i.e. D= 3772,
we get for the Unity Roots u, using (3.7.2.11) and (3.7.2.12),

3.7.2.16 U = {18, -19}

Since -19 = 324 (mod 773), the complete set of Unity Roots a = 7, n = 3, in positive
primitive form, is

3.7.2.17 U = {1, 18, 324}

Notice that 324 = 1872. From the properties (3.3.1) and (3.3.2), the roots are cyclic
and, with the generator u = 18, the other roots are u*2 and u”0, i.e. 324 and 1
respectively.

With u = 18 the sum of the roots, as given by (3.6.14.4), is confirmed to be exactly
73, i.e. 343.

3.7.218 1+18+18"2 =343

Note that if we use u = 18”2, i.e. 324, the sum becomes

3.7.219 1+ 324 + 32472 = 307*343

which is also seen to be a multiple of the modulus, 7/3.

3.7.3 Algorithmic Determination
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Although we do not have an analytic solution to determine Unity Roots for an
arbitrary base and exponent we can, by an algorithmic method, obtain one or more of
the Unity Roots (mod a”*n) given the Unity Roots (mod a). Due to the cyclic group
properties of the roots all other roots can be then be generated from a single root.

An analytic solution for the determination of Unity Roots (mod a), for arbitrary
exponent, is a separate problem for which we also do not have an analytic solution.
For small base they are not too hard to find and a method based upon the Unity Root
polynomial is given following in section (3.7.5)

The algorithm to determine Unity Roots (mod a”*n) works on the principle that the
Unity Roots, u™n (mod a™n), are also Unity Roots u*n (mod a”(n - 1)),
u™n (mod a™(n - 1)) etc. down to u™n (mod a).

Algebraically expressed, if

3.7.3.1 u™ = 1(mod a™n)
then

3.7.3.2 u™ = 1(moda™(n- 1))
3.7.3.3 u™ = 1 (mod a™(n-2))

etc. down to (mod a), i.e.

3.7.3.4 u™ = 1(mod a)

To use the method we have to first locate the Unity Roots for equation (3.7.3.4)

If we know a Unity Root “ul’ (mod a) such that ul is in the region 1 < ul < a, then we
know that a Unity Root (mod a"2) must lie at some location ul + s1*a for some to-be-
determined integer s1, s1>= 0, since, from what has been said above, if ul is a Unity
Root (mod a”2), it must also be a Unity Root (mod a).

[Note that here ‘ul’ denotes a non-trivial root (mod a"1), ‘u2’ denotes a non-trivial
root (mod a’2), etc.].

ul is thus defined by the usual congruence

3.7.3.5 ul™n = 1(mod a)

and, for some integer s1, s1>= 0, we know that
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3.73.6 (ul+sl*a*l)*n = 1 (mod a"2)

We now have to find the integer s1. If we expand the Ihs and take residues (mod a"2)
then the only term that remains is linear in the constant integer s1 and we get

3.73.7 ul™+n*sl*a*ul™n-1) = 1 (mod a"2)

This can easily be re-written as a Linear Diophantine equation in unknowns s1 and t1.

3738 n*sl*a*ulMn-1)+tl*a"2 = 1-ul™n

This does have solutions which can be determined as per Euler’s Algorithm. We
know there must exist a solution, without recourse to any of the usual GCD
considerations of the coefficients of s1 and t1, because if a is of the 2In + 1 form there
must be Unity Roots (mod a”*n) and hence Unity Roots for all exponents fromnto 1
as per (3.7.3.1) to (3.7.3.4).

Of the two solutions to (3.7.3.8) only sl is of use and t1 can be junked. With s1
determined, we can now define an integer u2

3.7.3.9 u2=ul+sl*a"l

such that, by (3.7.3.6),

3.7.3.10 u2*n = 1 (mod a"2)

And, since we now have a Unity Root u2, (mod a”2), where u2 is in the region

1 <u2 < a2, then we know that a Unity Root (mod a”*3) must lie at some location

u2 + s2*a"2 for some to-be-determined integer s2, s2 >= 0. This is because, from
what has been said above, if u is a Unity Root (mod a”3), it must also be a Unity Root
(mod a™2).

So, for some integer s2, s2 >= 0, we know that

3.7.3.11 (u2 + s2*a"2)"n = 1 (mod a"3)

We now have to find the integer s2. If we expand the Ihs of (3.7.3.9) and take residues
(mod a”*3) the only term that remains is linear in the constant integer s2 and we get

3.7.312 u2"n+n*s2*a"2*u2™n-1) = 1 (mod a"3)

Which can be written as a LDE in unknown’s s2, and t2.
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3.7313n*s2*a"2*u2Mn-1)+t2*a"3 = 1-u2™n

Once again, this does have solutions for s2 and t2 and, of the two solutions, only s2 is
of use and t2 can be junked.

In this way we continue the whole process to get a Unity Root (mod a™n).

In general, with the r-1'th Unity Root 'ur_1' determined such that

3.7.3.14 (ur_1)*n = 1 (mod a’\(r-1))

then for some, to-be-determined integer sr_1, sr_1 >=0, the r'th Unity Root ur is
located at

3.7.3.15 ur = (ur_1) + sr_1*a™(r-1)

such that

3.7.3.16 ur™n = 1 (mod a’*r)

And, substituting for ur using (3.7.3.15) into (3.7.3.16), expanding and taking residues
(mod a”r), we get the following LDE in the unknowns 'sr_1"and integer, 'tr_1' (sr_1is
the (r-1)'th. iterate of constant s, similarly for tr_1).

3.7.3.17 n*sr_1*a™r*(ur_1)Mn-1) +tr_1*a"r=1- (ur_1)"n

This LDE can be solved for sr_1 to give the r'th Unity Root ur. The process repeating
to determine the (r+1)'th Unity Root etc. until r = n when we get the desired n'th order
Unity Root u given by

3.7.3.18 u=un_1+sn_1*a™n

The integer unknown 'sn_1' (the n-1'th iterate of s) is obtained by substituting for u
from (3.7.3.18) into

3.7.3.19 u™n = 1 (mod a™n)

and solving the resulting LDE.
This method, although laborious, is ideally suited for a computer.

The limitation with this method is that we do need to know a Unity Root (mod a)
other than the trivial u = 1. In some cases this is not too difficult to obtain.
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3.7.4 Example: Unity Roots (mod 77 3)

Find the Unity Roots u (mod 73),

3.74.1 u"3 = 1 (mod 7"3)

Suppose ul is a Unity Root to the (mod 7) problem

3.74.2 ul”3 = 1(mod?7)

then the solution set U1 of Unity Roots to (3.7.4.2) is, by simple hand-calculation,

3743 UL={2 4}

Let us use the lowest of these two roots

3.744 ul=2

then, by (3.7.3.9), we know the Unity Root (mod 7/2) is of the form

3.745 u2=2+7*sl

and we must now solve for s1

3.7.46 u2*3 = 1 (mod 72)

Substituting for u2 from (3.7.4.5) into (3.7.4.6) and eliminating terms in 72 and
higher, since they are congruent to 0 mod 7°2, we get

3747 2°3+3*202*7*sl = 1 (mod 7°2)

Factoring 22 this becomes

3748 4*(2+3*7*sl) = 1(mod 7°2)

Defining x as
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3749 x=(Q2+3*7%*sl)

then (3.7.4.8) can be re-written

37410 4x = 1(mod 772)

which can be expressed as a LDE in unknowns x and y

3.7411 4x-49y=1

and has solutions, for arbitrary integer t,

3.74.12 x=-12 + 49t

37413 y=-1+4t

We only require the solution for x. Substituting for x back into (3.7.4.9), and tidying-
up, we now get a LDE in sl and t as follows

3.7414 T7t-3*s1=2

which has solutions, for arbitrary integer w,

3.7415 sl=4+7w

3.7416 t=2+3w

and so we now have a solution for s1. Substituting for s1 into (3.7.4.5) we get a
solution for u2 that satisfies (3.7.4.6), i.e.

37417 u2=2+7%4+7w)

which simplifies to

3.7418 u2=30+7"2*w

For w = 0, we get the primitive, positive root u2 = 30 and verifying

3.7.419 3073 = 1 (mod 7"2)
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So far, so good. Now we finally have to determine the Unity Root (mod 7/3).
Defining u3 as follows, for some unknown integer s2,

3.7420 u3=30+7"2*s2

we must now solve for s2 by substituting for u3 into the Unity Root equation

37421 u3"3 = 1(mod 713)

and solving as a LDE.

We could, at this stage guess u3 since in its most primitive form we know it is in the
range 1 <u3 < 773. If we tried s2 =0, 1, 2, 3, 4, 5, 6 then, by trial and error, one of
these seven values would satisfy u3"3 = 1 (mod 7/3). Nevertheless this is only
practical for small bases. Secondly, it would not constitute a general algorithmic
method. For those impatient, the correct value for s2 is 6 which gives u3 = 324.
However, let us go through the algorithmic process to verify this.

Substituting for u3 from (3.7.4.20) into (3.7.4.21) and eliminating terms in 73 and
higher, since they are congruent to 0 (mod 7/3), we get

37422 30"3+3*30"2*7"2*s2 = 1(mod 7"3)

factoring 302

3.7.423 3072*(30 +3* 772 *s2) = 1 (mod 7/3)

defining x as

37424 x=(30+3*7"2*s2)

then (3.7.4.23) can be re-written

3.7.4.25 30"2 * x = 1 (mod 7°3)

which can be expressed as a LDE in unknowns x and y

3.7426 30"2*x-343*y=1

which has solutions, for arbitrary integer t,
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3.74.27 x=226+ 343t

3.74.28 y=593+30"2*t

We only require the solution for x. Substituting for x back into (3.7.4.24), we now get
a LDE in s2 and t as follows

3.7429 T7*t-3*s2=-4

which has solutions, for arbitrary integer w,

3.7430 s2=6+7w

3.7431 t=2+3w

So we now have a solution for s2 and, substituting for s2 into (3.7.4.20), we get a
solution for u3 that satisfies (3.7.4.21)

37432 u3=30+7"2*(6+7w)

which simplifies to

3.7.433 u3 =324+ 7"3w

For w = 0 we get the positive root u3 = 324 and, verifying this,

3.7.4.34 324"3 = 1 (mod 7°3)

We can use this root to find the other non-unity, Unity Root. Note that for a cubic,
prime base, there are three roots of which one is unity. The second root we have just
found is 324 and, since the roots sum to a"3 in the cubic case, Theorem (3.6.14), we
know the third root must be 343 - (1 + 324) = 18. Alternatively, we could use 324 as
the generator where the other root = u3”*2 (mod a"3). Doing so we find that

32472 = 18 (mod 7/3) and hence 18 is confirmed as the other root. Conversely, note
that 324 = 1872 (mod 7/3). Since any element is also a generator we would expect
324 to be a perfect square (mod a"3).

The complete set of cubic Unity Roots, (mod 7°3), is therefore

(3.7.4.35)  U={1,18, 324}
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3.7.5 Unity Roots (mod a)

The algorithmic method to determine a Unity Root (mod a™n), as detailed in the
previous section, requires prior knowledge of a Unity Root (mod a). Unfortunately, at
least to the authors knowledge, there appears to be no general analytic method by
which Unity Roots (mod a) can be determined for arbitrary n. Nevertheless, tabulating
the Unity Root polynomial f(u)n, equation (3.6.4) and table (3.7.7), can give us some
roots relatively easily.

Theorem (3.6.13) proves that for arbitrary u, u is Unity Root (mod f(u)n), i.e.

3.75.1 u™n = 1 (mod f(u)n)

If we interpret f(u) as the base modulus 'a'

3.7.5.2 a=f(u)n

then we see that u™n is a Unity Root, (mod a), as desired.

3.75.3 u™ = 1(mod a)

Of course, there are only certain values f(u) can take so it would appear that we
cannot use this method for any arbitrary a. However this is not so and we can actually
find all desired Unity Roots, (mod a), by using f(u)n as the base. We will see that f(u)
is often composite with the desired factor a, i.e. for integer k, if f(u)n = k*a then u*n
is still a Unity Root (mod a) according to (3.7.5.1). Note too that it is also a Unity
Root (mod k).

3.75.4 Example,u=5,n=3

Suppose we pick a Unity Root u = 5 then the cubic Unity Root function f(u)3 is

f(U)3=1+5+5%

f(5)3=31
Therefore we know that
573 = 1 (mod 31)
and, verifying, we see this is true since

S"3=4*31+1
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Although the base modulus f(u)3 = 31 is not a perfect power, we know from section
(3.7.3) that we will be able to obtain, by algorthmic methods, the roots
for any base that is a power of 31, given this root u = 5.

3.75.5 Example,u=7,n=3

Suppose we pick a Unity Root u = 7 then the cubic Unity Root function f(u)3 is

f(u3=1+7+7"2

f(7)3 =57

Therefore we know that
773 = 1 (mod 57)

and, verifying, we see this is true since
"3=6*57+1

Furthermore, if we expand the whole of 773, as given immediately above, into prime
factors and their powers, i.e.

MN3=2*3"2*19+1

then we also see that

773 = 1 (mod 2)
773 = 1 (mod 3)
773 = 1 (mod 3/2)
773 = 1 (mod 19)

and therfore u = 7 is a Unity Root mod 2, 3, 3*2 and 19

3.7.6 A perfect power f(u)

If the base f(u) is composite there might be values of u for which it is a perfect power
or contains, as a factor, a perfect n'th power. This is the case for u =18, n = 3 as in the
following example.

