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Richard J. Miller
Email: richard@microscitech.com,
www.urmt.org

This document provides a comprehensive index for all five books currently published on the
subject of Unity Root Matrix Theory, none of which have such an index at the end.

The five published books are as follows:

[1] Physics in Integers

[2] Higher Dimensional Extensions

[3] Mathematical and Physical Advances Volume |

[4] Mathematical and Physical Advances Volume II

[5] A Quark Flavour Model

In addition to an index, this document also contains a glossary of terms and definitions
following the index. This glossary was first added as Appendix (1) in book [2], and has
evolved in each book thereafter, with the latest and most up-to-date in book [5], as
reproduced herein. Note that it is not, by design, a complete URMT Glossary, but merely
covers terms either uniquely defined within URMT or those in wider use, but with a specific
meaning to URMT.

Key

[B] nnn = book B (B=1-5), page nnn

Glossary (Inn) = Glossary entry nn

Multiple entries are separated by commas.

For example

[1] 103: Book I, page 103

[1] 126, [1] 200, [2] 275: Book 1 page 126, Book 1 page 200, book 2 page 275
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A

A matrices [1] 259

... three sets [5] 44

A Matrix AVE [3] 35, Glossary (122), [4] 7

... Evolution [5] 172

A Unity Root Matrix Definition [1] 10, see also Unity Root Matrix
A, [1] 259, also see Raising operator

A, Unity Root Matrix Pythagoras, see A [1] 58
A_ [1] 259, also see Lowering operator
Acceleration eigenvector X, , [1] 153

Action variables, see Dynamical variables
Algorithmic Solution URM3 [1] 217

... Example [1] 242

Alignment of eigenvectors, Glossary (I11), see also Flattening, Compactification
... Geometric [1] 126, [2] 220, [2] 225, [4] 173

... Electromagnetic [4] 405,

... Quarks, URMG [5] 260

Almost trivial solution [1] 181

Alpha scale/divisibility factor

.. URM3[1] 15

... URM4 Scale factors [2] 47

Analytic Pythagoras Solution, C=1, [1] 72, [1] 80
Angles, Tangents and Flatness [1] 132

Angles between eigenvectors, data [1] 174, [1] 178
Angular Momentum

.. Generator matrices J, , , [4] 155, [5] 23

... Commutation relations [4] 158

Angular dynamics, see Euler's Equations, Rigid Body Dynamics
Angular velocity matrix W [4] 275

Annihilators [1] 228, see also Variational matrices

... URM4 [2] p125,

.. AVE [3] 14

... as a Lowering operator matrix, see Raising and Lowering
Arbitrary Vector Embedding (AVE) [3] 3

.. iIn URMZ2 [3] 29

..iINnURM3 [3] 35

...in URM4 [3] 39

... AVE I Introduction [3] 3

... AVE | and rotations [4] 290

.. AVE 11 [4] 35, [4] 81

AVE see Arbitrary Vector Embedding

B

Baker-Campbell-Hausdorf formula [5] 117

Barning Trees [1] 58, [5] 298

Baryon Number Operator [5] 138, [5] 282

Base Set of Eigenvectors and Matrices [5] 4, Glossary (141)
Basis eigenvectors [1] 130
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Beta scale/divisibility factor, see Alpha
Boson integer spin [4] 309

Bottom, see Charge operators and Charges
Bottom quark, see URM6

C
c speed of light, equivalence with eigenvalue C [1] 160, [3] 34, [3] 146, [3] 167, [3] 179,
[3] 213, [3] 222, [3] 229, [3] 251
C Eigenvalue, invariant [1] p97, [1] 107, [1] 314
Calculus
... eigenvectors [1] 156, [2] 331, [3] 467, [4] 449, [5] 379,
... Operators [4] 151
.. Rate Equations [4] 326
Casimir operator, URM3 [5] 41, URM2 [5] 67, [5] 80, [5] 110
Cayley-Hamilton theorem, See Residual Matrix Method
Characteristic Equation, see also Dynamical Conservation Equation
... mass [3] 227
.. URM3[1] 10
... URM3 Pythagoras [1] 59
..URM4 [2]7
... URM4 AVE Il [4] 52
... URMb5 [2] 234
.. URMS5 relativistic [3] 223
Charge operators quantum, see also Isospin
... Baryon Number URM3 [5] 138
... Bottom [5] 281
... Charm [5] 280
... Electric URM3 [5] 141
... Hypercharge URM3 [5] 139
... Strangeness URM3 [5] 136
... Top [5] 281
.. all URMSG [5] 279
Charges quark summary [5] 146, [5] 285
Charm, see Charge operators, Charges
Charm quark, see URM®6
Colour quarks [5] 242
Commutation Relations [5] 18, [5] 35, [5] 111
Compactification [2] 245
Compactification ratio [2] 246, Glossary (132)
Complex Eigenvalues [3] 55
... Riemann hypothesis [2] 34
.. AVE |1 [3] 28, [3] 43, [3] 55, [3] 70
... AVE 1l [4] 60, [4] 62, [4] 91, [4] 190
... Electromagnetic [4] 362
... Harmonic [3] 110
... Quaternions [4] 249
... Rigid body dynamics [4] 333
... URM3 Skew [3] 316, [3] 322, [3] 328
... URM4 [2] 73, [2] 186, Glossary (114)
.. URMS5 [3] 227, [3] 253
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Complex Eigenvectors, see also Pilot Waves
.. AVE | [3] 59, [3] 83, [3] 241, [3] 323
.. AVE 1l [4] 98, [4] 187, [4] 213
... Conjugate and Reciprocal [3] 329
... Electromagnetic [4] 362
... Harmonic [3] 114
... Quaternions [4] 249,
... Rigid body dynamics [4] 333
... Skew [3] 315

.. URM4 [2] 196
Concepts in Mathematical Physics [1] 154
Cones upper and lower [1] 117
Congruence Equations [1] 16
Conjugate
... Coordinates URM4 [2] 27

.. Eigenvectors [1] 69, [2] 317, [3] 451,

[4] 433, [5] 365

... Evolution [5] 163
... Notation, see Conjugate Variables
... Relations [1] 22

... Variables [1] 7, [1] 305
Conservation Equations and Invariants, see also Dynamical Conservation Equation,

Eigenvector Inner Products, [2] 325, [3] 459, [4] 441, [5] 371

Coordinate Equation [1] 22

... solving example [1] 247
Co-primality criteria [1] 15, [1] 63
Cosmological expansion, Hubble, [3] 207
Cosmological phenomenology [3] 207
Cross product
... AVE Il Part | [4] 35, Part 11 [4] 81
... Eigenvectors, see Eigenvectors cross products
... Electromagnetic field tensor form [4] 353
... matrix forms [4] 36

.. Skew A matrix [3] 325
CUbIC case study [1] 46
Curvature [1] 141, [1] 159, see also Flatness
... Numeric data [1] 177, [1] 180

.. URM4 [2] 226
Cyclic groups, see Groups

D

DCE see Dynamical Conservation Equation, Characteristic Equation
Delta baryon particles A*™*, A", A°, A~ [5] 243

Delta Equation [1] 37

Delta variation, see Variational Methods

Determinant

.. URM3[1] 10

.. URM4 [2] 12, [2] 126

... Potential energy [1] 11, [1] 116, [1] 196

... Transforming [1] 14
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... zero-valued [1] 58

Difference set

... Operators and Eigenvectors [5] 27
... A'matrices and eigenvectors [5] 45
... of eigenvectors and matrices Glossary (142)
Dimensional analysis

.. [1] 149

..[2] 24

... see also SPI, Dual SPI, QPI,
Divisibility (or Scale) Factors

.. URM3[1] 38

... URMA4 [2] 47

Doppler Solution - relativistic [3] 171
Doppler Shift - relativistic [3] 195
Down, see Charge Operators, Charges
Down quark

... Isospin state vectors [5] 75,

... URM2 [5] 97

... URM3 [5] 130

... URMBG [5] 269

Dual Conjugate Notation [1] 309
Dual relations [1] 292

Dual Evolution, see Eigenvector Evolution
... Poynting Vector [4] 407

Dual Formulation, time and frequency [4] 170
Duality [1] 292

... Electromagnetic [4] 379, [4] 407

... Scale [1] 160

Dual SPI [3] 105, [3] 116

Dynamical Equations

.. URM3[1]9

... URM3 derivation [1] 41

... URM3 [1] 45, Solving [1] 189

... URMA4 [2] 134

Dynamical Conservation Equation (DCE), see also Glossary (119)

.. AVE | [3] 37, [3] 45, [4] 33

... AVE Il [4] 51, [4] 204

... Characteristic Equation [3] 228, [3] 261, [3] 281
... Electromagnetic [4] 360, [4] 369, [4] 398
... Harmonic [3] 102, [3] 108, [3] 110