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 148
R J Miller, sections1to7_18122004.doc Issue 0. Draft D



3.7.6.1 Example,u=18,n=3

Suppose we pick a Unity Root u = 18 then the Unity Root function f(u) for exponent
n=23is

f(u)3=1+18 + 18"2

f(18)3 = 343
Therefore we know that
1873 = 1 (mod 343)
and, since,
343=7"3
we have a Unity Root, u = 18, (mod 7°3)
1873 = 1 (mod 7/3)

It is important to note here that both the exponent n = 3 and the perfect power in the
base modulus is also 3. Since they are the same we see that u = 18 is a cubic root to
the cubic modulus a*3 = 773 and we have effectively found (by luck) a Unity Root
(mod a"3).

It is 'lucky" in that we picked a value u = 18 which just so happened to have an f(u)3
function which contained, as a factor, a perfect cube. In this case the f(u)3 value was
exactly 73 albeit it could equally well have been some multiple k*7/3 and still be
valid.

3.7.7 Tabulation f(u)

(TBD)

3.7.8 How does this help us find Unity Roots (mod a)?

Suppose we pick an arbitrary value for a. For now we assume a is an odd prime. The
exponent will always be assumed to be odd, prime, n >= 3. The value a will also have
to be of the 2In + 1 form to be of interest, i.e. have n roots within the interval [0, a*n).

[Note that if a is an odd prime but not of the form 2In + 1, and n != a, then it has one
and only one primitive Unity Root at u = 1 and all other primitive roots at 1 + k*a’n,
integer k, k >=1. If a is prime and n = a, and therefore cannot be of the 2In + 1 form,
there is one and only one Unity Root within each Minimal Residue Sequence , size
a™n/n, at location 1 + k*a™(n - 1), integer k, 0 <=k <n].
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To find a Unity Root (mod a) we would look down the column for exponent n and see
where a appears as either the value of f(u)n or as one of its factors. We then read
across to find which value of u generates the value f(u)n.

For example, suppose we require the Unity Root for
a=41,n=5

We note 41 =2 * 4 *5 + 1 hence the value a = 41 is of the 2In + 1 form. If we look
down the n =5 column to find the first occurence of 41 as a factor of f(u)5 then we
see that the value of f(u)5 = 11111 (=41*271) at u = 10 and so 10”5 =1 (mod 41).
Since 271 is the other factor, we also know that 10"5 =1 (mod 271).

Because there is always a value of f(u) for whatever integer u we choose, We can
arrive at the conclusion that every integer u, is a Unity Root, for some base f(u),
exponent n.

3.7.9 Special Cases, (mod a)

3.79.1 a=2n+1

Section (2.6.11) states that for prime modulus a, exponent n such that a is of the form
given by (3.7.9.1) then the residue r, (mod a), for any integer X, 0 < x < g, as given by,

3.79.2 x™n = r(mod a)

can only either be +1 or -1. What we do not know is whether the residue is -1 or +1.
However, if the residue is -1 we know the conjugate residue at (a - x) is +1 and vice
versa. If we know just one value x (excepting x = +1 and x = -1, see further) which
gives a residue of +1 or -1 then, since all the roots are cyclic, the other n-1 roots are at
locations x"2, x"3 etc. We will eventually cycle through all n roots that give the same
residue. The value x acts as the generator of the group.

[Note that the root x = +1, which gives a residue of +1, cannot be used as a generator
since repeated exponentiation gives the same value +1. Likewise for the root at
X =a - 1 which has the residue r = -1].

To find all the roots we simply have to pick an initial value, say x = 2, determine its
residue and then find all the other n - 1 roots by cyclic generation. Once we have all
the roots for, say residue r = +1, the remaining n values of x, which are not roots of
+1, are the roots for the conjugate residue, a - x (mod a).

3.7.9.3 Example

a=11,n=5
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Firstly, we see a is of the 2n + 1 form so we know it has 5 Unity Roots
x5 = +1 (mod 11)

and 5 conjugate roots
(11-x)"5 = -1 (mod 11)

I we start with x = 2 we find that this has a residue r = -1 since
275 = -1 (mod 11)

Therefore, to get the next root of -1, we use X = 2 as a generator and the remaining
roots, not including -1, are thus x =4, x = 8, x = 5 since

272 = 4 (mod 11)
273 = 8 (mod 11)
2™ = 5 (mod 11)

Verifying we see that, as expected,

475 = -1 (mod 11)
875 = -1 (mod 11)
585 = -1 (mod 11)

The other root is given by x = -1, i.e. X = 10 (mod 11). Thus, the five roots with a
residue of -1 are

(2,4,5,8, 10}
and this leaves the roots of +1 as

{1,3,6,7,9}

3.8 Composites

3.8.1 Introduction

In this section, we shall show that the Unity Roots of a composite can be determined
from the Unity Roots of the prime factors.

3.8.2 Theory: Unity Roots of Factors

We will work with an arbitrary modulus A which, within this paper, is normally either
A=aor A=a™.
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If the base A is composite, comprising two unique co-prime factors k and m, i.e.

3821 A=km

and, if u is a Unity Root (mod a) such that, by the usual definition,

3.8.22 u™ = 1(modA)

then expanding u”n in quotient remainder form we get

3823 un=I*A+1

Substituting for A from (3.8.2.1) in terms of its factors k and m

3.8.24 u™M=1*km+1

we see that the Unity Root u is also a Unity Root of the factors k and m since

3.8.2.5 u™n

1 (mod k)

3.8.26 u™n

1 (mod m)

Denoting a Unity Root of factor k by u(k) and that of factor m by u(m) where
0 <u(k) < k”™n, 0 <u(m) <m”n then, by definition,

3.8.2.7 u(k)*n = 1 (mod k)

and

3.8.2.8 u(m)*n = 1 (mod m)

Thus, by (3.8.2.5) and (3.8.2.6), for some to-be-determined, integer constants c(k) and
c(m), the Unity Root u of the composite A can be expressed in terms of the Unity
Roots u(k) and u(m) of its factors, k and m respectively, as follows

3.8.2.9 u=u(k) +c(k)*k
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3.8.2.10 u = u(m) + c(m)*m

In such a form we see that equations (3.8.2.5) and (3.8.2.6) are simultaneously
satisfied if we can find constants c(k) and c(m). This can be done by equating (3.8.2.9
and 3.8.2.10) and solving for c(k) and c(m) as unknowns of a LDE.

Before proceeding we shall examine how many Unity Roots there are so we can
determine the number of equations to solve.

Defining the number Nk of Unity Roots for factor k as follows

3.8.2.11 Nk = number of Unity Roots, u*n = 1 (mod k),

Then Nk can have one of the following possible values

Nk=nifk=2In+1,0<u<k”n
Nk=1ifkl=2In+1and k!=n, 0 <u <k”"n
Nk=1ifk=n,0<u<k™n/n
Nk=nifk=n,0<u<k"n

Similarly, defining the number Nm of Unity Roots for factor m as follows

3.8.2.12 Nm = number of Unity Roots u*n = 1 (mod m)

Then Nm can have one of the following possible values

Nm=nifm=2In+1,0<u<m™n
Nm=1lifm!'=2In+1andm!=n,0<u<m™n
Nm=1ifm=n0<u<m™n/n
Nm=nifm=n,0<u<m™n

Finally, defining the number Nkm of Unity Roots for the composite A (= km) as
follows

3.8.2.13 Nmk = number of Unity Roots u*nh = 1 (mod A)

then the composite A has Nmk Unity Roots given by the product of Nk and Nm

Nmk = Nm * Nk
Nmk =1, nor n"2, see (3.8.2.11) and (3.8.2.12)

Returning to equations (3.8.2.9) and (3.8.2.10); because there are Nk values of u(k)
and Nm values of u(m), equation (3.8.2.9) actually comprises Nk equations and
equation (3.8.2.10) comprises Nm equations. If we equate them, which we shall do so
in a moment, we will have Nm*NKk separate equations (= Nmk by (3.8.2.13)), which
cannot all possibly be dependent.
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Since the expressions (3.8.2.9) and (3.8.2.10) are linear in the constants, by equating
them and rearranging, we get

3.8.2.14 c(k)*k"n - c(m)*m”n = u(m) - u(k)

which are the aforementioned Nmk LDEs in the 2Nmk unknowns c(k) and c(m).
These LDEs can be solved by by algorithmic methods. Of course if Nmk is n"2 this is
a lot of LDEs to solve. Fortunately we do not have to solve this many. Firstly, and
most importantly, we know that the roots u are cyclic and all we have to find is a
single, non-unity, Unity Root to act as a generator for all other Unity Roots. One
might then think we can go from having to solve a maximum of n2 equations to
merely having to solve only one. Perhaps, not surprisingly, the truth lies in between.

We will proceed assuming each factor k and m has n roots

3.8.215 Nk =n

3.8.2.16 Nm=n

and therefore Nmk has, by (3.8.2.13), n"2 possible roots.

3.8.2.17 Nmk = n”"2

Excluding the trival root +1, the number of non trivial roots is given by

3.8218 Nmk-1=n"2-1

Since each factor has Nk = Nm = n - 1 non trivial roots, all of which can be derived
from one of them as generator, the total number of independent generators ‘Ng’ is
given by

3.8.219 Ng=(Nmk-1)/(n-1)

Substituting for Nmk from (3.8.2.18)

3.8.220 Ng = (n"2-1)/(n- 1)

and factoring out (n - 1) we get for Ng

38221 Ng=n+1
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Thus the total number of independent, non-trivial generators for the composite a,
comprising two, odd prime factors k and m, is (n + 1). For instance if n = 3 there are 4
generators. The following Example Data illustrates this.

3.8.3 Example Data

3831 a=91,k=7,m=13
u(7) = {1, 18, 324}
u(13) = {1, 1036, 1160}

9173 = 753571

N91 =N7*N9 =9
The nine Unity Roots of 913 are

U(91) = {1, 9948, 59320, 69267, 244903, 304222,
439401, 449348, 684303}

Since
Nk=Nm=3

Then
Nkm = Nm*Nk =9
And the number of generators
Ng(91) = (Nm*Mk - 1) / (Nm - 1) =4

Four possible generators are {9948, 59320, 69257, 304222} and the other roots they
generate, by squaring (in the cubic case), are given by

994872 = 244903 = 1 (mod 91°3)
5932072 = 439401 = 1 (mod 91/3)
692672 = 684303 = 1 (mod 91°3)

30422272 = 449348 = 1 (mod 91°3)
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3.8.4 Mulitple Factors

We can generalise the above arguments to r prime factors. In this case the maximum
total number of Unity Roots, given each factor had n roots, would be n”r

3841 Ng=("r-1)/(n-1)

If not all roots have n factors, i.e. some (most) may have only the single trivial root +1
if they are not of the 2In + 1 form, then n”r in (3.8.4.1) is replaced by n”r' where r' is
the number of factors with n roots.

In example (3.8.5), given below, only one of the two factors, namely 7, has 3 Unity
Roots since n = 3 and it is of the 2In + 1 form. The other factor has only one root so
the total number of generators is 1, according to (3.8.4.1) where 1 = (3*"1-1) / (3-1).
If the modulus A is an, as is the most common modulus used throughout this paper,
and a is composite, i.e. a = km, then A”n = a"n = (km)”~n. We can re-cycle the same
arguments above using the base A = a”*n and replacing k with k”n and m with m”n.

If the base a is prime, even though the modulus a™n is no longer prime, it is the only
unique prime factor and therefore, in terms of the number of roots, it is the same as
for a prime modulus.

Section (3.9) gives a more detailed exposition on determining Unity Roots for
composites, with regard to the Pythagorean case, including some lengthy examples. A

couple of examples for odd exponent are given below. For more detail in
understanding the process see also section (3.9).

3.8.5 Example

3851 n=3a=14k=2,m=7

The Unity Roots of the composite a, and factors k and m are

3.8.5.2 U(14) = {1, 361, 1353}

3853 UQ) ={1}

3.8.5.4 U®7) ={1, 18, 324}

Since the composite 14 only contains a single prime factor of the form 2In+1 (= 7)
there are only three roots for the composite. These are not the same as the factors
however, as will be seen.
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For the factor k = 2, by equation (3.8.2.9), we know that all U(14) are of the form

3.855 u_0(14) = +1 +c_0(2)*2"3
u_1(14) = +1 + c_1(2)*2"3
u_2(14) = +1 + ¢_2(2)*2"3

where there are three constants ¢_i(2), i =0, 1, 2 to be determined for each of the three
U(14) roots.

For the factor m = 7, by equation (3.8.2.10), we know that all U(14) are also of the
form

3.8.5.6 U_0(14) = +1 +c_0(7)*7"3
u_1(14) = +18 + ¢_1(7)*7"3
u_2(14) = +324 + ¢c_2(7)*7"3

Equating each root u_i(14), i =0, 1, 2 in (3.8.5.5) with (3.8.5.6), we get the following
three LDEs, each in two unknowns, namely the constants c¢_i(2) and c_i(7),1=0, 1, 2

3857 ¢ 0(2)*2"3-¢c_0(7)*7"3=0

3.85.8 c_1(2)*2"3-c_1(7)*7"3 =17

3.85.9 c_2(2)*23-c_2(7)*7"3 = 323

Since, by their cyclic properties, we can get all the roots from a single solution, say
u_1(14), we need only solve one of the LDEs (3.8.5.8) or (3.8.5.9) to get the two,
non-unity roots. Nevertheless, solving all these LDEs gives, for arbitrary integer
constants f, g and h we get

3.8.5.10 ¢_0(2) = f*773
c_0(7) = f¥2°3

3.8.5.11 ¢_1(2) = 45 + g*7"3
c_1(7) =1+ g*2"3

3.8.5.12 ¢c_2(2) = 169 + h*713

C_2(7) = 3 + h*2"3
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To get the constants within the 0 < c_i < 14”3 range, simply set f, g and h to zero and
then substitute back into either (3.8.5.5) or (3.8.5.6) to finally give for the three roots
of the composite 14

38513 U(14) = {1, 361, 1353 }

These can be verified as correct

3.85.14 36173 = 1 (mod 14"3)

3.85.15 135373 = 1 (mod 14/3)

and, by the cyclic property,

3.85.16 36172 = 1353 (mod 14"3)

3.9 Pythagoras and Unity Roots

3.9.1 Prime base a

For n = 2, arbitrary base (composite or prime), there are always at least two Unity
Roots +1 and a*2 - 1 in the interval 0 < u < a"2. If the base a is prime there are only
two roots, (mod a) or (mod a”2), written in the positive form as the set U as follows

3911 U={+1,a%2-1}

It is usually simpler to use the negative form for clarity of algebraic manipulation and
-1 is often used in place of a"2 - 1, i.e. we write U as

39.1.2 U={+1,-1}

In particular, for prime base a, we shall see that it is always the negative Unity Root
-1 that is responsible for Pythagorean triples.

3.9.1.3 Theorem: Pythagoras, Negative Unity Root Mapping

If the base a is prime and (b,c) is a Candidate Pair, (mod a"2), such that b maps to ¢
via the Unity Root u, i.e.

3.9.1.3.1 ¢ = u*b (mod a"2)
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and, if (a, b, ) is a Pythagorean triple, then the Unity Root responsible for the

mapping is always negative, i.e. u = -1.

Proof

Writing the Pythagoras Equation as
"2 - b2 = a2

and factoring the Ihs

(c+Db)*(c-b)=a"2

then, by Theorem (1.14), we know that if the base a is prime then the factor (c - b) is

such that
c-b=1

This implies that the other factor (¢ + b) is
c+b=a"2

Taking residues (mod a"2)
¢ = -b (mod a"2)

and comparing this with (3.9.1.3.1) we see that
u=-1

If u were to be +1 then we would have
¢ = b (mod a"2)

rearranging
c-b = 0(mod a*2)

which implies for integer |
c-b=I*a"2

If I =0, this implies ¢ = b and we get
2*p"2 = an2

which has no integer solution

If | 1= 0, then
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|c-b|>=a"2

which will not give us a Unity Root gap, since Theorem (1.12) proves that, for prime
base a, ¢ - b < a, where ¢ > b as per the convention throughout this paper.

We thus conclude that if (a, b, ¢) is a Pythagorean triple then the Candidate Pair (b,c)
is such that ¢ = -b (mod a*2) and b maps to c¢ via the negative Unity Root only.

We shall see that for composites this is only true for one or more factors but not all of
them.

3.9.1.3.2 What does Theorem (3.9.1.3) mean physically?

For prime, odd base a, a > 2, the entire residue sequence x"2 (mod a*2), for

0 <= x < a2, is symmetric about the mid-point which is actually the half-integer point
(@*2) / 2. Any Candidate Pair (b,c) is such that the b value lies in the lower half and
that, by Theorem (3.9.1.3), the value c is a mirror image of b about the centre point,
lying in the upper half of the residue sequence, ¢ > a2 / 2. Alternatively stated, c is
the value b flipped about the centre point. However, by Theorem (1.14), we know that
c is numerically one greater than b. The only way to satsify these two Theorems is if b
is exactly the largest integer not greater than the mid-point and that c is the smallest
integer, not less than the mid-point. Since the mid-point is half integral at a”2 / 2 we
conclude that, for prime base a,

b=@"2-1)/2
c=(@"2+1)/2

One can verify that the resulting triple (a, b, c) satisfies the Pythagoras equation
(1.1.2).

3.9.2 Composites base a

If a is composite there are two roots for each unique prime factor of a and hence there
are 2”r roots, where r is the number of unique, prime factors. For simplicity we shall
proceed assuming r = 2, i.e. only two unique prime factors.

Let a be composite with two, unique prime factors k and m, i.e.

3.9.21 a=k*m

Each prime factor has two roots, (mod a"2), denoted u(k) and u(m)

3922 U(K) ={+1,k*2-1} = {+1, -1} (mod k"2)
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3.9.23 U(m)={+1, m"2-1} = {+1, -1} (mod m"2)

From what has been said about the Unity Roots of composites, section (3.8.2), the
Unity Roots u, (mod a"2), for some integer constants c(k) and c(m), will be of the
form

3.9.2.4 u=u(k) + c(k)*k"2

3.9.2.5 u=u(m) +c(m)*m2/2

With two factors there are four separate roots for the composite (two for each unique
prime factor) given by the set U(km)

39.26 U(km)={u O,u l,u2,u3}

And, for each of the four roots in the set, there are four constants c(k) and four
constants c¢(m), i.e. eight constants in all (8= 2*n”2, see section (3.8.2) equations
(3.8.2.9) and (3.8.2.10) ), which satisfy the equations

3927 u_0=u(k) +c_0(k)*k"2

3.9.2.8 u_0=u(m)+c_0(m)*m"2

3929 u_1=u(k)+c_1(k)*k"2

3.9.2.10 u_1 =u(m) + c_1(m)*m~"2

3.9.2.11 u_2 = u(k) + c_2(K)*k"2

3.9.2.12 u_2 =u(m) + c_2(m)*m"2

3.9.2.13 u_3 = u(k) + c_3(k)*k"2

3.9.2.14 u_3 = u(m) + c_3(m)*m"2

At this stage we do not know exactly which roots u(k) are to be inserted in which

equation. For example, is u(k), in the expression for u_0, equation (3.9.2.7), equal to
+1 or —1? Similarly for all the other seven equations (3.9.2.8) to (3.9.2.14). We also
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need to determine the 8 constants ¢_0(k), c_0(m) etc.. To do this we equate the
respective expressions for u_0, u_1 etc to get four LDEs, each in two unknowns
which are the constants ¢_0(k), ¢_0(m) etc.

3.9.2.15 ¢ 0(k)*k"2 - ¢_0(m)*m”2 = u(m) - u(k)

3.9.2.16 ¢_1(k)*k"2 - ¢_1(m)*m"2 = u(m) - u(k)

3.9.2.17 ¢_2(k)*k"2 - c¢_2(m)*m”2 = u(m) - u(k)

3.9.2.18 ¢_3(k)*k"2 - c¢_3(m)*m”"2 = u(m) - u(k)

Since each root u(m) and u(k) is either +1 or -1, there are four combinations for their
difference given by u(m) - u(k) on the rhs of the above equations.

3.9.2.19 ¢_0(K)*k"2 - ¢_0(m)*m"2 =0

3.9.2.20 c_1(k)*k"2 - ¢_1(m)*m"2 = -2

3.9.2.21 ¢_2(K)*k"2 - ¢_2(m)*m”2 = +2

3.9.2.22 ¢c_3(k)*k"2 - ¢_3(m)*m”"2 =0

In fact, since u(m) - u(k) = -( u(k) - u(m) ), and all u(k) and u(m) are restricted to +/-1
only, only half the equations are actually unique. For instance, (3.9.2.20) is the
negative equivalent of (3.9.2.21) where the constants linking the two equations are
givenby c_2(k) = -c_1(k) and c_2(m) = -c_1(m). Similarly, the two equations
(3.9.2.19) and (3.9.2.22) are identical since -0 = +0. Solving (3.9.2.19) we get

3.9.2.23 ¢_0(K)*k"2 = ¢_0(m)*m~2

Which gives, for co-prime factors k and m, arbitrary integer |,

3.9.2.24 ¢_0(K) = I*m"2

3.9.2.25 ¢_0(m) = I*k"2
Since equations (3.9.2.19) and (3.9.2.22) are identical, we get for ¢_3(k) and ¢_3(m)
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3.9.2.26 ¢_3(k) = ¢_0(K)

3.9.2.27 ¢_3(m) =c_0(m)

Inserting for c(0)k from (3.9.2.24) into (3.9.2.7) we get the zero'th order Unity Root

3.9.2.28 u_0 = u(k) + I*(km)*2

We would get the same result for u_0 if we had inserted for c(0)m from (3.9.2.25)
into (3.9.2.8).

With u(k) = +1 we see that u_0 is the familiar unity, Unity Root (mod a*2). Using
equation (3.9.2.3) we get

3.9.229 u_0=+1+I*a"2

With u(k) = -1 we get the conjugate unity, Unity Root (mod a”*2). This expression can
be thought of as also deriving from the duplicated equation for ¢_3(k) and ¢_3(m), see
(3.9.2.22).

3.9.230 u_0=-1+I*a"2

What about the other two, non -trivial, i.e. non-unity, Unity Roots given by solving
equation (3.9.2.20) and (3.9.2.21). Firstly, as prior mentioned, we need only solve one
of them, say the first one (3.9.2.20). Doing this will give us ¢c_1(k) and c_1(m). If we
multiply (3.9.2.21) by -1, we see that

3.9.2.31 ¢c_2(k) = -¢_1(K)

3.9.2.32 ¢_2(m) = -c_1(m)

We have to be slightly careful here in that if we want positive roots we have to put
either ¢_1(k) and c_1(m) or ¢_2(k) and c_2(m) in the more general solution form.
Assuming ¢_1(k) and ¢c_1(m) are positive then ¢_2(k) and ¢c_2(m) are adjusted as
follows, for arbitrary integers s and t.

3.9.2.33 ¢c_2(k) = -c_1(k) + s*m"2
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3.9.2.34 ¢_2(m) = -c_1(m) + t*k"2

We get ¢_1(k) and c_1(m) by solving the LDE (3.9.2.20) and, in doing so, we have
now determined all eight constants, ¢_0(k), ¢_0(m) to c_3(k), c_3(m) as specified in
equations (3.9.2.7) to (3.9.2.14).

Of course, this method generalises to any number of unique prime factors and not just
two as specified above.

The fact that we can derive the upper-half constants c_2, ¢_3, from the negative of the
lower-half ¢_0 and ¢_1, also reduces the number of LDEs from n"2 to actually
n"2 /2, i.e. from 4 to 2 in the Pythagorean case.

Section (3.8.2) showed that the constants c(k), c(m) can be obtained by solution of a
LDE if the Unity Roots of the prime factors are known. Of course they are always +/-
1 for n = 2 so there is no problem in computing c(k) and c(m).

Having established the form of the roots for prime or composite base, the main aim of
this section is to show that for composite base, if (b,c) is a Candidate Pair, (mod a"2),

such that b maps to ¢ via a Unity Root u, then the Unity Root u is of the negative form
for one or more of the prime factors k but not for all prime factors.

3.9.3 Theorem: Pythagoras Negative Unity Root Mapping

If the base a is composite with m unique prime factorsk 0,k 1,k 2, ...k r...
k (m-1), 0 <=r<m,i.e. ais factored as

3.9.3.1 a=k 1*k 2% ..k r"2..k_(m-1)

and (b,c) is a Candidate Pair such that b maps to c via the Unity Root u, i.e.

3.9.3.2 ¢ = u*b (mod a"2)

then the Unity Root u is of the 'negative form' (explained shortly) for one or more of
the prime factors k but not for all prime factors.

A Unity Root u (mod a”2), of a composite base a, is considered of the 'negative form'
when it is expressed using the negative unity root u(k_r) of the r'th prime factor k_r of
the base a (3.9.3.1), i.e. with u(k_r) given by

3933 ukn=-1
then the negative form of the Unity Root u, as in (3.9.3.2), expressed using u(k_r) is

given by
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3.9.34 u=uk r)+ck n*k M2
Proof
If we look back at equations (3.9.2.15) to (3.9.2.18) for the case of two unique, prime

factors k and m, we had four possible combinations for forming the sum u(m) - u(k),
given for each prime factor there were two roots, +1 or -1, i.e.

3.9.35 U@m)={+1,-1}

3936 UK) ={+1, -1}

and the four possible differences are given by

3.9.3.7 Um)-UK) ={0,-2,+2,0}

Of the four combinations, the +2 and 0 resultant is a linear (-1 factor) combination of
the -2 and 0 solutions. Thus there were in fact only 272 / 2 linearly independent
combinations.

For m unique prime factors, k_r, 0 <= r < m, the number of linearly independent
combinations grows exponentially as 2”(m - 1). Nevertheless, there is only one case

whereby the Unity Root u is a combination of only positive Unity Roots for each of
the factors, i.e.

3.9.38 u(kr)=+lforO<=r<m

In such a case, the Unity root of the composite can be written in any one of the
following m different forms for each of the m prime factors k_0 to k_(m-1).