... Lorentz transformation [3] 304

... Quaternion body rates [4] 335

... Skew [3](10-3) p321, [3] 332, [3] 352

... Spin, angular velocity [4] 296

... Three-axis expansion [5] 34
..URM3[1]7

.. URM4 [2] 70

... URM5 [3] 179, [3] 251

... URMBG [5] 262, [5] 319

Dynamical Variables
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... Action variables [5] 180
... Number Theory [4] 164
..AVE 11 [4] 39
..URM3P,QR[1]7
..URM4 S T,U[2] 4

.. URM5 M,H,N,J [2] 231

E
E see Residual Matrices
Eigenvalues
... URM3 unity eigenvalue [1] 10
... URM3 Pythagoras [1] 59
.. URM3 [1] 322, [1] 348
... URM3 AVE 1 [3] 36
.. URM4 [2] 28
... URM4 AVE I [3] 43
... URM4 AVE Il [4] 52
.. URMS Pythagoras [2] 237
Elgenvectors see also Eigenvector solution, Eigenvalues, Conservation Equations
... as a basis [1] 130, [4] 108
... as a relativistic event [3] 145
... Cross products [1] 71, Skew [3] 335
... Difference [5] 45
... Expansion - see Expansion of Eigenvectors
... Inner products [1] 70, [1] 131
... Invariants [1] 157, also see Inner products
... Skew [3] 315
... Sum [5] 48
.. Triple products [1] 72
Elgenvector Evolution
... Conjugate [5] 163, [5] 190
... Dual [4] 170, [4] 407
... Electromagnetic [4] 399
... Exponential [5] 157
... and the Hamiltonian [5] 167
... Lorentz transformations [3] 294
... Skew [3] 373
... State Transition [5] 147
... Temporal [2] 213
... Time Domain [2] 297, [3] 445, [4] 427, [5] 339
... Time and Frequency Domain [4] 172, [5] 15
... URM2 [5] 185
... URM3 Pythagoras [1] 124
... URM3 Skew [3] 373
... URM4 [2] 248
... URM4 Temporal [2] 218
.. URMS5 [2] 241
... URMBG frequency-domain [5] 266
.. URMG6 time-domain [5] 252
Elgenvector Matrix[X] [5] 148
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Eigenvector solution,

... URM2 [2] 336, [5] 383

.. URM3 [1] 13, [1] 45

... Pythagoras [1] 64

... URM4 [2] 203

... URMS5 [2] 241

... URMG6 quarks [5] 255

... AVE |, AVE Il see Arbitrary Vector Embedding
... by residual matrix method [1] 64

... by variational methods [1] 11

... electromagnetic [4] 359

... nine different forms [1] 252

... URMS relativistic [3] 234
Eigenvector Vector Space Glossary (117)
Electric Charge Operator

... URM3 [5] 141

... URMS6 [5] 283

Electric field intensity vector E [4] 37, [4] 342
Electromagnetic

... Field Tensor 'EFT' [4] 44

... Field Tensor Formulation [4] 341

... Plane Wave [4] 221, [4] 341

... Quaternion link [4] 384

Embedding URM3 in URM4 [2] 19

Embedding general URMnN-1 in URMn, n>=2, see Lifting Solutions

Energy, see also Potential, Kinetic, DCE

... relativistic [3] 229

... momentum equation [3] 187, [3] 229, [4] 55
Eta-meson 7 [5] 236

Euler's equations of motion [4] 468

Event relativistic URMS5 eigenvector [3] 145
Evolution of Eigenvectors — see Eigenvector Evolution
Evolution of A Matrices [5] 172

Evolution Matrix [5] 157

... Frequency Domain [5] 170

... Hamiltonian [5] 167

Excess dimension Glossary (14)

Expansion of Eigenvectors

... URM3 Eigenvector space [2] 263

... Cosmological Hubble [3] 207
Exponential Evolution [5] 157

Exterior product Glossary (140)

... AVE Il Part | [4] 183, Part Il [4] 203

F

Fermat’s Last Theorem, see Coordinate Equation
Fermion half integer spin [4](13-7) p308
Flattening URM4 [2](12-8) p223, see also Flatness
Flatness [1] 132

... Definition [1] 137
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... Data table [1] 175

Flavour, quarks [5]

Force, see also Standard Physical Interpretation (SPI)
... X, eigenvector [1] 152

... Zero potential 'PS+RU" solution [2] 75

... Induce by a delta variation [3] 48

... Invariant Zero Potential [2] 157
Foundations of URMT [1] 5

Four-vectors, relativity

... position [3] 145, [3] 255

... velocity [3] 183

Five-vectors, relativity [3] 150

Frequency domain evolution operator [5] 170

G

G gravitational constant [1] 158

Gamma scale/divisibility factor, see Alpha
gcd [1] 15

Gell-Mann

... Matrices x,, i=1...8 [5] 195

... Nishijima formula [5] 142

General n-dimensional solution [2] 265

Generators, see also Angular Momentum, Gell-Mann, Pauli, Isospin
... Lie Group [5] 354

... Rotations [4] 153, [4] 159, [4] 455

... Unity roots [1] 238

Geometric and Physical Aspects of Pythagorean Triples as Eigenvectors [1] 103
Geometric Evolution URM4 [2] 222

Global Variation [1] 27, [1] 29, also see Variational Methods
Gravitational constant — see G

Graviton, see Massless Particles

Groups,

... Cyclic [1] 7, [5] 343

... General, GL(2,C), Lie, SU(N) [5] 343

... Orthogonal O(3) [4] 159

.. Unity roots [1] 238

H

h, hbar Planck’s constant, equivalence with eigenvalue C [5] 36
H dynamical variable, see URM5

Hadrons [5] 223

Hamiltonian

... Electromagnetic A matrix [4] 356

... Time-domain Eigenvector Evolution [5] 167
Hamilton-Cayley, see Cayley-Hamilton theorem
Harmonic Oscillator [3] 97

Hermitian

... A Matrices [4] 138, see also Hermitian-like

... Conjugate [5] 101

... Isospin [5] 89
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... Operators [4] 177

... Observables [4] 176
Hermitian-like [1] 11, [1] 24, [1] 307
Higher Dimensional Extensions [2]
Hilbert-Polya Conjecture [2] 34
Hubble constant [3] 207
Hyperboloid [1] 118

Hyperbolic Eigenvectors, see Zero Eigenvectors
Hypercharge

... URM3 [5] 139

... URMS6 [5] 282

I

Infinities [1] 155

Inflation [1] 159, [3] 209

Inner products, see Eigenvectors

... quarks [5] 81, [5] 134

Interval relativistic [3] 24

Invariance Principle [1] 8

... Action, QPI [5] 180

Invariance Standard and Dual [5] 13

Invariance Transformation

... local URM3 [1] 8

... global, see Global variations

Invariant eigenvalue, eigenvector, See Variational Methods
Invariant Zero Potential Conditions URM5 [2] 235
Invariant Zero Potential Solution URM4 [2] 157
... Non-invariant [3] 226

Invariants [1] 157

Inverse Square Law curvature [1] 142, [3] 208
Isospin [5] 75

... Operators [5] 78

... Composite Particles [5] 231

... URM2 [5] 93

J
J dynamical variable, see URM5
Jy.y.. See Angular momentum

K

K Kinetic Energy

Kinetic Energy, see also DCE, Potential energy
..AVE | [3] 37, [3] 45, [3] 77

... AVE 1l [4] 49

... Electromagnetic [4] 360,

... Harmonic Oscillator [3] 108

... Lorentz Transformations [3] 280

... Mass energy [3] 228

... Relativistic momentum term [4] 55
.. Relativistic Doppler solution [3] 179
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... Skew complex [3] 320

... Spin [4] 297

... URM2 [5] 383

... URM3 [1] 7, Pythagoras [1] 37
... URM4 [2] 10, Pythagoras [2] 70
.. URMS5 [2] 234

L

Lagrangian

... Electromagnetic [4] 354

.. QPI[5] 179

Lattice [1] 118, see also Curvature, Flatness

Lambda matrices — Gell-Mann matrices

Levi-Cevita permuting symbol & [3] 327, [4] 156, [5] 91, [5] 356

Lie algebra [5] 356

Lie groups [5] 349

Lifting solutions [2] 101

... URMS5 [3] 219

... URMS relativistic [3] 261

... URMG6 Quarks [5] 252

Local and Global Variations see Variational Methods
Lorentz Transformations [3] 275

Lowering Operator, see Raising and Lowering

M

M dynamical variable, see URM5

Magnetic field/intensity vector H [4] 342

Magnetic field/induction vector B [4] 342

Magnitude vector [1] 113, Glossary (17)

Mass, see also dynamical variable M

... Energy [3] 147

... Four-vector momentum [3] 186

... Potential energy [3] 180, [3] 229

... Relativistic [3] 180, [3] 189, [3] 219, [3] 229, [3] 249

Massive particles, see Potential Energy

Massless particles, graviton, photon, zero potential energy [2] 157, [3] 30,
[3] 74, [3] 180, [3] 188, [3] 224, [3] 233, [3] 253, [3] 259, [3] 267, [3] 271,
[4] 49, [4] 183, [4] 310 [4] 360, [4] 375

Mesons, see also Pion

... hypercharge [5] 138

... tensor products [5] 225

Minus eigenvector Glossary (19)

Minimal/Minimum polynomial, see Residual Matrix Method

Minkowski geometry [1] 161, [1] 295

Minkowski metric [2] 319, [3] 24, see also T operator

Mirror manifold symmetry [1] 161

Modified FLT Equation, see Coordinate Equation

Momentum, see Force, see also Mass

Multiplets SU(2) and SU(3) [5] 237
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N

N dynamical variable, see URM5

Neutrino [4] 311

Non-singular matrix condition URM3 [1] 10
Non-unity Eigenvalues [1] 107, [1] 166, [1] 313
Norm [1] 112, Glossary (18)

Normalising to the DCE Glossary (138)

.. Electromagnetism [4] 377

O

Oblique eigenvector basis [1] 134
Observables [3] 26, [3] 272, [3] 382
... unobservable [3] 250

Omega minus baryon particle Q™ [5] 241

Orthogonal Group O(3) [4] 159

Orthogonality

... of Eigenvectors, see Eigenvector Inner Products

... of Projection Operators [4] 122

Oscillator, see Harmonic

Outer Product [4] 115 - Corrected in the online Errata document
... Tensors, Hadrons [5] 223

P
P dynamical variable, unity root, see Dynamical Variables
Parametric Solution
... URM3 Pythagoras [1]#2 Appendix (A) p80
... URM3 Skew (complex) eigenvectors [3] 343
... URM4 AVE [3] 39
... URM4 Harmonic Oscillator [3] 97
... URM4 Relativistic [3] 259
.. URMS Relativistic 'Doppler' [3] 172
Parlty Transformation [1] 289
Pauli (spin) matrices o;,i =1...3 [5](4-3) p78

Permittivity of free space [4] 37, [4] 343, [4] 352
Physics in Integers [1]
Pi meson, see Pion
Pion [5] 231
Pilot wave [3] 233, [3] 239, [3] 250, [3] 268 [3] 272, [4] 365, [4] 395
Planck
... Constant [3] 124
... Energy, see frequency, below
... Frequency [1] 157
... Length [1] 158
... Eigenvalue C [1] 160
.. Time [1] 158, [2] 221, [3] 203, [3] 206
Plus eigenvector Glossary (19)
Photon, see Massless Particles
Physical Associations [1] 152, see also SPI, Dual SPI, QPI
Position eigenvector vector X_ [1] 153

Potential Energy
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..AVE I [3] 37

... AVE |1 [3] 45, [4] 45

... Determinant [1] 11

... Harmonic Oscillator [3] 77, [3] 98, [3] 108

... Mass [3] 229

... Self-interaction [4] 48

..URM3[1]7

... URMA4 [2] 70,

Potential Equation

... URM3 [1] 17, Pythagoras [1] 38

.. URM4 [2] 58, [2] 325, [3] 459, [4] 441, [5] 371
... Quarks [5] 318

Poynting Vector electromagnetism [4] 343
Poynting Vector formulation [4] 367

Primitive Roots, see Unity Roots

Projection Operators [4] 107

... Reformulation of URMT [4] 128

Proper time relativity [3] 255

PS+RU solution [2] 75

Pythagoras delta equation [1] 37

Pythagoras equation [1] 33

Pythagoras Conditions

.. URM3[1] 33

... URM4 [2] 69

... URMS5 [2] 232

Pythagorean Eigenvalues Glossary (114)
Pythagorean Doubles, see URM2

Pythagorean Triple

... (4,3,5) Analytic solution [1] 171

... Definition [1] 58

... Example Data [1] 97

Pythagorean Triples as Eigenvectors and Related Invariants [1] 57
Pythagorean Quadruplets — URM4, URMS lifting from (0,1,1) [2] 111
Pythagorean Quintuplets, see URM5

Pythagorean Sextuplets as Quarks Example [5] 305

Q

Q dynamical variable, unity root, see Dynamical Variables
Q electric charge eigenvalue - see Electric Charge Operator
Quantisation [1] 155

QPI see Quantum Physical Interpretation

Quantum Physical Interpretation [5] 177

Quark, See also Bottom, Charm, Down, Isospin, Strange, Top, Up
... eigenvector matrix [q] [5] 181

... Evolution [5] 181

... URM2 see Isospin

... URM3 see Strange quark

... URM6 [5] 251

Quaternions

... Algebraic Fundamentals [4] 225
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... Matrix Representation [4] 44, [4] 243

... Single Axis Rotations [4] 259, [4] 287, [4] 321
... Three Axis Rotations [4] 271

... Rates [4] 275, [4] 326

Quintic case study [1] 51

R

R URM3 dynamical variable, unity root, see Dynamical Variables
Raising and Lowering operators [5] 21, [5] 142

.. SU(3) [5] 212

... composite Particles [5] 234

Reals to Integers Conversion [3] 381

Reciprocal Eigenvectors [2] 317, [3] 451, [4] 433, [5] 365
Relativity Special - see Special Relativity

Relativistic time, see Proper time

Relativistic mass, see Mass

Residual Matrices [1] 65

... as projection operators [1] 72

Residual Matrix Method

... URM3 [1] 65

.. URM4 [2] 37, [2] 59, [2] 82, [3] 85

... AVE 11 [4] 207

Rest mass, see Mass

Riemann Hypothesis [2] 34

Rigid Body Dynamics [4] 315, [4] 453

Rotation matrices [4] 159, see also Euler's Equations, Quaternions, Spin

S

S dynamical variable, see URM4
Scale

... duality [1] 160

... factors — see Divisibility factors
... geometric [1] 158

... Transformation [1] 289
Self-interaction energy [4] 48

Sigma baryon particles £*, £°, £~ [5] 243

Simple analytic solution, odd exponent, [1] 205
Singularity [1] 155

Skew URMT, see also Complex Eigenvectors
... Eigenvectors [3] 315

... Evolution (of eigenvectors) [3] 373

... Parametric Solution [3] 343

... T operator [3] 330

Solving Unity Root Matrix Theory [1] 189
Special Relativity [3] 143

... URMS5 Eigenvector as an STR event [3] 145
Special Unitary Groups [5] 343, see also SU(N)
Spectral decomposition [4] 129, [5] 18

Speed of light, see ¢
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Spin [4] 285, see also, Isospin, Rotations, Angular dynamics

... and Massless Particles [4] 306

SPI see Standard Physical Interpretation, Dual SPI

Standard Physical Interpretation [1] 162, [2] 345, [3] 491, [4] 499, [5] 413
State Transition Evolution [5] 147

State Transition Matrix [4] 328, [5] 148

Static non-evolving, invariant eigenvector, Glossary (116)

STR Special Theory of Relativity, see Special Relativity

Strange quark URM3 [5] 129

Strangeness, see Charge operators and Charges

Sum set of eigenvectors and matrices, [5] 48, see also Glossary (143)
Sum and Difference Operators [5] 27

SU(2) [5] 3, [5] 93, see also Isospin, SU(N)

SU(3) [5] 136, see also Gell-Mann, Strangeness, SU(N)

SU(3) vs. URM3 [5] 218

SU(4) [5] 275, see also SU(N)

SU(6) [5] 271, see also SU(N)

SU(N) [5] 343, see also Unitary Transforms

Symmetry [1] 156

Symmetry Groups, see SU(N)

T
T dynamical variable, see URMA4

T Operator Pythagoras, see also Glossary (128a)
.. URM2 [2] 336

... URM3 Conjugation matrix [1] 111

.. URM4 [2] 319

... URM5 [3] 151

T Operator Skew, see also Glossary (128b)

... URM2 [5] 54

... URM3 [3] 330

Tangents [1] 132

Temporal Evolution URM4 [2] 213

Tensor Products, Hadrons [5] 223

Three-fold degeneracy

... eigenvalues of raising and lowering operators A, , A_ [5] 4, [5] 159, [5] 170
... Quark colour [5] 243

... Pythagorean eigenvector solution [5] 51, [5] 264
Time domain evolution, see Evolution