3.9.3.9 u=+1+c(k 0)*k 072
u=+1+c(k_1)*k_1/2

U= +1 + c(k_ry*k_rh2

U= +1 + c(k_(m - 1))*k_(m - 1)A2

If we equate any pair of equations in (3.9.3.9), for example the equations for factor
k_0and k_r, we get the equation
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3.9.3.10 c(k_0)*k 072 - c(k_r)*k_r"2 =0

which, since all the factors are co-prime, has the general solution, for arbitrary integer
I,

3.9.3.11 ¢(k_0) = I*k_r"2=0

3.9.3.12 c¢(k_r) = I*k_0"2=0

Equating any pair of terms in (3.9.3.9) will give a zero on the rhs as the +1 Unity Root
always cancels to leave 0. Thus, every one of the equations is similar and there is only
one consistent, general solution for the r'th constant c(k_r), arbitrary integer |, given

by

3.9.3.13 o(k_r) = I*(k_1/2%k_272% . k ™2 .. k_(m - 1)"2)/k_r"2

i.e. c(k_r) is the continued product of the squares of all the prime factors k_r,
0 <=r < n excepting the factor k_r.

This then gives for the solution for the Unity Root u of the composite a, as

3.9.3.14 u=+1 + I%(K_172*k_272* ..k "2 ... k_(m - 1)"2)

which, by the definition of the composite base a (3.9.3.1), is just

3.9.3.15 u=+1+ I*a"2

For any value | other than | = 0 this gives non-primitive Unity Roots, i.e. | u|> a2
and outside of the [0,a"2) interval. Thus we find that the Unity Root +1 for the
composite base is comprised of the +1 Unity Roots of all its factors.

If we do a similar analysis for the conjugate Unity Roots, u(k_r), for all the m factors
kr,0<=r<m,i.e.

39316 u(k_r)=-1for0<=r<m

we will arrive at the solution

39317 u=-1+I*a"2

i.e. the negative Unity Roots for the prime factors combine to give the negative Unity
Root of the composite.
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Generalising these two special cases where all the Unity Roots of the factors are either
+1 or -1, equation (3.9.3.4) expands, for 0 <=r < m, into the following m equations,
for each particular Unity Root u,

3.9.3.18 u=u(k_0) + c(k_0)*k_072
u=u(k 1) +c(k 1)*k_1"2

U= uk_r) + c(k_r)*k_rm2

U= +(k_(n - 1) + c(k_(m - 1))*k_(m - 1)"2

For the trivial Unity Root, u = +1, we set all u(k_r) = +1, 0 <=r <m. Likewise for the
conjugate unity Unity Root, u = -1, we set all u(k_r) = -1. In between these two
extremes, all other m”2 - 2 Unity Roots u will be obtained from some combination
whereby at least one of the Unity Roots of the factors u(k_r) is different to the others.
i.e. if m - 1 of the factor roots u(k_r) are all +1 then the m'th factor root u(k_(m - 1))
must be -1.

As per Theorem (3.9.1.3), the u = +1 root for composite a cannot be a solution since,
by (3.9.3.2), we would have

3.9.3.19 ¢ = b (mod a"2)

Lastly, since u = +1 is the only case when all the factor roots are also +1, any other
root u, which maps b to ¢ (mod a”2) must always be expressible in terms of at least
one negative Unity Root, -1, of one or more of its prime factors.

3.9.3.20 What does this Theorem mean physically?

Referring back to the same question (3.9.1.3.2) for prime base, Theorem (3.9.1.3), it
means that there is at least one prime factor k such that, when examining a residue
sequence (mod k~2), there will be symmetry in the residue sequence about the mid-
point k"2 / 2 (more generally any point 1*k”2 / 2, integer I, see Example (3.9.4)) such
that the value c is a mirror image of b about this symmetry point. Note, the mid-point
is always given by (c + b) / 2.

For one or more prime factors, k, the mid-point, (c + b) / 2 of the Candidate Pair (b,c)
(mod a”2), is a symmetry point of the residue sequence, (mod k”2), occurring at a
point I*k”2 / 2 for some integer I. Where this is the case, the value b maps to c via the
negative Unity Root, u(k) = -1 (mod k”2), of the prime factor k. Conversely, the
residue sequence will NOT be symmetric about the mid-point if the value b maps to ¢
via the positive Unity Root, u(k) = +1 (mod k”2).
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This does not mean to say there is no onbvious symmetry in the residue sequence
(mod k"2) for those factors k where the Unity Root u(k) is +1. However, the residues
about the mid-point will not appear symmetric when u(k) = +1. The following
Example (3.9.4) will illustrate this.

The above remarks apply to even exponent and, in particular, the Pythagorean case.
Indeed, we have prior shown in section (2.4.4) that this point symmetry can reproduce
all the Pythagorean triples.

In the case of odd exponent, whilst there is always a negative Unity Root, arguments
presented in section (2.5) show that this negative Unity Root mapping cannot produce
an FLT counter-example because it leads to a quotient sum greater than 2, see
equation (2.5.1.14). Nevertheless, odd exponents can produce positive Unity Roots
that can still map a value b to a value c such that b and c are relatively close. By
'relatively’ we mean that the root gap, ¢ - b is less than the base a and consequently
such a Candidate Pair (b,c) might meet the Quotient Condition, Theorem (1.12).

3.9.4 Example

A good example of composite base is the Pythagorean triple (20, 21, 29)

Both the lowest value (a = 20) and the middle value (b = 21) are composite. We shall
start by looking at the standard residue table for the base a = 20, modulus 20"2,
Candidate pair (b,c) = [21,29].

3941 a=20,b=21,¢c=29

We shall split the base into the co-prime factors 4 and 5.

3942 k0=4

3943 k 1=5

Of course, 4 is not actually prime. Nevertheless, it does comprise only one unique
prime factor and, especially when counting Unity Roots for arbirtrary even base, can
be regarded as a prime factor. This is because, like any prime base, it only has two
roots in the Minimal Residue Sequence since 2 is its only factor and 2 also divides the
exponent (n=2) - hence a Minimal Residue Sequence. The two roots in this Minimal
Residue Sequence, are +1 and +7, section (3.5.8). The other key point is that 4 is co-
prime to the other factor 5.

The Unity Roots of the composite base a = 20 and its factors k_0 and k_1 are as
follows
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3.9.4.4 U(20) = {+1, 49, 151, 199, 201, 249, 351, -1 }

3.9.45 U@) ={+1,7,09, -1}

3.9.4.6 U(G)={+1,-1}

[A point of note is that the exponent, n = 2, divides the base and thus the Minimal Residue Sequence
size is actually (20"2) / 2, i.e. 200, although all the Unity Roots have been listed between 0 < u <20"2.
Similarly, for the factor 4, the Minimal Residue Sequence size is actually (4°2) / 2, i.e. 8, although all
the Unity Roots have been listed between 0 < u < 472, This is intentional to avoid extra complication
and keep things simple. If we used only the roots in the Minimal Residue Sequence we would actually
have to use a reduced modulus of 2072 / 2 for u(20) and a reduced modulus of 472 / 2 for u(8). As an
example, if b =21, ¢ =29 and ¢ = u(20)*b (mod 20”2) then u(20) = 249. The value u(20) = 249 is
outside of the Minimal Residue Sequence since it is greater than 20”2 / 2. However, the equivalent root
within the Minimal Residue Sequence is 49 = 249 mod 2072 / 2. Using this root we also find ¢ = u*b
(mod 2072 / 2) but ¢ != u*b (mod 2072). i.e. we have to consistently use a reduced modulus, the size of
the Minimal Residue Sequence, when working only with roots in the Minimal Residue Sequence].

Ignoring the two trivial Unity Roots +1 and -1 (-1 = 399 mod 20”2), the non-trivial,
Unity Roots U(20), in terms of the factor roots u(4) and u(5) are

3.9.4.7 U(20) = { 49, 151, 199, 201, 249, 351 }

and each root expands as follows

3.9.4.8 49=+1+3%4"2
49 = -1 + 2*5"2

151 = +7 + 9%4"2
151 = +1 + 2*5"2

199 = +7 + 12*4"2
199 = -1 + 8*5"2

201 =49 + 12*4"2
201 = +1 + 8*5"2

249 = +9 + 15*4"2
249 = -1 + 10*5"2

351 =-1+ 16*4"2
351 = +1 + 14*5"2

The Unity Root u(20) that maps b = 21 to ¢ =29 is u(20) = 249, i.e.

3.9.4.9 29 = 249*21 (mod 20"2)
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And, by (3.9.4.8),

3.9.4.10 249 = -1 (mod 5"2)

So that the Unity Root u(20) is in the negative form with regard to the Unity Root
u(b) of its factor k_1 =5 since u(5) = -1 for u(20) in (3.9.4.8).

3.9.4.11 29 = -1*21 (mod 5°2)

Examining the residue table (mod 5°2), given below, for the factor k_1 =5, we see
that the residue sequence is symmetric about the mid-point (29+21) / 2 (= 25).

Residue Table a = 5, n = 2

X x*n residue r residue quotient
(mod a”n) (mod a) P

0 0 0 0 0
1 1 1 1 0
2 4 4 4 0
19 361 11 1 14
20 400 0 0 16
21 441 16 1 17
22 484 9 4 19
23 529 4 4 21
24 576 1 1 23
25 625 0 0 25
26 676 1 1 27
27 729 4 4 29
28 784 9 4 31
29 841 16 1 33
30 900 0 0 36
31 961 11 1 38

We see that entries for x = 21 and x = 29 have an identical residue (= 16) and thus
(21,29) is a Candidate Pair (mod 5°2). Since the symmetry point is at x = 25, the
value x = 29 represents a flip of the point x = 21 about this symmetry point, i.e. 29 is a
mirror image of 21.

We confirm that there is a Pythagorean triple to be found for the Candidate Pair
(21,29) by expanding 2172 and 29”2 in quotient, remainder form

39412 217"2=17*5"2 + 16

3.9.4.13 2972 =33*5"2+16
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Subtracting 2172 from 2972 gives

3.9.4.14 2972 - 21"2 = 16*5"2

and we see that the Quotient Gap is 16 i.e. a perfect square (= 42), i.e.

3.9.4.15 2972 - 212 = 20"2

and we get the Pythagorean triple (20, 21, 29).

If we now examine the other factor k_0 (= 4), we see from (3.9.4.8) that u(4) = +1 for
u(20) = 249 i.e. u(20) is only in the positive form for the factor u(4) unlike k_1 (= 5)
which is in the negative form since u(5) = -1. If we look at the residue table (mod 4/2)
for k_0, given below, although not easy to see, the residues about the same mid-point
(29+21) / 2 (= 25) are not symmetric. The symmetry is actually slightly off centre at
the point x = 24. However, no matter how small the offset, it destroys the symmetry at

residue quotient

(mod a)

22
25
27
30
33
36
39
42
45
49
52
56

the mid-point.

Residue Table a = 4,

X Xx"n residue r

(mod a)”™n

0 0 0
1 1 1
2 4 4
19 361 9
20 400 0
21 441 9
22 484 4
23 529 1
24 576 0
25 625 1
26 676 4
27 729 9
28 784 0
29 841 9
30 900 4
31 961 1

We see therefore that Theorem (3.9.3) is confirmed in this example since the

PORPORPROROROROLR

60

symmetry only exists about the mid-point for the factor k_1 (= 5) where u(5) = -1 for
u(20) = 249 but the symmetry does not exist for the factor k_4 (= 4). That is, u(20) is
in the negative form with regard to the factor k_1 but in the positive form with regard
to the factor k_0.
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We shall now examine the dual case of this example, i.e. where the base is the
composite, middle value b = 21, modulus 2172, with dual Candidate Pair (a,c) =
(20,29).

39416 b=21
a=20
c=29

The base b factors into the two unique prime factors 3 and 7

39417k 0=3

39418k 1=7

The Unity Roots of the composite b, k 0 and k_1 are

3.9.4.19 U(21) = {1, 197, 244, 440 }

3.9.4.20 U(7) = {1, 48}

3.9.4.21 UB3) = {1, 8}

Ignoring the two trivial Unity Roots +1 and -1 (-1 = 440 (mod 21"2) ), the non-trivial,
Unity Roots u(21), in terms of the factor roots u(3) and u(7), are

3.9.422 197 =-1+22%32
197 = +1 + 4%772
244 = +1 + 27*3/2
244 = -1 + 5772

The Unity Root u(21) that maps a =20 to ¢ = 29 is u(21) = 244, i.e.

3.9.423 29 = 244*20 (mod 21"2)

And, by (3.9.4.22),

3.9.4.24 244 =-1 (mod 7/2)

So that the Unity Root u(7) that maps a =20 to ¢ =29 is u(7) = -1, i.e. in the negative
from, which is confirmed since
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3.9.4.25

Examining the residue table (mod 7°2), given below, for the factor k_1 =7 we see

29 = -1*20 (mod 7/2)

that the residue sequence is symmetric about the mid-point (29 + 20) / 2 (= 24.5) and

that the residues for a = 20 and ¢ = 29 are symmetric about this point.

Residue Table a = 7,

x"n

residue r
(mod a)”™n

residue quotient

(mod a)

19
20
21
22
23
24

25
26
27
28
29
30

47
48
49

361
400
441
484
529
576

625
676
729
784
841
900

2209
2304
2401

18

43
39
37

37
39
43

18

4
1
0

DS 2O BDN N> P O Wb

=

R O W W oo

=

13
14
16
17
18

45
47
49

In quotient and remainder form the a and c values are

3.9.4.26 20"2 =8*7"2+ 8

3.9.4.27 29"2 =17*71"2 + 8

and subtracting 20"2 from 292

3.9.4.28 2172 - 20"2 = 9*7"2

we see the Quotient Gap is 9, i.e. a perfect square (= 3"2)
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3.9.4.29 2972 - 20"2 = 212

and we get the Pythagorean triple (21, 20, 29)

On the other hand, if we look at the residue table for the other factor k_0 =3, i.e.

residue table (mod 3°2) we see that the residue sequence is not symmetric about the
mid point 24.5.