Top, see Charge Operators, Charges

Top quark, see URMG6

Total Angular Momentum (squared) J? [5] 41
Total Isospin (squared) 12 [5] 80

Transition Evolution operator M, [4] 328

... frequency domain M, [5] 154

... time domain M, [5] 148
Two-slit experiment [3] 250
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U
U dynamical variable, see URM4
U ‘U-channel’ quarks, see Raising and Lowering Operators, SU(3)
Up, see Charge Operators, Charges
Up quark, see Down quark
Unified Approach (to URMT formulation) [4] 134
Unifying Concepts of Pythagorean Triples as Eigenvectors [1] 255
Unitarity [5] 114, [5] 169
Unitary
... operators [4] 175
... Transformations [5] 113
Unity Root Matrix Theory
... A Quark Flavour Model [5]
... Foundations [1] 5
... Higher Dimensional Extensions [2]
... Mathematical and Physical Advances Volume | [3]
... Mathematical and Physical Advances Volume 11 [4]
.. Physics in Integers [1]
Unlty Root Matrix
..AVE 1[3]11,[4]7,[2] 28
... AVE | Rotation/Spin form [3] 292
.. AVE 11 [4] 36, [3] 185
... Electromagnetic field tensor form [4] 353, [4] 359,
... Electromagnetic Poynting vector form [4] 371, [4] 359,
... Harmonic Oscillator [3] 107, [3] 121, [3] 131
... Lifting form [2] 107, [2] 112, [2] 116
... Lorentz Transform [3] 301
... Quarks URM6
... Relativistic Doppler URM5 [3] 178
... Relativistic STR event URMS5 [3] 154
... Skew URM3 [3] 319
... URM2 [2] 335, [5] 383
... URM2 Isospin [5] 94
... URM3 general [1] 10
... URMS under Pythagoras conditions [1] 33
... URM4 2a2pl solution [2] 94
... URM4 general [2] 4
... URM4 PS+RU Zero Potential solution [2] 76
... URM4 under Pythagoras conditions [2] 70
... URMS5 general [2] 231
... URM5 under Pythagoras conditions [2] 236
.. URMBG Six Quarks [5] 253
Unlty (primitive) roots [1] 18, [1] 200, [1] 218,
see also Dynamical Variables
... Overview [1] 234
... loss of in URM4 [2] 13
... Skew complex [3] 359
URM2 [2] 335, [5] 53, [5] 383
.. Isospin [5] 93
.. Evolution [5] 185
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URM3[1] 6

.. Pythagoras [1] 57

... Summary [2] 285, [3] 429, [4] 413, [5] 325,
... Skew and Complex Eigenvectors [3] 315
... Three-axis expansion [5] 27

URMA4

.. Foundations [2] 3

.. Unity Eigenvalue 2a2p1 Solution [2] 91
URMS5 [2](13) p231

.. Numeric Example [2] 305

... Quaternions and Rotations [4] 330
URM6

... Quarks, Charm, Bottom, Top [5] 251

.. Numeric Example, six quarks, [5] 289

\/
V ‘V-channel’ quarks, see Raising and Lowering Operators SU(3)
V Potential Energy
Variational A Matrices [1] 259
Variational Matrices, see Variational Methods
Variational Methods, see also Glossary (120)
... Delta variation [1] 27
... Electromagnetic [4] 396
... Gamma, Delta Epsilon, see Local below
... Global [1] 27
... Lifting URM4 [2] 199
... Local [1] 27
... Lorentz transformations [3] 291
.. URM3 [1] 27, [1] 259
... URM4 2a2p1' solution, [2] 181
... URM4 Pythagoras [2] 25, [2] 121
... URM4 AVE I [3] 69
... URMS5 [2] 238
.. URMBG see Eigenvector Evolution
Vector space, see Eigenvector Vector Space, Glossary (117)
Velocity eigenvector X, [1] 153

Virtual Particles [3] 48, [3] 250, [4] 51

w
Wave-function [5] 167
Winding Number [1] 161, [4] 168

X
Xi baryon particles 2°, = [5] 243

Z

Zero Divisors [1]#1(5) p13

Zero Eigenvector, Glossary (118), see also Dynamical Conservation Equation,
.. URM3 [1]#2(2) p62

.. URM4 [2](3-4) p50
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... URM5 [2](13-4) p241

... URMG6 quarks [5] 256

Zero magnitude and norm (Skew eigenvectors) [3] 340
Zero-point energy [1] 156, [4] 65

Zero Potential [1] 34, [1] 108, [1] 156, [2] 75, [2] 157
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Glossary of Terms and Definitions
Appendix (1) books [2] to [5]

This is a subset of the full URMT terminology covering terms either uniquely defined within
URMT or those in wider use, but with a specific meaning to URMT.

Important. The ordering of entries is alphabetic, not numeric, and is done to achieve
compatibility between all five published books. To aid in its use, both an alphabetic and
numeric index is given beforehand on the next two pages.
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A Matrices (122)
Alignment (11)
Annihilator (123)
Base set (141)
Bilinear form (146)
Compactification (132)
Cone (127)
Difference set (142)
Divisibility factors,
scale factors (12)
Dyadic product (13)
Dynamical Conservation
Equation (DCE) (119)
Dynamical equations (121)
Excess dimension (14)
Exterior product (140)
Flattening (I5)
Hyperboloid (126)
Invariant eigenvalue (137)
Invariance Principle (136)
Invariant Zero Potential
solution (1ZP) (135)
Lattice (125)
Lifting (16)
Magnitude (17)

Unity Root Matrix Theory

Comprehensive Index
http://www.urmt.org

Minus eigenvector (19)
Non-trivial eigenvector (110)
Norm (18)
Normalising to the DCE (138)
No singularity (134)
Parity operator (139)
Plus eigenvector (111)
Primitive Pythagorean

n-tuple (112)
Pythagoras conditions (113)
Pythagorean double (144)
Pythagorean triple (145)
Pythagorean Eigenvalues (114)
Scale factors (115)
Skew conditions (133)
Static (116)
Sum set (143)
T Operator (128)
Unity Root Matrix (131)
Variational Matrices (124)
Variational Methods (120)
Vector space,

eigenvector space (117)
Zero Eigenvector (118)
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Numeric Index

(11) Alignment

(12) Divisibility factors,
scale factors

(13) Dyadic product

(14) Excess dimension

(15) Flattening

(16) Lifting

(17) Magnitude

(18) Norm

(19) Minus eigenvector

(110) Non-trivial eigenvector

(111) Plus eigenvector

(112) Primitive Pythagorean
n-tuple

(113) Pythagoras conditions

(114) Pythagorean Eigenvalues

(115) Scale factors

(116) Static

(117) Vector space,
eigenvector space

(118) Zero Eigenvector

(119) Dynamical Conservation
Equation (DCE)

(120) Variational Methods

(121) Dynamical equations

(122) A Matrices

Unity Root Matrix Theory
Comprehensive Index
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(123) Annihilator

(124) Variational Matrices

(125) Lattice

(126) Hyperboloid

(127) Cone

(128) T Operator

(129) deleted

(130) deleted

(131) Unity Root Matrix

(132) Compactification

(133) Skew Conditions

(134) No singularity

(135) Invariant Zero Potential
solution

(136) Invariance Principle

(137) Invariant Eigenvalue

(138) Normalising to the DCE

(139) Parity operator

(140) Exterior product

(141) Base set

(142) Difference set

(143) Sum set

(144) Pythagorean double

(145) Pythagorean triple

(146) Bilinear form
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(122) A matrices

The definition of A matrices, as first given in Volume | [3], was exclusively defined in terms
of matrices formed from the method of arbitrary embedding AVE I, which was new to
URMT at the time. This AVE | method produces an (n+1)x(n+1), n>1, A matrix defined
in terms of an arbitrary, n-element column vector X, its row-vector transpose X' and an
annihilator matrix A (123) of X; see Section [4],1 for a full review of this method.

As of the last publication [4], the term A matrix was extended to all URMT matrices,
specifically the founding “unity root matrix’ A (~Ao) and its two partners, the plus and minus
matrices A+ and A_. These three matrices formed the complete set of A matrices under study
in URMT until this latest publication. The matrix Ao is the starting point, and the matrices A+
and A_ can be considered subsidiary, generated from the eigenvectors of Ao. This founding

set of three is now known as the Base set {A ,A,,A } (141), to differentiate it from two,

new additional sets, each comprising three A matrices, termed the Difference set
{As.  Apo.Ap } (142) and the Sum set {Ag,,Aq,, A } (143). Each set of three can be
related to an axis in three-dimensional space, i.e. the x, y and z-axis, three matrices per axis.
The two matrices subscripted ‘+ and ‘-* are equivalent to raising and lowering operators in
guantum mechanics, and the zero subscripted matrices are unity root matrices, e.g. Ao, whose
eigenvectors also comes in three sets of plus, minus and zero forms, i.e. {X,,X;,X_},

{Xo. Xpos Xp_ ¥ and {Xs,, X,,, Xs_}. Each zero matrix {A,, Ap,Ag.} can be thought of
as a generator of rotation about an axis {x,y,z}, as per quantum mechanical angular
momentum or spin.

Returning now to the legacy, founding unity root matrix A (~Ao). URMT starts with the
single, 3x3 unity root matrix A (Ala) whose elements, known as the dynamical variables, are
all unity roots or power residues (A2). This matrix, in its most general form, has links to both
Fermat’s Last Theorem (via the invariant eigenvector) and The Riemann Hypothesis (via its
eigenvalues). However, URMT quickly steered away from its number-theoretic origins to
physics, most of which comes when the unity root matrix theory is simplified under
Pythagoras conditions (113) or, more recently, Skew conditions (133).

This and the last two publications, [3] and [4], study URMT and its A matrix eigenvector
solution exclusively under Pythagoras or Skew conditions, and it can be assumed that one of
these two conditions always applies unless stated otherwise. Note that they are mutually
exclusive.

URM3 encapsulates most of the general properties of URMT, and the following properties
are illustrated by reference to URMS3 detailed in Appendix (A), but note that Appendix (A)
only specifically deals with Ao. More detailed information on all three types of matrices
{A.,A,,A_} can be found in the main sections of this book - references given shortly.

The elements of Ao are known as dynamical variables, e.g. P,Q,R (Ala) URM3.
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The elements of A+ are known as coordinates, e.g. X, Y,z (A3) URM3

The elements of A_ are known as scale factors (12), e.g. «, 5,7 (A13) URM3

Each of the three matrices, Ao, A+ and A_, annihilate the eigenvectors Xo, X+ and X_ (A33)
of Ao, i.e.

A, X, =0, AjXy=0, A_X_=0
and thus each matrix has at least one, zero eigenvector.

General, n-dimensional A matrices, with the above properties, can currently be constructed
by the method of lifting (16), or AVE | and Il, see [4]. Lifting of the URMS solution is used
in this latest publication to produce the URMBS, six-quark solution, Section (13). Conversely,
AVE methods have not been required herein.

All three A matrices (plus, minus and zero) have a zero trace and, as a consequence, their
eigenvalues always sum to zero. In fact, when using the exterior product formulation [4],5 it
is shown that the matrix Ao has two non-zero eigenvectors, A =+C, with all others zero. The
other two matrices, A+ and A., have all n eigenvalues zero.

The true, founding, unity root matrix A (or Ao, Aso) only exists for the integer formulation of
URMS3 (and not higher order incarnations URM4 and beyond) when the invariant eigenvalue
C (A4) is unity. For all other integer values, C >1, the unity roots are nth order power
residues, and quadratic residues when under Pythagoras conditions (113). When A is under
Pythagoras conditions it is also denoted by symbol Ao or As. The subscript ‘0 denotes A
when it is under Pythagoras conditions, and the additional subscript ‘3° denotes it is a 3x3,
URM3 matrix, where each subscript may or may not be employed depending on the context.

All A matrices have a sign symmetry about the lead diagonal, which is either Pythagorean
(123c) or skew-symmetric (123b). There is no explicit symmetric A matrix as it has currently
has no physical application in URMT.

See also Annihilators (123), the Dynamical equations (121), Lifting (16) and Variational
methods (120).

(11) Alignment - see Flattening (15).

(123) An Annihilator is defined as any nxn matrix, general symbol A, that is symmetric,
barring the sign of its elements, with an all-zero lead diagonal that, when operating on an
invariant eigenvector X of A, eigenvalue A, reduces it to zero, i.e.

(123a)

if AX =X then AX =0, |Ay|=[A;].i,i=1.n, A;=0,i=].
To all intents and purposes, A is either a plus or minus matrix, i.e. A, or A_ when using the
Base set (141).
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Caution. This definition (123a) of an annihilator matrix is that strictly used in [1] and [2], but
has been broadened slightly since the method of arbitrary vector embedding (AVE 1) was
introduced in Volume I [3],1 and widened to AVE Il in [4]. A looser definition is now used
to specify any matrix that annihilates an arbitrary vector X, which is not necessarily an
eigenvector of any A matrix. The text that follows here in this glossary entry is still the strict
definition, but the definition and context in which A is used throughout should be sufficient to
determine its strict adherence or otherwise to this description.

From the above definition (123a), X is a zero eigenvector (118) of the annihilator matrix A
for eigenvalue zero. In linear algebra X is said to occupy the kernel (or null) space of A; see

[5].
If 2 =0 then A s also an annihilator of X by definition.

The key property of an annihilator matrix is that, when added to matrix A, it leaves the
eigenvector X and eigenvalue A invariant, i.e.

AX=(A+A)X=1X
Because of this invariant property, A can be used to vary A whilst keeping X and A constant,
and is thus also known as a variational matrix in URMT and described in full in [1]#5,2 and
[2].8.
Whilst it leaves X and A invariant, the other eigenvectors and eigenvalues of A generally
vary (evolve) according to the parameterisation of A, and it is the study of their evolution that
is of interest in URMT.,

All A matrices, unity root matrices and annihilators come in two sign forms, Pythagoras and
Skew:

(123b) A® Skew sign structure,

~A® =(A%)", skew or anti-symmetric

Example
0 +z -y 0 + -
A°=|l-z 0 +x/|,s9(A%)=|- 0 +]|.
+y -x O + - 0

(123c) AP Pythagoras sign form

The Pythagoras sign-form is defined in terms of a skew symmetric matrix operated upon by a
Pythagoras T operator (128a), equivalent to the Minkowski metric in Special Relativity [9].
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AP =TAS®, for Pythagoras T operator (128a).

Example
0 +z -y 0 + -
AP =l -z 0 +x|[,sg(AP)=|- 0 +]|.
-y +x O -+ 0

Although not of particular significance, the Pythagoras form can be split into the following
sum of a symmetric and skew (anti-symmetric) matrix:

0 0 -y 0 +z O
AP=l 0 0 +x|+|-z 0 0.
-y +x 0 0 0 O

(141) The Base set of eigenvectors and A matrices (122) comprises the eigenvectors
{X.,X,,X_}and matrices {A,,A,, A } respectively, defined in full below, in terms of the
coordinates (x,Yy,z) (A3), dynamical variables (P,Q,R) (A18), and scale factors (115)
(o, B.7)

0 z -y 0 R Q
A . =|-z 0 x |[,A,=[-R 0 P [(AL19),
-y x 0 Q P O
0 -y -p
A =| vy 0 «a
- a 0
X =) a
X+: y ,XO: _Q 1X7: ﬁ 1(A33)
z R -y

The eigenvectors and matrices are the founding matrices of URMT under Pythagoras
Conditions (113). The base set of A matrices forms one of three sets of A matrices, and
represents the x-axis components of a three-axis scheme, whereby the other two sets, i.e. the
Difference (142) and Sum (43) sets represent the y and z-axis components respectively.
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(I46) A Bilinear form ‘B’ in URMT is simply a matrix formed from the outer product of two

vectors (L6d), or linear sum of such products, i.e. if X and Y are column vectors, with Y’
the row-vector, transpose of Y, then the bilinear form B is simply the outer product

(146a) B = XY .

This satisfies the more formal, conventional definition of a bilinear form as a function that
takes two vector arguments and returns a scalar. For example, if U and V represent two
arbitrary vectors with the same dimensions as X and Y then

(146b) B(U,V) =U" (XY )V = (U"X)Y"V)=scalar,

since both U'X and Y'V are inner products (L6b), resulting in a scalar, such that the
function (bilinear form) B returns a scalar. There are additional linearity criteria on B as per a
vector space, for which the reader is referred to the literature, e.g. [5].

(132) Compactification is the process whereby all excess dimensions, i.e. those higher than
three, appear to shrink relative to URMS3 as their evolutionary parameter grows. In fact,
URMS also flattens (I5) as its evolutionary parameter t, grows. This geometric feature is a

URMT property of lifted solutions (16). Note that with this book comes the dual, frequency-
domain evolution, which can also give the same behaviour as the evolutionary, frequency
parameters grow larger in magnitude.

Each dimension, three and higher, possesses its own unique evolutionary time, i.e. t, for

URMTS, t, for URM4 etc., and, just like URMS3, converges (flattens) to align with the
URM3 cone C, (127) as evolution progresses. The higher dimensions also appear to shrink

relative to URM3 as their evolutionary times, t,, t; etc. grow - the entire n-dimensional

solution exhibiting the geometric property of compactification. See [2],14 for more
information.

(127) The Cone comprises the eigenvector solution set of all plus (I111) and minus
eigenvectors (19) when under Pythagoras conditions (113). Using URMS3 as an example,
under such Pythagoras conditions the eigenvectors are Pythagorean triples, specified as a
two-parameter family, and form a discrete cone in 3D Euclidean space. In URMn this
extends to an n-dimensional 'cone’. By URMT convention, the set of all points representing
the plus eigenvector solution is termed the upper cone, symbol C,,, whilst the lower cone,

symbol C_, comprises the set of points representing the minus eigenvector. The union of the
two sets is referred to as the cone (cones), symbol C, i.e.

C=C, uC,.

The upper and lower cones tend to be thought of as mirror images of each other since they
are inverted with respect to each other, with their conceptual tips meeting at the origin, albeit
the tip X, =(0,0,0)" and X_=(0,0,0)" is not defined in URMT, see (134), hence it is
conceptual only. Likewise, the cones are not a true mirror image of each other but they do
still point in opposing directions by their stricter definition given in [1]#3,4.
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See [1]#3,4 for a full definition.
See also Hyperboloid (126) and Lattice (125).