Residue Table a = 3,

x"n

residue r
(mod a)”™n

residue quotient

(mod a)

19
20
21
22
23
24
25
26
27
28
29
30

34
35
36

361
400
441
484
529
576
625
676
729
784
841
900

1156
1225
1296

O PP O O JIJO >

[ERNN

0

ORrHHORRPOREFEORRE

1
0

40
44
49
53
58
64
69
75
81
87
93
100

128
136
144

Theorem (3.9.3) is thus confirmed since the symmetry only exists about the mid-point

for the factor k_1 (= 7) where u(7) = -1 for u(21) = 244 but the symmetry does not

exist for the factor k_0 (= 3) where u(3) = +1. That is, u(21) is in the negative form

with regard to the factor k_1 but in the positive form with regard to the factor k_0.

Generally speaking, the symmetry that exists for one factor, but not another, is no
surprise since we are trying to equate a symmetry point (k_072 / 2) of a factor k_0
with the symmetry point (k_172 / 2) of a co-prime factor k_1. For instance, in this
later example, trying to equate symmetry ppoints for each factor is equivalent to
solving, for integers s and t, the following LDE

3.9.430 s*7"2/2=1t*(3"2) /2

This does have a general solution for some integer I, | 1= 0, s = 1*7722/2,t=1*3"2/ 2,

but the mid-point is then 1*2172 / 3 which is, of course, outside of the range of

[20,29].
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3.10Summary of Conditions

This section gives a summary of all the conditions and constraints developed in this
section (3) on a triplet (a, b, ¢), were it to be a an FLT counter-example.

If ‘u(a)’ is a Unity Root (mod a”*n), as defined by (3.1.1), then the values b and c of a
candidate pair (b,c) (mod a”*n) are such that

3.10.1 ¢ = u(a)*b (mod a™n)

In the Dual case, if ‘u(b)’ is a Unity Root (mod b”n) then the values a and c of a Dual
candidate pair (a,c) (mod b”n) are such that

3.10.2 ¢ = u(b)*a (mod b"n)
In the Skew-symmetric case, for odd exponent, Section (2.5.1), if ‘u(c)’ is a negative

Unity Root (mod c¢”n), such that u(c)*n = -1 (mod c”n), then the values a and b of the
Skew Candidate Pair (a,b) (mod c”n) are such that

3.10.3 b = -u(c)*a (mod c"n)

[Note that negative Unity Roots have not been specifically discussed in this paper
because, for odd exponent, they are trivially the negative equivalents of the positive
+1 Unity Roots and the theory behind them remains the same].

By arguments in (3.4.6), if u(a) is a Unity Root (mod a”™n) then

3.10.4 u(a)>a

This constraint is also valid in the Dual case for Unity Root u(b), (mod b”™n)

It is conjectured (3.6.15) that the minimum value of a Unity Root ‘Umin(a)’, (mod
a”n) is given greater than or equal to the (n - 1)’th root of the modulus a"n

3.10.4.1 Umin(a) >=(n-1) /a™n

This conjecture is also valid in the Dual case for Unity Root Umin(b), (mod b”n)
Using the definition of the Winding Number ‘w’ (3.4.4), and by arguments in (3.4.6)

concerning the Root Gap, if (b,c) is a Candidate Pair (mod a™n) then the Winding
Number is greater than zero
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3.105 w>0

A non-trivial, Unity Root u(A), to any modulus A, such that u(A)*n =1 (mod A), is a
root to the following congruence for the Cyclotomic, 'Unity Root Polynomial’ f(u(A))
(3.6.4) such that

3.10.6 f(u(A)) = 0 (mod A)

If the modulus A is a multiple of a perfect power of the base a, i.e. A = k*a"n, for
integer Kk, k > 0, then we denote f(u(a)), exponent n, by ‘f(u(a))n’ and re-write (3.10.6)
as

3.10.7 f(u(a))n = 0 (mod a™n)
This constraint is also valid in the Dual case for Unity Root u(b), (mod b”™n)

In the special, cubic exponent case we have, by Theorem (3.6.14), an exact equation

3.10.8 1 +u+u”r2=a"n

This equation is also valid in the Dual case for Unity Root u(b), (mod b”n)
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4 Miscellaneous

This section comprises miscellaneous applications arising from the work presented in
sections (1) to (3). The topics are not central to the main work which is predominantly
about the structure of Residue Sequences and their impact upon Pythagoras and FLT.
Nevertheless, hopefully the topics in this section provide an interesting diversion for
the readers.

4.1 Polynomial Factorisation

An early and falacious proof of FLT was submitted by Gabriel Lame' in 1847 to The
Paris Academy. Essentially, it was based upon the factorisation of the FLT equation
as follows, where q is an n'th root of unity and generally complex.

411 g™-1=0

and

4.1.2 c™n-b™ =(c-g0*b)(c - g*1*b)(c - g*2*b)...(c - g™(n - 1)*b)

[Note that the first factor (c - g"0*b) = (c - b) and the second factor (c - g*1*b) = (c -
gb) where g0 = 1 is the trivial, unity Unity Root and g1 = q, the smallest, non-
trivial Unity Root].

The Lame' proof asserted that the bracketed terms on the rhs in (4.1.2) are co-prime to
each other and, therefore, each had to be a perfect n'th power if the entire rhs was to
be a perfect power, i.e. a™n. The proof was doomed in so much as the factorisation
was assumed unique in the ring of cyclotomic integers, which it isn't for certain prime
exponent termed irregular primes (Kummer 1849). However such irregular promes
are relatively rare. For example, there are only eight irregular primes less than 160
which are {37, 59, 67, 101, 103, 131, 149, 157}.

History aside, using the isomorphism between the complex n'th roots of unity and
Unity Roots (mod a”*n), a similar factorisation can be performed using Unity Roots u,
(mod a’n).

4.1.3 c¢c™n-b™n =(c-ur0*b)(c - ur1*b)(c - u*2*b)...(c - u(n - 1)*b) (mod a”*n)

If b and ¢ meet the Residue Condition (1.2.3) then

4.1.4 c¢c™n-Db™n =0 (mod a™n)

and therefore, using the expansion in (4.1.3) and letting u™0 = 1, u*1 = u, we obtain
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415 (c-b)(c-u*b)(c - ur2*b)...(c - u™(n - 1)*b) =0 (mod a’*n)

The factorisation on the lhs of (4.1.5) pre-supposes that there are n Unity Roots (mod
a”n) which, for odd, prime exponent, is true if a is prime of the 2In+1 form or a is
composite with one or more prime factors of the 2In+1 form.

From what has been said before, (4.1.5) is a necessary but not sufficient condition for
the triple (a, b, c) to be an FLT counter-example. Since it is a congruence, the lhs can
equal any multiple | of a*n. Sufficiency derives from the additional Quotient
Condition (1.4.3) which states that the multiple | must be 1.

The polynomial expansion (4.1.5) could also be deduced, rather than derived by
analogy with (4.1.2), by considering the roots of (4.1.2) - which is the method one
might use when factoring an arbitrary polynomial.

We know immediately that b = c is a root of (4.1.2) and hence (c - b) is a factor.
Furthermore, by the arguments given on Unity Root Mappings in section (3.4), we
know that if ¢ = u*b (mod a™n) then c*n = b”n (mod a™n). Hence,

(c - u*b) = 0 (mod a"n) and thus (c - u*b) is a factor of (4.1.5). Similarly, since the
entire set of Unity Roots is U = {u, u"2, .. u*(n - 1)}, then (c - u*2*b) is also a factor
and, in general, (c - ur*b) is a factor for 0 <=r < n. Hence we get n factors in total
and the polynomial congruence c*n - bn (mod a’*n) factors as in (1.14.2). Of course,

without the congruence condition, one has to revert back to using the n'th roots of
unity denoted by g in (4.1.1).

4.1.6 Example

Let
n=3anda=7

then the smallest, non-trivial Unity Root u is
u=18

By (4.1.3), the polynomial c”n - bn factors as follows

c"3 - b3 =(c - b)(c - 18*b)(c - 18"2*b) (mod 773)

and to meet the Residue Condition
¢"3 - b3 =0 (mod a™n)

which, upon expansion in terms of Unity Roots, becomes
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(c - b)(c - 18*b)(c - 18"2*b) =0 (mod a"n)

If we convert (4.1.5) from a congruence back to an equation we get, for integer I,

4.1.7 (c-b)(c-u*b)(c - ur2*b)...(c - u™(n - 1)*b) = I*a™n

As mentioned, if | = 1 we have met the Quotient Condition and the triple (a, b, ¢) is an
FLT counter-example. So too if | is a perfect power, i.e. | = k”n, then the triple
(ka, b, ) is an FLT counter-example.

Firstly, if n = 2, (4.1.7) reduces to

418 (c-b)(c- u*h) = I*an2

Here we see that if u = -1 then (4.1.8) becomes

419 (c-b)(c+Db)=I*ar2

and expanding the brackets on the Ihs gives

4.1.10 c"2 - b"2 = I*a"2
This confirms the findings in section (3.9) on Pythagoras and Unity Root mappings

that it is only the negative Unity Root (u = -1) that is responsible for generating
Candidate Pairs in solutions to the Pythagoras Equation, i.e.

4.1.11 c=-1*Db (mod a"2)
This may seem obvious since, if the Unity Root were to be positive, then ¢ and b
would be equal since ¢ = u*b (mod a*2). However, the general solution for a positive

root b is actually ¢ = k*a"2 + b for integer k, k >= 0, so it is not a foregone conclusion
that a form of u = +1 cannot be used for the mapping of b to c.

If ais prime in (18.1.10) then, since (c - b) = (c + b) except when ¢ and b are
identically zero, by prime factorisation we are forced to conclude that either

4112 c-b =+l

and

4113 c+b =a"2
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or, for integer s, t, s >= 1, t > s, subject to the condition

4.1.14 | =s*t

then each bracketed term is of the general form

4.1.15 (c-b)=s*a

4.1.16 (c+b)=t*a

The above solutions apply to the general Diophantine equation (4.1.10) where | is not
presumed unity. To avoid any contradictions between (4.1.15) and (4.1.16) notice that
t>s. Since s >=1, t >= 2 s0, invariably, | >= 2.

Without dwelling further on Pythagorean triples, the only values for s and t which
lead to valid solutions, are either

4117 1=+1,c-b=+1,¢c+b=k"2, prime a, c"2 - b"2 = a2

or, for | >= 4, integer k, k >= 2

4118 1>=4,s=1,t=k"2, | = k"2 and so c"2 - b"2 = (ka)"*2

The real motivation for studying the factorisation of (4.1.7) is that it gives us a way to
study the value of 1. If we refer back to section (2.2.5) on the Generalised Fermat
Equation we mentioned 'k’ values, equation (2.5.5.4). The | value in (4.1.7) above is
similar and it would be nice to look at the possible values that occur.

Referring back to equation (4.1.8), which is essentially a Generalised Pythagoras
Equation, for prime a, the factor (c - b) has to be unity by Theorem (1.14). It then
meant that the other bracket (c - u*b) is a multiple of a*2. Indeed, since ¢ = u*b (mod
a™n), ¢ - u*b = I*a"n.

If we suppose a is prime then we have (c - b) = 1 and equation (4.1.7) then becomes

4.1.19 (c - u*b)(c - u*2*b)...(c - u™(n - 1)*b) = I*an

If we refer back to the general n'th order congruence (4.1.5) then only one factor, call
it the r'th factor (c - ur*b), where 0 < r < n, can satisfy the congruence

4.1.20 (c - ur*b) =0 (mod a™n)
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This is the same as saying there are no repeated roots.

We can also derive a similar expression to (4.1.19) for a*n + b™n. If we swap c with a,
such that the Unity Roots are now defined as,

4.1.21 u™n =1 modc"n

and replace b with -b then, for odd exponent only, we can re-write (4.1.3) as

4.1.22 a™n + b"n = (a + u”0*b)(a + urLl*b)(a + u"2*b)...(a + u™(n - 1)*b) mod c™n

and therefore, for integer I, | >0

4.1.23 (a+ u™0*b)(a + url*b)(a+ u"2*b)...(a + ur(n - 1)*b) = I*c™n

Because the original congruence (4.1.5) is precisely a congruence relation, and not an
exact equation, the further development of this factorisation in terms of integral unity
roots has not been developed further and the Authors have left its study outstanding.
No current reference to external work on the matter is currently known but that's not
to say there isn't any!

4.2 Consecutive Identical Residues

Section (1.11) defined the pair of integer values b and ¢ as '‘Consecutive Identical
Residues' if they are such that they form a Candidate Pair satisfying the relation

421 c-b=1

The term 'Consecutive' follows because c is the next integer after b, for positive b, and
that since (b,c) form a Candidate Pair, by definition, they have identical residues (mod
ann).

Consecutive Identical Residues are important since Theorem (1.14) proves that if the
base a is prime then the Candidate Pair must have a Root Gap of unity as per (1.10.1)
hence also (4.2.1) above.

In other words, if we are studying a prime base a, odd exponent, modulus a’*n then
any potential FLT counter-example (a, b, ¢) would be such that the values b and c are
Consecutive Identical Residues. Thus, in principle, if we could prove there are no
such Consecutive Identical Residues, we could dismiss all prime bases as giving rise
to FLT counter-examples and this would prove FLT for any exponent, prime base a.
Alas, Consecutive Identical Residues do exist, except they are scarce, see Observation
(4.2.2.1) below. So the future challenge lies in proving that although Consecutive
Identical Residues exist they are always such that the b value is greater than Bmax,

A Symmetry Analysis of Pythagoras and Fermat’s Last Theorem. 181
R J Miller, sections1to7_18122004.doc Issue 0. Draft D



see Theorem (1.19.1). In experimental data this is confirmed. Indeed, Consecutive
Identical Residues seem to have a b value much greater than Bmax.

For even exponent, odd base a, the symmetry in the residue sequence gives rise to
numerous Consecutive Identical Residues. At its simplest level, if a is odd prime, for
exponent n = 2, there is a symmetry point at the half integer point given by (a"2) / 2.
Because the point is half-integral, the two integer values either side are consecutive,
i.e. if b is the lower value, then b + 1 is the upper value. If the base is even there is
still a symmetry point at a*2 / 2 but it is now integral and there is effectively one
central value. The two integers either side of this are separated by a gap of 2 and are
hence not consecutive.

Nevertheless, an even valued base also has symmetry within the Minimal Residue
Sequence (2.1.2.2) and, if one can factor out an odd factor k, point symmetry about a
half integral point k"2 / 2 can be found for at least one odd prime factor, see section
(3.9.2). That said, Consecutive Identical Residues are only a necessity for odd, prime
base and so to get into a discussion on the symmetry of a composite base, when
talking about Consecutive Identical Residues, is irrelevant. Suffice to say, numbers
such as a = 2"m, integer m, m >= 2, have no odd, prime factor and therefore they have
no half-integral symmetry point. Nevertheless, there still exists a Pythagorean triple
for every such number. This is simply because, being composite, they do not require
Candidate Pairs to be consecutive. Pythagorean triples with a Consecutive Identical
Residue, although common (at least one triple for every prime), they are a mere subset
of all the Pythagorean triples, most having a Root Gap (c - b) much greater than 1.

4.2.2 Observations

Our own theoretical analysis of Consecutive Identical Residues is little developed and
none of it published.

Nevertheless, we have made several observations that are summarised here:

4.2.2.1 The number of Consecutive Identical Residues, 'Nc', for odd exponent n,
prime base a, is given by

4222 Nc=(n-1)

Since Nc is even, when n is odd, there are actually only half this number that are
independent. Every Consecutive Identical Residue (b,c) is accompanied by its
conjugate [a”n - b, a*n - c].

Thus, for n = 3, there is only one unique Consecutive Identical Residue, See (4.2.2.3)
below.
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4.2.2.3 If uisa Unity Root (mod a™n) and b and c are Consecutive Identical
Residues then b maps to ¢ via a Unity Root u

4.2.24 c¢=u*b (moda™n)

Since, by the definition of a Consecutive Identical Residue,

4225 c=b+1

then substituting for b from (4.2.2.5) into (4.2.2.4) and converting from a congruence
to an equation, for some integer I, we obtain a LDE in the two unknowns, b and |.

4226 (u-1)*b+I*a*n=1

Since this LDE is soluble, if (u - 1) and a”*n are co-prime, it implies we can find
Consecutive Identical Residues given the Unity Root. Studying Consecutive Identical
Residues thus becomes, once again, a problem in understanding Unity Roots.

Taking a specific example

4227 n=3,a=7,u=18

and substituting for n, a and u, we get the LDE

4228 17*b+1*343=1

Which gives the solution

4229 b=222,1=11

We thus get a Consecutive Identical Residue, Candidate Pair (b,c)

4.2.2.10 b=222,c =223

and another pair, conjugate to this pair, is

42211 b=120,c=121

Verifying with a computer shows that these are the only two occurrences of a
Consecutive Identical Residue for the n = 3, a = 7 case and only one of these is
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independent. We usually take the smaller of the two, namely the Candidate Pair
[120,121].

Another cubic example

42212 n=3,a=13,u=1036

and substituting for n, a and u, we get the LDE

4.2.2.13 1035*b + 1*2197 =1

Which gives the solution

4.2.2.14 b =1851,1=-872

We thus get a Consecutive Identical Residue, Candidate Pair (b,c)

4.2.2.15 b =1851, c = 1852

and another pair, conjugate to this pair, is

4.2.2.16 b =345, c = 346

A computer search verifies these two as the only occurrences.

4.3 Modified FLT Equation ‘MFLT’

The problem of finding a Candidate Pair is almost trivial and leads to the GFLT
equation (1.8.1). However, since FLT is proven, we know that no such Candidate
Pairs can also meet the Quotient Condition. Is there any way we can obtain a
compromise between far too many GFLT solutions and none when the Quotient
Condition is included?

Fortunately there is a compromise and that is to impose two Residue conditions but no
Quotient Condition. In other words, retain the Standard Residue Condition (1.2.3) and
replace the Quotient Condition (1.4.3) with the Dual Residue Condition (1.17.1)

It has been prior noted in section (1.21) that trying to meet both the Standard Residue
Condition (1.2.3) and the Dual Residue condition (1.17.1) is very difficult. In fact, it
was rather hoped that this might be impossible and so kill off the FLT problem.
Certainly the difficulty in meeting two Residue Conditions seemed impossible as a
random scan of Residue Tables revealed no Candidate Pairs. To put the idea on an
analytic basis however, a study of which potential Candidate Pairs could meet two
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Residue Conditions was made and resulted in a new variant on the FLT equation
(1.1.1), tentatively named the ‘Modified FLT equation' (MFLT), given below, for
integer k, k>0:

431 c¢™n=k*a™n*b n +a™n + bn

If the 'k’ factor is zero then this reduces to the FLT equation. This equation does
actually have solutions.

Due to the volume of work it is generating, its study is to be detailed in a separate
paper, as yet unpublished.

4.4 Mersenne Primes

A Mersenne number, ‘'Mn', integer exponent n, n >= 2, is a number of the form

441 Mn=2"n-1

Section (3.6.16.9.14) came to the known conclusion that if n is composite then Mn is
composite. For instance, if the exponent is composite comprising two unique, prime
factors k and m, i.e.

442 n=k*m

then Mn can be factored, for some integer d, as follows

443 Mn= (2 - 1)(2K - 1)*d

Therefore, if we wish to test the primality of Mersenne numbers, we need only try
testing those where the exponent is prime.

Additionally, from the factor summary in section (3.6.16.11), we can deduce the
following:

To test the primality of a Mersenne number Mn, where n is prime, we only need to
perform trial division on Mn with all prime numbers of the form 2In+1, less than or
equal to the square root of Mn.

The 'square root' bound on trial factors is standard for any prime test based upon
factoring. It hardly needs stating that if a prime factor x is greater than the square root
of P and if it divides P then the other factor is less than the square root of P. Of course
if P is a perfect square then it is composite.
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That trial factors of Mn are of the 2In+1 form is also a known result; see Mathworld,
Ref [4], keyword 'Mersenne Numbers'. Its derivation within this paper is based upon
the Unity Root Polynomial and its factor properties.

We can get a quick and quite reasonable approximation for the upper bound of the
square root of Mn as follows:

Since the exponent n is odd, let

444 n=2m+1

then

445 Mn=2°2m+1)-1

giving the inequality

446 Mn<2°2m+1)

and taking the square root

447 /Mn<2"m* _[2 (the symbol' /' denotes the square root)

since

448 [2<3/2

then

449 [/Mn<3*2%(m- 1)

Of course, for small n less than approximately 30, we could use a calculator to simply
find _/n.

4.4.10 Examples

4.4.10.1 n=11, M11 = 2047

For M11 we find that /M11 < 48. Indeed, 48”2 = 2304. In fact _/M11 < 46 so, the
list of all trial divisors for M11 comprises all primes of the form 221 + 1 less than 48.
This is not a very big list and, in fact, it contains the single prime number 23.This is
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quite a remarkable fact that to test the primality of a four digit number, admittedly a
very special number 2711 - 1, we only need one trial divisor, namely 23. Performing
the division, we see 2047 = 23*89, i.e. 23 is a divisor of M11. The other prime factor
is 89 and, not surprisingly, this is also of the 22| + 1 form, where | = 4.

4.4.10.2 n=13,M13=8191, /M13<96

Primes of the form 26l + 1 less than 96 are 53 and 79 only. None of these two trial
divisors is a factor of M13 so we conclude that M13 is prime.

4.4.10.3 n =17, M17 = 131071, _/M17 < 384

Primes of the form 341 + 1 less than 384 are {103, 137, 239, 307}.
None of these trial divisors is a factor of M17 so we conclude that M17 is prime.

Skipping the prime n=19, for which M19 is also prime, we see in the next example
that M23 is composite.

4.4.10.4 n = 23, M23 = 8288607, _/M23 < 3072

The first prime of the form 461 + 1 is 47. This is a factor of M23 and we find that
M23 = 47*178481 and M23 is therefore composite. The factor 178481, which is
prime, is also of the 461 + 1 form, since 178481 - 1 = 3880*46.

Because of the binary form of a Mersenne Number, primality tests for Mn can be
implemented relatively fast on a computer, i.e. relatively fast when compared with the
primality testing of an arbitrary prime number. Because of this binary advantage, the
search for the largest Mersenne Prime is a continual worldwide project. The published
work on Mersenne Numbers is huge and, as a starting point, readers are referred to
GIMPS 'The Great Internet Mersenne Prime Search’, search the Web for this.

For the layman, a relatively short but informative description can be found in [8]. This
book also gives algorithmic details (but not the mathematics) of the 'Lucas Lehmer
primality test for Mersenne primes.

4.5 A Primality Test 'MFST'

The primality test we detail here is a variant of the Fermat test based upon Fermat's
Little Theorem which we will abbreviate to FST (Fermat’s Small Theorem). We have
consequently named the test 'Modified FST' and henceforth abbreviated it to MFST.

SEE THE STRONG PSEUDOPRIME PRIMALITY TEST (TBD)

Although MFST is similar to the Fermat test its false alarm rate is better than that of
the Fermat test and it also has the potential to reject all Carmichael Numbers.
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Section (2.6.11), which discusses the repetition of residues (mod a), asserts that for
prime modulus a (we shall use 'p' here), exponent n such that

451 p=2n+1

the residue r, (mod p), for any integer value x, 0 < x < p given by

452 x™n=r(modp)

can only be either +1 or -1. Combining (4.5.1) and (4.5.2) we get

453 |x(p-1)/2)|=1(mod p)

If we wished to test the primality of a candidate number p we could examine the
absolute value of the residue |r|, given by (18.6.2), to see if it is unity for all x,

0 <x < p. If we found a residue |r| not equal to unity we could then dismiss the base p
as composite. Conversely, if ALL residues were either +/-1, then we have found a
prime.

Obviously, for any large prime, it is not practical to test every value of x. However, at
worst, you only need to try at most (p - 1) / 2 values for x since, if x*n =1 (mod a),
then (p - X)n = -1 (mod a), i.e. if you know the first half residues 0 <x <= (p-1)/2,
then you automatically know the 2nd half values (p - 1) / 2 < x < p from the first half
values.

Nevertheless, it is still not practical to test this many values for any large prime.
However, if we randomly picked an arbitrary value for x then, in general for an
arbitrary base a, it is unlikely that the residue r will be exactly +1 or -1. If it is we
could then test another x, say x + 1. The residue r for x + 1 is also relatively unlikely
to be +1 or -1, the probability both residues are +1 or -1 then diminishes. In fact,
computation shows this probability diminishes rapidly. So much so only a couple of
tests are needed to reject most composites.

Of course, we haven't put any probabilities on MFST thus far. A complete analysis is
outside the scope of this paper and is to be published in a separate paper should the
authors not find references to it in previously published work.

Before outlining a procedure to perform the MFST primality test it should be noted

that MFST is essentially a variant on the Fermat Test (hence the name we chose for it)
with which it will be compared, see further below.

45.4 MFST Procedure

MFST can be performed with the following steps. It does assume computer Usage.
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45.4.1 Pick (guess, construct) a large, prime candidate p.

4.5.4.2 Do aquick trial division check to eliminate simple composites, i.e. those
with a prime factor less than say a million.

Let the exponent n be given by (4.5.1), so that by re-arrangement

4543 n=(p-1)/2

Start with x = 2, compute the residue r_2

4544 r_2=2"n(mod p)

If the residue r_2 is not +1 or -1, reject a as composite. Otherwise, try the next value
x = 3 and then compute the residue r_3

4545 r_3=3"n(mod p)

If the residue r_3 is not +1 or -1, reject a as composite. Otherwise, try the next value
x = 4, compute the residue r_4 etc. Repeat this proceed for the x'th residue r_x etc.
for O<x<a.

45.4.6 r x=x"n(mod p)

As mentioned above, the test only need proceed fromx =2tox=(p-1)/2. In
reality, we only need try a few values of x to reject composites. Nevertheless, for an
absolute proof, we would need to try all x up to x = (p - 1) / 2. This is just not
practical and, just like the Fermat test, an ironclad answer as to a value's primality can
only be obtained by employing another test, e.g. ref (TBD).