(142) The Difference set of eigenvectors {X,.,Xy,, X, } and A matrices (122)

{A,, Ay A} is the y-axis equivalent of the x-axis Base set (141) and z-axis Sum set
(143).

(12) Divisibility factors, also known as scale factors (115), are the last three elements of the
URMn eigenvector X" (or X, ), denoted by «,, g, and y,, n>3, see (Al5) for URM3,
[2],3.56 for URM4 and [2],C16 for UMRN.

(13) The Dyadic product is synonymous with the outer product (L6d) of two vectors. In the
context of URMT, the dyadic product of two vectors, X, and X', i, j=1...n, gives a square

matrix, M;; = X, X, of size nxn. The term 'dyadic product' is quite old and is replaced by

‘outer product' in modern texts. Nevertheless, the name appears in the earlier URMT
literature, e.g. [1], albeit it has been replaced in [2] and herein with the term ‘outer product'.

(119) The Dynamical Conservation Equation (DCE) is the non-singular condition on the
matrix A possessing solutions, i.e.

(119a) det(A— A1) =0, eigenvalue 1, 1 =,/T,C,

for /T, see further below,

and is known as the characteristic equation (or characteristic polynomial) in matrix algebra,
[5]. This equation can be considered as the founding equation upon which URMT can be
derived, albeit this is not the only approach.

The DCE is actually treated as an energy conservation equation (hence its name), and is
usually expressed in terms of a kinetic energy term K and potential energy term V (per unit
mass or inertia). In addition, from [4] onward, the DCE is given for both the Pythagoras (113)
and Skew (133) conditions, which are differentiated by the usage of the Parity operator T,

(139), (new to [4]), briefly summarised as follows:

T. =-1, \/T, =i, Skew conditions
T =+1, /T, =+1, Pythagoras conditions.
T2 =+1.

The key URM n incarnations of the DCE as a characteristic equation (119a) are

(119b) 0=—2* + KA+ /T,VC, URMS, see also (A7)-(A9)
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(119¢) 0=-2* + KA? +VT,C?%, URMA4 (lifts URM3)
(119d) 0=A(- 4* + K22 +VT,C?), URMS (lifts URMA).
The URMBG, six-quark solution has a more restrictive form of characteristic equation, with the

eigenvector solution termed an Invariant Zero Potential (1ZP) solution (135) in URMT.
This IZP is also applicable to URM3 onward, and has a general form of the DCE given by

(119¢) 0=2"2(T,C% - 22), n>3, V =0,
and so there are always two, non-zero eigenvalues, A= i\/fc , plus n—2 zero eigenvalues.

As regards a non-zero potential energy, there are currently two important physical cases
where this occurs:

e The DCE for the URM4 harmonic oscillator solution [3],4

e The DCE for the URMD5 relativistic 'mass' solution [3],7, where mass is equated to the
potential energy, and the DCE is the relativistic energy-momentum equation per unit
mass - see further below.

Looking at the URM3, n =3 case (119b), this is rearranged as

(129f) 2° = Ki+,[T,VC,

and substituting for 2 =/T,C, using T2 =+1, then dividing throughout by the non-zero
eigenvalue C, gives

(119g) T.C* =K +V .

This is a common, quoted form of the DCE in terms of the kinetic and potential energy terms.
Note that these are not, in general, the Newtonian forms of kinetic and potential energy. In
fact, as regards URM5 (119d), the kinetic term is related to the relativistic momentum, and
the potential energy is related to the rest mass energy, as per the relativistic momentum
energy equation — see [3],7 and [4],2-10.

In addition to the characteristic equation, the DCE is also written as the inner product of the
zero eigenvector and its reciprocal as in

XX o =X X, =(N=2)C?, n>3 (F11).

(121) The Dynamical equations are the n linear equations specified by the single, invariant
eigenvector equation

(121a) A X, =T,CX,, C>0,
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which was updated [4] to incorporate the parity operator T, (139), and takes the following
two values in this particular equation:

JT. =+1, Pythagoras

JTn =i, Skew.

Because the matrix A, has a zero lead diagonal, each element, x,y,z etc., of the invariant

plus eigenvector X, (I111) is a function of only the other n—1 coordinates, but not itself, i.e.
the coordinates x,y,z etc. do not couple to themselves.

The dynamical equations (121a) have an equivalent form given in terms of the A, matrix and
X, eigenvector as:

(121b) A, X, =-CX, .

(14) An Excess dimension is any dimension higher than the third, i.e. the fourth or higher. In
an n-dimensional space, an excess dimension r is such that 3<r <n, and its associated
temporal (evolutionary) parameter is denoted by t, [2],C.

(140) The Exterior product (symbol *) of two, arbitrary, n-dimensional vectors is defined in
URMT as

XAY=XYT —YXT =X®Y -Y ® X, the exterior product of X and Y,

which is the difference of the two, outer vector products XY' and YX' (or X®Y and
Y ® X).

This product is also known as an ‘alternating’, ‘wedge’ or ‘Grassman’ product [5].
See also the Errata online PDF: http://www.urmt.org/urmt_errata_books1to5.pdf

In the strict mathematical definition, the exterior product is expanded in terms of basis
element known as bi-vectors, whereas the URMT definition above uses matrices. Albeit this
is really just a representation issue since URMT can decompose its A matrices (formed from
exterior products) into elemental matrices, each effectively a bi-vector representation — see
[4],6-3 for example.

For more details on the URMT definition and its properties see [4],7-4, particularly [4],7.38
onward.

See [5] for a formal mathematical definition and associated algebra.

(15) Flattening is the term used to describe the eigenvector evolution in URM3 whereby the
two eigenvectors X,, and X, align anti-parallel to X, as evolution progresses, i.e. as

evolutionary time m (or t;) increases, see Appendix (B) for the URMS3 eigenvector
evolution equations. As of this book, this flattening behaviour also occurs with the dual,
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frequency-domain evolution, whereby the vectors align with X, (using URM3 as an
example). The vector X,, itself is static (I116) and invariant to arbitrary variations in the
time-domain. However, note that X,, is actually a two-parameter family of integer vectors,

parameters k and | (A26), and hence occupies a 2D discrete subspace of 3D; in this sense
the 3D flattens to 2D. Because it is an alignment of vectors, the process is also known as
‘alignment’ herein, but ‘flattening' is used exclusively in earlier URMS3 literature. That the
eigenvectors align anti-parallel, and not parallel, is largely a choice of sign convention.

See also Compactification (132) and [1]#3 for full details.

(126) The Hyperboloid is the set, symbol H, of all URM3 zero eigenvectors X, (118),
under Pythagoras conditions (113), which satisfy a hyperbolic equation otherwise known as
the DCE (119). This set forms a discrete hyperboloid sheet with a finite, non-zero radius
(eigenvalue C, C >0) at the origin. In URMn, using the method of lifting (16), there is just
one unique hyperboloid given by the vector X,,, which is, itself, just an n-dimensional
embedded (zero-padded) form of the URMS3 eigenvector X,, - see also [2],7 URM4, [2],13

URMS5 and Appendix (F), (F10).

The hyperboloid is strictly known as a 'hyperboloid of one sheet' in geometry, and is formed
by the rotation of a hyperbola about the z-axis (actually the axis is that of the dynamical
variable R in the third element of the URMS3 zero eigenvector X,, (A33b)), and is therefore a

surface of revolution, albeit a discrete surface of points.

See [1]#3,4 for a full definition and [3] for a geometric overview.
See also Cone (127) and Lattice (125).

(136) The Invariance Principle

See the main text Section (1), (1.29).

(137) Invariant eigenvalue — see Variational Methods (120).

(135) The Invariant Zero Potential (1ZP) solution is a URMT eigenvector solution that has a
zero potential energy term in the DCE (119), which remains invariant to all variations (120)
of the unity root matrix A,. The IZP solution is of prime importance to URMT because

potential energy is equated with mass, and so a zero potential energy solution represents a
massless particle moving at the speed of light, e.g. a photon or graviton.

For URMS, under either Pythagoras (113) or Skew (133) conditions, the potential energy is
always zero, so every URMS3 solution under these conditions is an 1ZP. For URM4 and
beyond, additional constraints on the dynamical variables are required to give a zero
potential. For URM4, the problem was first addressed in [2],5, and then progressed to URM5
later in Section (13) of the same book [2]. This latest book extends URMT, once again, to
URMSG, for its six-quark representation, Section (13). This URMG6 quark solution is also an
IZP. URMT does not now currently go beyond 6x6 A matrices (122), i.e. URMS, albeit it is
clear that as the order increases, so too do the number of constraints on the dynamical
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variables (elements of the unity root matrix A,) required to retain a zero potential energy
term.

The general, n-dimensional, IZP solution was first obtained in [2] by a method known as
lifting (16), whereby an existing URMS3 solution is lifted to higher matrix orders, i.e. URM4
and above. However, the general, lifted solution uses an existing URM3 solution, and cannot
embed two, arbitrary, n-dimensional vectors, unlike the exterior product method of arbitrary
vector embedding (AVE 1), [4],5, which can embed two, arbitrary, n-dimensional vectors
into a general, (n+1)-dimensional URMT matrix scheme, and also generate 1ZPs.