Nevertheless MFST appears to give, at worst, roughly half the false-alarm rate of FST
with which we shall compare some results after a short description of FST. We will

also show algebraically that our test is, in fact, a variant on FST but can avoid false
alarms on Carmichael numbers, see further below.

455 The Fermat Test ‘FST’

The standard, Monte-Carlo type, FST test works as follows: for arbitrary x, if p is
prime, then Fermat's Little Theorem says that

4551 x™p-x=0(modp)
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Here 'X' is referred to in the literature as the 'base’.

[Please note that we have, in this paper, extensively referred to the base as being the
letter ‘a’ which is not the same as the Fermat base. Therefore, to avoid confusion, we
will refer to 'p' in (4.5.5.1) as the 'Fermat base'].

To keep the numbers small, or at least as small as possible, the Fermat base is usually
2 or 3 as a first start, i.e. exactly as for our prime test.

If (4.5.5.1) is not satisfied then the candidate 'p' is definitely composite.

However, if (4.5.5.1) is satisfied, it does not necessarily mean that p is prime, albeit, it
is likely to be prime. That is why FST is, like MFST, a Monte-Carlo test. For any
particular Fermat base x there is a small probability that a composite 'p* will also pass
the Fermat test. Such a composite, that passes the test to a particular Fermat base, is
termed a 'Pseudoprime’ to that Fermat base. To reduce the probability we can try
another Fermat base, exactly as for our own primality test. Nevertheless, there are
certain composites, called ‘Carmichael Numbers', that will pass the test for all bases.
See section (4.5.9) for a list. The lowest such Carmichael number is 561, which
factors as 561 = 3*11*17. This particular number is discussed again in section (4.5.8)
where an algebraic comparison of MFST and FST is given.

4.5.6 Experimental Comparison with the Fermat Test

The below data is produced from a comparison of MFST and FST for three bases,

x =2,3and 5in(4.5.5.1). The test is performed for all odd p, p = 2l + 1, for all integer
I, 0 <1<5,000,000, i.e. all odd numbers p less than 10,000,000. All candidates were
verified as composite by performing a division test using all primes between 0 and
3162 (= _/10,000,000).

Column 1: Prime candidate 'p’

Column 2: Count of MFST false alarms
Column 3: Count of Fermat test false alarms
Column 4: 1 denotes MFST false alarm
Column 5: 1 denotes Fermat test false alarm

Note all the numbers shown fail FST and hence a '1" in the last column. ALL the
numbers 561..512461 are Carmichael numbers, see section (4.5.9) for a full list.

45.6.1 Oddnumbersp=21+1,0<1<4,999,999

561 O 101

1105 0 2 01

1729 1 311

2465 1 4 01

2821 1 501

6601 1 6 01

8911 1 7 01
10585 1 8 0 1
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15841
29341
41041
46657
52633
62745
63973
75361
101101
115921
126217
162401
172081
188461
252601
278545
294409
314821
334153
340561
399001
410041
449065
488881
512461
530881
552721
656601
658801
670033
721801
748657
825265
838201
852841
873181
997633
1024651
1033669
1050985
1082809
1152271
1193221
1461241
1569457
1615681
1773289
1857241
1909001
2100901
2113921
2433601
2455921
2508013
2531845
2628073
2704801
3057601
3146221
3224065
3581761
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10
10
10
11
11
12
12
12
12
13
13
13
13
14
14
14
15
15
15
15
15
15
15
15
15
16
17
18
18
18
19
20
21
21
21
21
22
23
23
23
24

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
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3664585 24 70
3828001 25 71
4335241 25 72
4463641 26 73
4504501 26 74
4767841 26 75
4903921 27 76
4909177 27 77
5031181 27 78
5049001 28 79
5148001 29 80
5310721 30 81
5444489 30 82
5481451 30 83
5632705 30 84
5968873 31 85
6049681 31 86
6054985 31 87
6189121 32 88
6313681 32 89
6733693 32 90
6840001 33 91
6868261 33 92
7207201 33 93
7519441 34 94
7995169 35 95
8134561 35 96
8341201 35 97
8355841 36 98
8646121 36 99
8719309 36 100
8719921 37 101
8830801 38 102
8927101 38 103
9006401 39 104
9439201 40 105
9494101 40 106
9582145 40 107
9585541 41 108
9613297 42 109
9863461 43 110
9890881 44 111
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We see that there are 44 false alarms for MFST compared with 110 false alarms for
FST, i.e. MFST has less than half the false alarm rate.

[Note that there are 664579 primes less than 10,000,000 (10 million) starting with 2
and ending with 9,999,991. Since 2 is the only even prime, there are 664578 odd
primes of the form 21 + 1, | >=1].

It was noted that if the test was performed with only odd numbers of the form 41+3,
i.e. every other odd number such that (a - 1) / 2 was odd, MFST had 3 false alarms
and FST had 11. The data, with format as per section (4.5.6) is given below. Notice
that the Carmichael number 561 is not of the 41 + 3 form.

45.6.2 Odd numbersp=4I+1,0<1<2,499,999
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8911 O 101

90751 O 2 01
1024651 O 301
1152271 O 4 01
1530787 1 511
3116107 2 6 1 1
3375487 2 701
4314967 2 8 01
5481451 2 901
6539527 2 10 0 1
6787327 3 1111

4.5.7 Algebraic Comparison with the Fermat Test

It was mentioned earlier in this section that MFST is really just a variant of FST.
Nevertheless, it appears to give better results, i.e. a lower false alarm rate. We can see
why this is so, as follows.

If we factorise the lhs of FST (4.5.5.1) we get

4571 XM -x=x* (XM (p-1)/2)-1)*(x(p-1)/2) +1)

and so FST becomes

4572 x*(xM(p-1)/2)-1)*(x((p-1)/2)+1)=0(mod p)

The left hand side comprises at least three factors, which we shall denote by A, B and
C as follows

4573 A=X

4574 B=(x(p-1)/2)-1)

4575 C=(xM(p-1)/2)+1)

The solution to 4.5.7.2 using A, B and C now becomes

45.7.6 A*B*C =0 (mod p)

This splits into the following possible equations, any one of which would ensure the
candidate prime p passes FST.
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45.7.7 B =0 (modp)

4578 C=0(mod p)

4579 A*C=0(modp)

4.5.7.10 B*C = 0 (mod p)

4.5.7.11 A*B*C =0 (mod p)

Obviously, by choice of the Fermat base x !'= 0 and we cannot have A = 0.

If we substitute back for B and C from (4.5.7.4) and (4.5.7.5) into (4.5.7.7) and
(4.5.7.8) respectively, upon re-arranging, we get

45.7.12 (x*(p-1)/2) =1 (mod p)

45713 (x(p-1)/2)=-1(mod p)

and combining them

45714 | (xM(p-1)/2)|=-1(mod p)
which is exactly the same as our MFST primality test (4.5.3).

The key point is that FST can pass any one of the five equations (4.5.7.7) to (4.5.7.11)
whereas MFST satisfies only two of them. Consequently, FST can pass false alarms
which are solutions to the three tests (4.5.7.9) to (4.5.7.11). Alternatively stated, any
false alarm to MFST will also be a false alarm to FST, the converse is not true
however so FST, as implemented by equation (4.5.5.1), can only give equivalent or
worse false alarm rejection.

45.8 The Carmichael Number 561

Let p be defined as the smallest Carmichael number,

4581 p=561

which factors as 561 = 3*11*17, then

4582 (p-1)/2=280

and
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45.8.3 x"561 - x = x*(x"280 - 1)*(x"280 + 1)

Let x = 2 then

4.5.8.4 (2°280) - 1 = 67*67 (mod 561)

and, with some modulo arithmetic (27280 = 22140*27140, 27140 = 2"70*2"\70,
2770 = 2735*2735, 235 = 263 (mod 561) ) we find that

4585 27280=1 (mod 561)

Hence, by (4.5.5.1) 561 will fail FST for base x = 2 and will fail MFST for the same
base by (4.5.7.4) and (4.5.7.7).

However, if we now try the base x = 3,

Let x = 2, then

4.5.8.6 (3"280) - 1 =440 (mod 561)

and

45.8.7 (3"280) + 1 = 442 (mod 561)

therefore

4588 |(37280)+1|!=1 (mod 561)

and so, by (4.5.3), MFST correctly rejects 561 as composite to base 3. However, using
(4.5.8.6) for B and (4.5.8.7) for C in (4.5.7.10), we find that

45.8.9 (3280 + 1)*(3°280 - 1) = 440*442 (mod 561)

and since

4.5.8.10 440*442 = 0 (mod 561)

we see that the number 561 fails the FST for Fermat base x = 561.

45.9 Some Carmichael Numbers
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The first 33 (up to approx 500,000) Carmichael numbers are given below.

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657,
52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461,

252601, 278545, 294409, 314821, 34153, 340561, 399001, 410041, 449065, 488881,
512461
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5 Summary of Conditions

This is an edited (shortened) collation of all the conditions and constraints, placed
upon artriple (a, b, c), were it to be an FLT counter-example and as summarised at the
end of each section.

.11

5.1.2

513

5.14

5.15

5.1.6

5.1.7

5.18

The Standard Residue Condition (1.2.3)

b”n = ¢”n (mod a”*n)

The Standard Quotient Condition (1.4.3)

If (b™n=p*a™n+r)and (c*n=qg*a™n+r)thenqg-p=1

The Dual Residue Condition (1.17.1)

a™n =c™n (mod b”™n)

The Dual Quotient Condition (1.18)

If (¢"n =q*b™n +a™n)thenqg =1

The Skew Residue Condition (2.5.1.18)

b~n = -a”n mod cn

The Root Gap, must be less than the base a Theorem (1.12)

Rg=c-b< a

If the base a is prime, the Root Gap (1.10.1) must be unity, Theorem (1.14).

Rg=c-b=1

The Root Gap (1.10.1) must divide the base a

(c-b)la

The Dual Root Gap (1.15.1) must divide the Dual base b
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519 (c-a)|b

5.1.10 The Dual base b is always composite, Theorem (1.15)

5.1.11 By conventiona<b <c, (0.3.3), the Dual Root Gap Rg’ (1.15.1) is
always greater than unity.

Rg=(c—a)>1

5.1.12 The maximum value of b, Candidate Pair (b,c) is Bmax, Theorem (1.19.1).

b < Bmax

5.1.13 The maximum value of ¢, Dual Candidate Pair (a,c) is C'max, Theorem (1.20).

¢ < C'max

5.1.14 For integers x and k, x >=1, k >= 1, the value a is either prime (x = 1) or
composite (x > 1) with one or more factors of the form (2kn+1), i.e.

a=x(2kn + 1)

5.1.15 Forintegersyand I, y >= 2, | >= 1 the value b always composite with one or
more prime factors of the form 2In+1, i.e.

b=y(2In+1)

5.1.16 For integers z and m, z >= 1, m >= 1 the value c is either prime (z = 1) or
composite (z > 1) with one or more factors of the form (2mn+1), i.e.

c=z(2mn +1)

5.1.17 Candidate Pair (b,c), b maps to ¢ by the Unity Root ‘u(a)’, (3.1.1)

¢ = u(a)*b (mod a™n)
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5.1.18 Dual Candidate Pair (a,c), a maps to ¢ by the Unity Root ‘u(b)’

¢ = u(b)*b (mod b™n)

5.1.19 Skew Candidate Pair (a,b), a maps to b by the Unity Root ‘u(c)’, (2.5.1.4)

b =-u(c)*amod c*n

5.1.20 The Unity Root u(a), (mod a™n), is greater than the base a, (3.3.5)
u(@) >a

This constraint is also valid in the Dual case for Unity Root u, (mod b”*n)

5.1.21 The minimum value of a unity root ‘Umin(a)’, (mod a”n) is greater than or
equal to the (n - 1)’th root of the modulus a*n, Conjecture (3.6.15)

Umin(a) >=(n-1) /a™n

This conjecture is also valid in the Dual case for Unity Root u, (mod b”n)

5.1.22 If (b,c) is a Candidate Pair (mod a”n), then the Winding Number ‘w’ (3.4.4) is
greater than zero

w>0

5.1.23 A non-trivial, Unity Root u(A), to any modulus A, such that u(A)*n =0 (mod
a), is a solution to the Cyclotomic Polynomial f(u(A)) (3.6.4) such that

f(u(A)) =0 (mod a)
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7 Data/Software

7.1 Residue Tables

711 n=2,a=3

Residue Table a = 3, n = 2

X x"n residue r residue quotient
(mod a”n) (mod a) jS)
0 0 0 0 0
1 1 1 1 0
2 4 4 1 0
3 9 0 0 1
4 16 7 1 1
5 25 7 1 2
6 36 0 0 4
7 49 4 1 5
8 64 1 1 7
9 81 0 0 9

X x”™n residue r residue quotient
(mod a”n) (mod a) o)
0 0 0 0 0
1 1 1 1 0
2 4 4 0 0
3 9 9 1 0
4 16 0 0 1
5 25 9 1 1
6 36 4 0 2
7 49 1 1 3
8 64 0 0 4
9 81 1 1 5
10 100 4 0 6
11 121 9 1 7
12 144 0 0 9
13 169 9 1 10
14 196 4 0 12
15 225 1 1 14
16 256 0 0 16