Both the lifting and exterior product methods generate 1ZPs, which have two non-zero
eigenvalues, with all others zero. This combination brings with it three unique types of
eigenvector: X, and X_ for the non-zero, positive and negative eigenvalues (+C), plus a

third, composite, zero eigenvector X, (118) formed from a linear combination of all other
zero eigenvectors completing the set.

The geometric and physical aspects of an 1ZP solution are discussed in [4],7-2, with a
mathematical discussion on obtaining the particular eigenvalue solution given in [4],5-3.

(125) The Lattice is the union of the upper and lower cones (127) and the hyperboloid (126),
formally defined as the union of the sets ¢ and H, symbol L, where C=C, uC, (I127) and

therefore
L=CuUH.

In other words, the lattice represents the complete, n-dimensional eigenvector solution. Care
has to be exercised in the usage of 'dimension’ given here. For example, URM3 comprises
two, 2D, discrete cone surfaces and also a single, discrete hyperboloid sheet. All three
surfaces (sheets of discrete points) are strictly 2D, but the complete URM3 eigenvector
solution is a three-parameter family comprising integer parameters k,l (A26d) and
evolutionary parameter t, (~ m) (A28c), hence 'three-dimensional'.

The lattice exhibits numerous geometric properties such as flattening (I5) and
Compactification (132).

See [1]#3,4 for a full definition and [3],7-2 for a geometric overview.
See also Compactification (132), Cone (127) and Hyperboloid (126).

(16) Lifting, in the context of URMT, is the process of generating eigenvector solutions for
an (n+1)x(n+1) matrix A, using an eigenvector solution to the nxn matrix A, n>2.

The matrix A, is embedded in A, and an eigenvector solution X to A, is also a solution
to A with appropriate zero padding, see [2],7. The matrix A ., is usually under
Pythagoras conditions (113) with the additional constraint of a zero potential energy.

n+11?

See [2]7-2 for lifting the URM2 Pythagorean twin (1,1) to form URM3 Pythagorean triples,
[2],4 for lifting URM3 to URM4, and [2]13-3 for lifting URM4 to URM5.
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(I7) The magnitude of a vector is the positive square root of the inner product of a vector
with itself, e.g. for X, (URM4) then

X, = X, X, = w2+ x2+y2+2%, X, |20,

hence |X,|=+2z when w? +x* +y? = 22,

Under Pythagoras conditions (113), the magnitude of a URMT eigenvector is always greater
than zero, but under skew conditions (133) the eigenvector has one or more complex elements
and the magnitude is zero. See also the norm (18).

(19) A Minus eigenvector X, , n>2, is any vector that satisfies the eigenvector equation
AX, =-CX,_for negative eigenvalue —C, matrix A. See also plus eigenvector (111) and
zero eigenvector (118). Note that minus eigenvectors are only defined under Pythagoras
(113) or Skew conditions (133) because these conditions give a conjugate pair of eigenvalues

A =+C (Pythagoras) and A =+iC (Skew).

(110) A Non-trivial eigenvector is a Pythagorean n-tuple with three or more non-zero
elements. For example, a trivial URM3 eigenvector X;, =(x,y,z) has only two non-zero

components, e.g. (x,0,z) y=0,x,z=0, where x? =22, i.e. x=+z - this is technically then a
Pythagorean double (144) In the case of URM4, X,, =(w,X,Y,z), the same trivial vector
would be (0,x,0,z), with w=0 and y=0. A non-trivial URM4 eigenvector would normally

be all four elements non-zero, e.g. (2,3,6,7), but it is acceptable to have a URM4, non-trivial
eigenvector that comprises only three non-zero elements, e.g. (0,3,4,5), which is just the
Pythagorean triple (3,4,5).

(18) The norm of a vector in URMT, using the standard definition of the norm, see [5], is the
square root of the inner product of itself with its conjugate, Appendix (E). For example, the

norm of X,, denoted by [X,|, is given by|X |=X -X, = /X X, . Normally the
positive square root is assumed unless otherwise stated. If X, is an n-element Pythagorean
n-tuple then the norm is zero since X~ - X, =0, e.g. (F7). The same remarks also apply to

X_ and its conjugate form X", but note that the norm of any one of URMn's, zero
eigenvector X ., j=0...n—3,n>=3, is non-zero as given by

| = /X" X o5 =+C? (F10).

See also the magnitude (17) and DCE (119).

I

noj

(138) Normalising to the DCE is the process by which the zero eigenvectors (118) are scaled
such that their norm (I8) is consistent with the DCE (119), i.e. the inner product of a zero

eigenvector X, with its conjugate X, (or X°) is just the square of the invariant eigenvalue
C, to within a sign, as dictated by the Parity operator T, (139), i.e.

X, - X, = XX, =T,C?, the DCE (119), see also (2.42)
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(134) URMT has no singularity because it excludes the all-zero, null vector as an
eigenvector, i.e. it excludes the origin from the eigenvector solution. This is not just an
arbitrary rule or definition, but a genuine algebraic consequence of defining the invariant
eigenvalue C as non-zero (I121a), which ultimately constrains all eigenvectors to be non-null.
Physically speaking, this means that there are no singularities, and the zero point (null vector
or origin) is not required in URMT as currently formulated. This is also discussed in [1]#3.
Note that C cannot be defined as zero because, for example, URM3 already has a zero
eigenvalue, and if C were also defined as zero then the third eigenvalue would also have to be
zero for a zero trace A matrix. This would then give three zero eigenvalues and a virtually
worthless solution. Hence C is defined as non-zero, and unity or greater when in integers;
when in reals it is still defined as non-zero, but is usually the magnitude |X| (17) of an
arbitrary vector X, as per AVE | and 11, [3] and [4]. Regardless of the actual value of C, it
will always be greater than or equal to the smallest, positive real value chosen to represent a
unit in URMT, i.e. the smallest quantum of measurement. The conditions on C are
algebraically expressed as

(1348) Ce Z = C>1
(134b) C,[X|eR= C,|X|>0.

(139) The Parity operator, symbol T, , is simply the scalar, unity magnitude value +1
(139a) T, =+1,
(139b) T,2 = +1.

Its value is determined according to whether the A matrix (122) is under Skew (I133) or
Pythagoras (113) conditions, i.e.

(I39c) T, =-1, Skew conditions
(139d) T, = +1, Pythagoras conditions.

For more details, see the [4],1.73 onward.

Note that this symbol has not been used in this book because only solutions under Pythagoras
conditions are used, i.e. there are no Skew condition solutions.

(111) A Plus eigenvector X, , e.g. X,,, n>2, is any vector that satisfies the eigenvector

equation AX, =CX, (I21a) for positive eigenvalue C, C >0, of matrix A. See also minus
eigenvector (19) and zero eigenvector (118). Since the eigenvector equation (121a) is a
fundamental definition in URMT, there is always at least one plus eigenvector X, .

(112) A primitive Pythagorean n-tuple is that which has no common factor in its elements,
I.e. all its elements are co-prime (when in integers).

(113) The Pythagoras conditions are a set of relations between the standard and conjugate
dynamical variables, i.e. the elements of A, URMn, e.g. A, URM3 (Ala), and are such
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that the eigenvectors of the nxn matrix A, for non-zero eigenvalues, are Pythagorean n-
tuples. The unity root matrix A is formed exclusively from the dynamical variables, and the

conditions make the matrix skew-symmetric in the first n—1 rows and columns, and
symmetric in the last row and column. All Pythagoras conditions for URMn include
URM (n-1) as a subset.

See [1]#1-15, [1]#2 for URMS, [2],4 for URM4, [2],13 URMS, and this book for URMBS,
Section (13).

(144) A Pythagorean double is best defined in terms of a Pythagorean triple (145), i.e. the
ordered triple (a,b,c), 0=a” +b® —c?, but where one, and only one, of the two elements a

or b, is zero. For example, if a is zero, then 0=b* —c?® so that ¢ =+b, with the condition
that b=0. The non-zero, ordered pair (b,c) is then termed a Pythagorean double. Whilst
seemingly trivial, it does permit the 2x2 matrix incarnation of URMT, i.e. URM2, to talk in
terms of its eigenvectors as Pythagorean doubles, just like URM3’s eigenvectors are
Pythagorean triples — actually just the plus (111) and minus (19) eigenvectors, since the zero
eigenvectors (118) are known as hyperbolic in URMT because they satisfy the hyperbolic
DCE equation (119), and not Pythagoras. By URMT’s method of lifting (I6), such URM2,
two-element, Pythagorean double eigenvectors can be lifted to URM3 Pythagorean triples,
which can then be further lifted to URM4 Pythagorean quadruples etc. - this process is
described in [2],7.