Residue Table a = 5, n = 2

~

b4 x"n residue r residue quotient
(mod a”n) (mod a) o)
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Residue Table a = 5,

residue r

(mod a”n)

residue quotient

(mod a)

0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
21 441
22 484
23 529
24 576
25 625
7.14 n=3,a
X x"n
0 0
1 1
2 8
3 27
4 64
5 125
6 216
7 343
8 512
9 729
10 1000
11 1331
12 1728
13 2197
14 2744
15 3375
16 4096
17 4913
18 5832
19 6859
20 8000
21 9261
22 10648
23 12167
24 13824
25 15625
26 17576
27 19683
28 21952
29 24389
30 27000
31 29791
32 32768
33 35937

119

96
38
82
109
0
11
23
42
74
0
76
58
77
14
0
41
18
62
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97
110
125
140
157
175
195
216
238
262
287
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34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

39304
42875
46656
50653
54872
59319
64000
68921
74088
79507
85184
91125
97336
103823
110592
117649
125000
132651
140608
148877
157464
166375
175616
185193
195112
205379
216000
226981
238328
250047
262144
274625
287496
300763
314432
328509
343000
357911
373248
389017
405224
421875
438976
456533
474552
493039
512000
531441
551368
571787
592704
614125
636056
658503
681472
704969
729000
753571
778688
804357
830584
857375
884736
912673
941192
970299
1000000
1030301
1061208
1092727
1124864
1157625
1191016
1225043
1259712
1295029
1331000

54

31
28
122
69

46
88

59

86
73
92
24

26
108

89

116
68
112

106
78
47
19

121
13
57

36
123
17
99

101

52
39

66
118
37
79

56

97
94

71
63
107
84

111
48
67
49

51
83
102
114
0
16
43
87
29
0

4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0
1
3
2
4
0

314
343
373
405
438
474
512
551
592
636
681
729
778
830
884
941
1000
1061
1124
1191
1259
1331
1404
1481
1560
1643
1728
1815
1906
2000
2097
2197
2299
2406
2515
2628
2744
2863
2985
3112
3241
3375
3511
3652
3796
3944
4096
4251
4410
4574
4741
4913
5088
5268
5451
5639
5832
6028
6229
6434
6644
6859
7077
7301
7529
7762
8000
8242
8489
8741
8998
9261
9528
9800
10077
10360
10648
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111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

1367631
1404928
1442897
1481544
1520875
1560896
1601613
1643032
1685159
1728000
1771561
1815848
1860867
1906624
1953125

53
22
44

21
113
32
34

61
98
117
124

715 n=3,a=7

O N WRFROBNWREOBNWLERE

10941
11239
11543
11852
12167
12487
12812
13144
13481
13824
14172
14526
14886
15252
15625

Residue Table a = 7,

residue r

(mod a”n)

residue quotient

(mod a)

W Jo U b WNEHE O

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

27

64
125
216
343
512
729
1000
1331
1728
2197
2744
3375
4096
4913
5832
6859
8000
9261
10648
12167
13824
15625
17576
19683
21952
24389
27000
29791
32768
35937
39304
42875
46656
50653
54872
59319
64000
68921
74088
79507
85184
91125
97336
103823

125
216

169
43
314
302
13
139

288
323
111

342
111

15
162
104
190

132

36
246
293
183
265
202

0

8
232
335
323
202
321

0
274
120
230
267
237

oo PRPOONOPHFORPOODODHFORPRPOODODRFRODRPOODORFRORPOODORFORPEPOOODRFORREO

OO U WNNR P OOOOOOO

e

11
14
17
19
23
27
31
35
40
45
51
57
64
71
78
86
95
104
114
125
136
147
159
172
186
200
216
231
248
265
283
302
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48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

110592
117649
125000
132651
140608
148877
157464
166375
175616
185193
195112
205379
216000
226981
238328
250047
262144
274625
287496
300763
314432
328509
343000
357911
373248
389017
405224
421875
438976
456533
474552
493039
512000
531441
551368
571787
592704
614125
636056
658503
681472
704969
729000
753571
778688
804357
830584
857375
884736
912673
941192
970299
1000000
1030301
1061208
1092727
1124864
1157625
1191016
1225043
1259712
1295029
1331000
1367631
1404928
1442897
1481544
1520875
1560896
1601613
1643032
1685159
1728000
1771561
1815848
1860867
1906624

146

148
253
321
15
27
20

316
288
265
253
258
286

92
225
62
295
244
258

162
64
55

141

328

279

183
148
244
134
167

155
134
286
274
104
125

78
22
181
218
139
293

295
155
272
309
272
167

120
190
216
204
160

90

239
127
13
246
146
62
0
309
309
6
92
230
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322

343

364

386

409

434

459

485

512

539

568

598

629

661

694

729

764

800

838

876

916

957
1000
1043
1088
1134
1181
1229
1279
1331
1383
1437
1492
1549
1607
1667
1728
1790
1854
1919
1986
2055
2125
2197
2270
2345
2421
2499
2579
2660
2744
2828
2915
3003
3093
3185
3279
3375
3472
3571
3672
3775
3880
3987
4096
4206
4319
4434
4550
4669
4790
4913
5037
5164
5294
5425
5558
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125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

1953125
2000376
2048383
2097152
2146689
2197000
2248091
2299968
2352637
2406104
2460375
2515456
2571353
2628072
2685619
2744000
2803221
2863288
2924207
2985984
3048625
3112136
3176523
3241792
3307949
3375000
3442951
3511808
3581577
3652264
3723875
3796416
3869893
3944312
4019679
4096000
4173281
4251528
4330747
4410944
4492125
4574296
4657463
4741632
4826809
4913000
5000211
5088448
5177717
5268024
5359375
5451776
5545233
5639752
5735339
5832000
5929741
6028568
6128487
6229504
6331625
6434856
6539203
6644672
6751269
6859000
6967871
7077888
7189057
7301384
7414875
7529536
7645373
7762392
7880599
8000000
8120601

83

330
50
195
85
69
153

302

36
237
225

272

225
267
132
169
41
97

99
57
223
260
174
314

267
92
167
155
62
237

43
29
307
197
48
209

113
211
300

43
132
230

134
295
146

36
314
300

106
281
188
176
251
76
0
29
169
83
120
286
244
0
246
302
174
211
76

oo PRPOOOCOHFORFRPFPOODOFRORPOOODODHFRORPOOODHFORPOODODHFORFRPOODODHFORPOODORFROFRPFPOODORFRPORRPOODOORPRORPOODOROR OO

5694
5832
5971
6114
6258
6405
6554
6705
6859
7014
7173
7333
7496
7662
7829
8000
8172
8347
8525
8705
8888
9073
9261
9451
9644
9839
10037
10238
10441
10648
10856
11068
11282
11499
11719
11941
12167
12395
12626
12859
13096
13336
13578
13824
14072
14323
14577
14835
15095
15358
15625
15894
16166
16442
16721
17002
17287
17576
17867
18161
18459
18760
19064
19372
19683
19997
20314
20635
20959
21286
21617
21952
22289
22630
22975
23323
23675
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202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

8242408

8365427

8489664

8615125

8741816

8869743

8998912

9129329

9261000

9393931

9528128

9663597

9800344

9938375
10077696
10218313
10360232
10503459
10648000
10793861
10941048
11089567
11239424
11390625
11543176
11697083
11852352
12008989
12167000
12326391
12487168
12649337
12812904
12977875
13144256
13312053
13481272
13651919
13824000
13997521
14172488
14348907
14526784
14706125
14886936
15069223
15252992
15438249
15625000
15813251
16003008
16194277
16387064
16581375
16777216
16974593
17173512
17373979
17576000
17779581
17984728
18191447
18399744
18609625
18821096
19034163
19248832
19465109
19683000
19902511
20123648
20346417
20570824
20796875
21024576
21253933
21484952

118

71
337
118
106
307

41

190
274
258
148
293

13

260
113
251
337
34
34

281
197

97
330
216
104

253
183
139
127
153
223

176
71
34
71

188
48

50
204
125
162
321
265

218
239

57
209
188

337
176
209
99
195
160
0
64
15
202
288
279
181
0
85
99
48
281
118

oo PRPOOOCOHFORFRPFPOODOHFORPOOODODHFORPOOOHFORPOODODHFORFRPOODODHFORPOODORFROFRPFPOODORPRORRPOODOORFRFRORPOODOROR P OO

24030
24389
24751
25116
25486
25859
26235
26616
27000
27387
27778
28173
28572
28974
29381
29791
30204
30622
31043
31468
31898
32331
32768
33208
33653
34102
34554
35011
35472
35937
36405
36878
37355
37836
38321
38810
39304
39801
40303
40809
41319
41833
42352
42875
43402
43933
44469
45009
45553
46102
46656
47213
47775
48342
48913
49488
50068
50653
51241
51835
52433
53036
53643
54255
54872
55493
56119
56749
57384
58024
58669
59319
59973
60632
61296
61964
62638
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279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

716 n=4,a=5
First fifty entries only, 0<=x<50

See b =38, ¢ =41 for smallest Candidate Pair [38,41] mod 5™4.

21717639
21952000
22188041
22425768
22665187
22906304
23149125
23393656
23639903
23887872
24137569
24389000
24642171
24897088
25153757
25412184
25672375
25934336
26198073
26463592
26730899
27000000
27270901
27543608
27818127
28094464
28372625
28652616
28934443
29218112
29503629
29791000
30080231
30371328
30664297
30959144
31255875
31554496
31855013
32157432
32461759
32768000
33076161
33386248
33698267
34012224
34328125
34645976
34965783
35287552
35611289
35937000
36264691
36594368
36926037
37259704
37595375
37933056
38272753
38614472
38958219
39304000
39651821
40001688
40353607

251

57
85
90
78
55
27

323
316
328
22
90
195

197
106
76
113
223
69

22
141
20

111
335

141
78
160
50
97
307

211
260
153
239
181
328

232

342
232
20
55

204
330
41
29
300
174

127
218
279
316
335
342

oocoooFHRroHFEFPFRPOOODOHFODRFRFPFPOODODFORFRPOODORFRFROFRRPOODORORFRPOODORFRFRORPOODORFRORPRPOODODRFRFORPOODORFRORROO

63316
64000
64688
65381
66079
66782
67490
68203
68921
69643
70371
71104
71843
72586
73334
74088
74846
75610
76379
77153
77932
78717
79507
80302
81102
81908
82719
83535
84356
85184
86016
86854
87697
88546
89400
90259
91125
91995
92871
93753
94640
95533
96431
97336
98245
99161
100081
101008
101941
102879
103823
104772
105727
106689
107656
108628
109607
110592
111582
112578
113580
114588
115602
116622
117649
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Residue Table a = 5, n = 4

X x"n residue r residue quotient
(mod a”n) (mod a)

0 0 0 0 0
1 1 1 1 0
2 16 16 1 0
3 81 81 1 0
4 256 256 1 0
5 625 0 0 1
6 1296 46 1 2
7 2401 526 1 3
8 4096 346 1 6
9 6561 311 1 10
10 10000 0 0 16
11 14641 266 1 23
12 20736 111 1 33
13 28561 436 1 45
14 38416 291 1 61
15 50625 0 0 81
16 65536 536 1 104
17 83521 396 1 133
18 104976 601 1 167
19 130321 321 1 208
20 160000 0 0 256
21 194481 106 1 311
22 234256 506 1 374
23 279841 466 1 447
24 331776 526 1 530
25 390625 0 0 625
26 456976 101 1 731
27 531441 191 1 850
28 614656 281 1 983
29 707281 406 1 1131
30 810000 0 0 1296
31 923521 396 1 1477
32 1048576 451 1 1677
33 1185921 296 1 1897
34 1336336 86 1 2138
35 1500625 0 0 2401
36 1679616 241 1 2687
37 1874161 411 1 2998
38 2085136 136 1 3336
39 2313441 316 1 3701
40 2560000 0 0 4096
41 2825761 136 1 4521
42 3111696 446 1 4978
43 3418801 51 1 5470
44 3748096 596 1 5996
45 4100625 0 0 6561
46 4477456 581 1 7163
47 4879681 306 1 7807
48 5308416 291 1 8493
49 5764801 426 1 9223
50 6250000 0 0 10000

7.2 Unity Roots

7.21 n=3

7211a=7
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a is of the 2kn+1 form so there are 3 roots

U ={1,18,324}

7.21.2a=13

a is of the 2kn+1 form so there are 3 roots

U ={1,1036,1160}

722 n=4

7221a=4

Since n|a, the Residues Sequence is Minimal of size 4°4/4, there are only two roots in
the Minimal interval [0,4"\3)

U ={1,63}
where 63=-1 mod 4”3

7.222a=5

a is of the In+1 form so there are 4 roots

U ={1, 182, 443, 624}

7223a=9

a is of the In+1 form so there are 4 roots

U ={1, 182, 443, 624}

7224 a=13

a is of the In+1 form so there are 4 roots
13M4 = 28561

U ={1, 239, 28322, 28560}
Consecutive Idetnical Residues

C = {119, 120, 14280, 14281, 28441, 28442}
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723 n=5

7231a=11

a is of the 2kn+1 form so there are 5 roots

U ={1, 37101, 46709, 104450, 133835}

7.232a=31

a is of the 2kn+1 form so there are 5 roots

U ={1, 13801549, 13979094, 15561847, 28629152}
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