(145) A Pythagorean triple comprises any ordered triple (a,b,c), of integers a,b,c that

satisfy the Pythagoras equation 0 = a” +b? —c?. This definition is to be interpreted in its
loosest sense with the only condition being that (a,b,c) = (0,0,0). In other words, a, b and

c are allowed to be positive or negative integers, and a may be less than or greater than b ;
a can be zero, in which case |b| =|c[, or b can be zero, in which case |a| = c| - these ‘triples’

are then known as Pythagorean doubles (144). Non-primitive triples are also included, i.e.
those such that for non-zero, integer factor k, if (a,b,c) is a Pythagorean triple then so too is

(ka, kb, kc) . Otherwise, primitive solutions are co-prime, i.e. gcd(a,b,c) =1.

(114) The Pythagorean eigenvalues comprise the set of two, non-zero eigenvalues A =+C,
with all others zero. E.g., for URMA4, the four eigenvalues are A =+C and 4 =0,0, i.e. the

zero eigenvalue is repeated with a 'multiplicity’ [5] of 2. For URMn there are two, non-zero
eigenvalues, A =+C, and the zero eigenvalue is repeated with a multiplicity n—2. The
specific plus, minus and zero eigenvalues are usually labelled 2., 2. and A, respectively,

ie. 2ef{4,,4_,4,}. They are termed Pythagorean because, under URMT Pythagoras

conditions (I113), the eigenvectors to the non-zero eigenvalues (A =+C here) are
Pythagorean n-tuples. Strictly speaking, URMT under Pythagoras conditions only actually
mandates at least two non-zero eigenvalues, and the others may not necessarily be zero. For
example, in URM4, if the potential is non-zero then complex eigenvalues can arise in place
of the zero eigenvalues. In such a case, the complex eigenvectors also satisfy the Pythagoras
equation, as do all eigenvectors for non-zero eigenvalues, when under Pythagoras conditions.
Note that the exterior product formulation, [4],7 and [4],8, always gives Pythagorean
eigenvalues and eigenvectors when the parity operator (139) is set to unity, i.e. T, =+1.
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See [4],5-3 and the 1ZP, (I35) or [4],7-2, for more information on this Pythagorean
eigenvalue combination.

(115) Scale factors, see Divisibility factors (12).

(133) The Skew Conditions are a set of relations between the standard and conjugate
dynamical variables in URMn that make the A matrix skew-symmetric (or anti-symmetric),
e

(133a) A =—-A", Skew or anti-symmetric.

The conditions are such that the eigenvectors of an nxn matrix A,, for non-zero

eigenvalues, have both a zero magnitude (I7) and norm (I8), in contrast to the Pythagoras
conditions (113), where the eigenvectors have a zero norm but non-zero magnitude. The
eigenvectors of a skew matrix A, for non-zero eigenvalues, are complex, and hence skew
conditions represent the complex ‘flavour' of URMT. Note that the dynamical variables, i.e.
the elements of A, are not necessarily complex and, in fact, they are usually only complex
after variational methods are applied.

(116) A Static quantity in URMT is any quantity (invariably an eigenvector or matrix) not
dependent on any evolutionary time parameter t or t;, j=3...n (time-domain evolution) or

frequency f; (frequency domain evolution) — see the main text, Section (1-7). The plus
eigenvector X . (111), n> 2 (this includes URM2), is the classic URMT example of a static

eigenvector when under time-domain evolution, and X, when under frequency domain
evolution.

(143) The Sum set of eigenvectors {Xs,, X,,, Xs_} and A matrices (122) {Ag,, Ao, A } IS
the z-axis equivalent of the x-axis Base set (141) and y-axis Difference (142) sets.

(128) The T Operator is an nxn (n>2) matrix defined in two different forms, Pythagoras
or Skew, as follows:

(128a) T :[Inol Olj Pythagoras

(128b) T =-1, Skew,
where |, is the identity matrix order n, n>2.

As of [4], the T operator is also written in the more general form in terms of the parity
operator T, (139) as

T,1 0
Tnz( nOnfl _J.
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In both Pythagoras and skew forms, T is all zero except for the lead diagonal, which
comprises plus or minus unity elements only, i.e. +/-1.

The Pythagoras form is the same as the Cartesian, Minkowski metric in Special Relativity
[17], disregarding sign convention.

The main use for T is to convert between standard and conjugate eigenvectors, see Appendix

(E).

The Pythagoras T operator (128a) is n-dimensional, and the presence of the n—1 order
identity matrix 1, in its upper left means that the sign of each of the first n—1 elements of

X remains the same, whilst only the last, nth vector element changes sign when operated on
(multiplied) by T. Conversely, the skew form of T flips the sign of all n elements.

Note that the T operator also has the following useful properties:
(128¢) T2=1,T*=T,T"'=T.
Strictly speaking, each form of T splits into two more forms, standard and reciprocal:

T, standard nxn form

T" reciprocal nxn form.

However, they are both identical, i.e.

T"=T

n.

(I31) A Unity Root Matrix, denoted by generic symbol A, (or A,, A,,), is defined as an

integer, nxn matrix with an all-zero lead diagonal, that is symmetric in its elements (known
as dynamical variables) to within URMT conjugation (conjugate relations, e.g. (A2g) to
(A2i)), where all the off-diagonal elements satisfy unity root or power-residue definitions
(A2). See the founding, URM3 matrix A, (Ala), and [1]#1 for full information, in

particular, [1]#1, Appendix (C1) for a cubic example.

(124) Variational Matrices

See annihilator matrices (123) and variational methods (120) next.
(120) Variational Methods

Any variation to the fundamental A matrix, (Ala) or its n-dimensional variant, such that its
fundamental defining equation

(120a) AX, =CX_, 21=C, C>0,
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remains invariant to the variation, is termed a variational method in URMT. Applying this
method (variation) leaves both the plus eigenvector X, (111) and the eigenvalue C invariant,
but invariably modifies (‘evolves’) all other eigenvectors of the A matrix.

Such variational methods are achieved by adding an annihilator matrix A (123) to A, where
A can be absolutely any matrix that satisfies its annihilation definition AX=0 (123a). Usually
this annihilator is the ‘plus’ A matrix ‘A, ’°, and the vector X is X_, since A, X, =0.

+ 0

Conversely, in the dual URMT formulation, the annihilator matrix is A_, and X is X_, since
A_X_=0. Whilst these two matrices, A, and A _, are commonly used as annihilators of
X, and X_ respectively, they are not the only annihilator matrices, and A is generally
arbitrary so long as it satisfies its definitions.

There are two types of variation, global and local, where each type changes the dynamical
variables in the A matrix. A global change affects every dynamical variable in the same way,
and is the same as adding (or subtracting) a scalar multiple m of A to A as in the following

mapping:
(120b) A—>A-mA.

By the annihilator definition, AX =0 (123), this transformation on A leaves the eigenvector
X invariant as follows:

(120c) (A-mA)X=AX-mAX=AX=CX, 1=C.

Whilst a global variation involves just a single parameter, e.g. m in (120b), local variations
act internally on A, and there are far more possible variations satisfying the same property
(120c). See [1]#1 and [2],8 for full details.

(117) Vector space, eigenvector space

These two interchangeable terms are used loosely throughout URMT since they refer to the
eigenvectors of the unity root matrix A (Ala), but not linear combinations of them, i.e. the
whole of URMT currently studies the vector basis comprising the eigenvectors, but not
arbitrary vectors generated from them. Thus, for the purists, the vector space would be better
described as an infinite set (space) of linearly independent eigenvectors, rather than 'vector
space' in the true, mathematical sense of the word. See [5] for a strict definition of a vector
space. For instance, the URMT discrete, vector space is not generally closed and neither is
there a null vector, i.e. a vector of all zeroes, see also no singularity (134).

The URMB3 set of eigenvectors is defined by the infinite set of points termed the lattice (125).
The key point is that every vector in the lattice is an eigenvector of the unity root matrix, and
arbitrary, linear combinations of eigenvectors do not generally give another eigenvector in
the lattice, as is true for any general set of eigenvectors for distinct eigenvalues. For example,
the eigenvector sum X,, + X, is not an eigenvector of A,, even though X, and X, are
both eigenvectors, eigenvalues C and —C respectively, Appendix (A). That is not to say that

the n URMT eigenvectors cannot form the basis of an n-dimensional vector space - indeed
they can by their linear independence, which is why the term ‘'vector space' is used loosely.
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Currently, however, URMT focuses solely on the eigenvectors themselves but not arbitrary
functions of them.

(118) A Zero Eigenvector in URMT is defined as an eigenvector X, satisfying AX , =0,

i.e. an eigenvector for eigenvalue zero. In linear algebra, such vectors are said to occupy the
null or kernel space of the matrix A. The URMT eigenvectors X,, X,0, X, 0ar Xnoss Xnoc »

X0 1=0...n-3 etc., are all zero eigenvectors since they are the eigenvectors for the

repeated, zero Pythagorean eigenvalue (114). Generally, zero eigenvectors are only
considered under Pythagoras or Skew conditions, e.g. (A19) for URM3 Pythagoras.
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