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Unity Root Matrix Theory 

Comprehensive Index 
 

Richard J. Miller 

Email: richard@microscitech.com, 

www.urmt.org 

 

 

This document provides a comprehensive index for all five books currently published on the 

subject of Unity Root Matrix Theory, none of which have such an index at the end. 

 

The five published books are as follows: 

 

[1] Physics in Integers 

[2] Higher Dimensional Extensions 

[3] Mathematical and Physical Advances Volume I 

[4] Mathematical and Physical Advances Volume II 

[5] A Quark Flavour Model 

 

In addition to an index, this document also contains a glossary of terms and definitions 

following the index. This glossary was first added as Appendix (I) in book [2], and has 

evolved in each book thereafter, with the latest and most up-to-date in book [5], as 

reproduced herein. Note that it is not, by design, a complete URMT Glossary, but merely 

covers terms either uniquely defined within URMT or those in wider use, but with a specific 

meaning to URMT. 

 

Key 

 

[B] nnn = book B (B=1-5), page nnn 

 

Glossary (Inn) = Glossary entry nn 

 

Multiple entries are separated by commas. 

 

For example  
 

[1] 103:  Book I, page 103 

 

[1] 126, [1] 200, [2] 275: Book 1 page 126, Book 1 page 200, book 2 page 275 
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A 

A matrices [1] 259 

... three sets [5] 44 

A Matrix AVE [3] 35, Glossary (I22), [4] 7 

... Evolution [5] 172 

A Unity Root Matrix Definition [1] 10, see also Unity Root Matrix 

A  [1] 259, also see Raising operator 

0A  Unity Root Matrix Pythagoras, see A [1] 58 

A  [1] 259, also see Lowering operator 

Acceleration eigenvector X , [1] 153 

Action variables, see Dynamical variables 

Algorithmic Solution URM3 [1] 217 

... Example [1] 242 

Alignment of eigenvectors, Glossary (I1), see also Flattening, Compactification 

... Geometric [1] 126, [2] 220, [2] 225, [4] 173 

... Electromagnetic [4] 405, 

... Quarks, URM6 [5] 260 

Almost trivial solution [1] 181 

Alpha scale/divisibility factor 

... URM3 [1] 15 

... URM4 Scale factors [2] 47 

Analytic Pythagoras Solution, C=1, [1] 72, [1] 80 

Angles, Tangents and Flatness [1] 132 

Angles between eigenvectors, data [1] 174, [1] 178 

Angular Momentum 

... Generator matrices zyx ,,J  [4] 155, [5] 23 

... Commutation relations [4] 158 

Angular dynamics, see Euler's Equations, Rigid Body Dynamics 

Angular velocity matrix W [4] 275 

Annihilators [1] 228, see also Variational matrices 

... URM4 [2] p125, 

... AVE [3] 14 

... as a Lowering operator matrix, see Raising and Lowering 

Arbitrary Vector Embedding (AVE) [3] 3 

... in URM2 [3] 29 

... in URM3 [3] 35 

... in URM4 [3] 39 

... AVE I Introduction [3] 3 

... AVE I and rotations [4] 290 

... AVE II [4] 35, [4] 81 

AVE see Arbitrary Vector Embedding 

 

B 

Baker-Campbell-Hausdorf formula [5] 117 

Barning Trees [1] 58, [5] 298 

Baryon Number Operator [5] 138, [5] 282 

Base Set of Eigenvectors and Matrices [5] 4, Glossary (I41) 

Basis eigenvectors [1] 130 
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Beta scale/divisibility factor, see Alpha 

Boson integer spin [4] 309 

Bottom, see Charge operators and Charges 

Bottom quark, see URM6 

 

C 

c speed of light, equivalence with eigenvalue C [1] 160, [3] 34, [3] 146, [3] 167, [3] 179, 

[3] 213, [3] 222, [3] 229, [3] 251 

C Eigenvalue, invariant [1] p97, [1] 107, [1] 314 

Calculus 

... eigenvectors [1] 156, [2] 331, [3] 467, [4] 449, [5] 379, 

... Operators [4] 151 

... Rate Equations [4] 326 

Casimir operator, URM3 [5] 41, URM2 [5] 67, [5] 80, [5] 110 

Cayley-Hamilton theorem, See Residual Matrix Method 

Characteristic Equation, see also Dynamical Conservation Equation 

... mass [3] 227 

... URM3 [1] 10 

... URM3 Pythagoras [1] 59 

... URM4 [2] 7 

... URM4 AVE II [4] 52 

... URM5 [2] 234 

... URM5 relativistic [3] 223 

Charge operators quantum, see also Isospin 

... Baryon Number URM3 [5] 138 

... Bottom [5] 281 

... Charm [5] 280 

... Electric URM3 [5] 141 

... Hypercharge URM3 [5] 139 

... Strangeness URM3 [5] 136 

... Top [5] 281 

... all URM6 [5] 279 

Charges - quark summary [5] 146, [5] 285 

Charm, see Charge operators, Charges 

Charm quark, see URM6 

Colour quarks [5] 242 

Commutation Relations [5] 18, [5] 35, [5] 111 

Compactification [2] 245 

Compactification ratio [2] 246, Glossary (I32) 

Complex Eigenvalues [3] 55 

... Riemann hypothesis [2] 34 

... AVE I [3] 28, [3] 43, [3] 55, [3] 70 

... AVE II [4] 60, [4] 62, [4] 91, [4] 190 

... Electromagnetic [4] 362 

... Harmonic [3] 110 

... Quaternions [4] 249 

... Rigid body dynamics [4] 333 

... URM3 Skew [3] 316, [3] 322, [3] 328 

... URM4 [2] 73, [2] 186, Glossary (I14) 

... URM5 [3] 227, [3] 253 
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Complex Eigenvectors, see also Pilot Waves 

... AVE I [3] 59, [3] 83, [3] 241, [3] 323 

... AVE II [4] 98, [4] 187, [4] 213 

... Conjugate and Reciprocal [3] 329 

... Electromagnetic [4] 362 

... Harmonic [3] 114 

... Quaternions [4] 249, 

... Rigid body dynamics [4] 333 

... Skew [3] 315 

... URM4 [2] 196 

Concepts in Mathematical Physics [1] 154 

Cones upper and lower [1] 117 

Congruence Equations [1] 16 

Conjugate 

... Coordinates URM4 [2] 27 

... Eigenvectors [1] 69, [2]  317, [3] 451, 

[4] 433, [5]  365 

... Evolution [5] 163 

... Notation, see Conjugate Variables 

... Relations [1] 22 

... Variables [1] 7, [1] 305 

Conservation Equations and Invariants,  see also Dynamical Conservation Equation, 

Eigenvector Inner Products, [2] 325, [3] 459, [4] 441, [5] 371 

Coordinate Equation [1] 22 

.... solving example [1] 247 

Co-primality criteria [1] 15, [1] 63 

Cosmological expansion, Hubble, [3] 207 

Cosmological phenomenology [3] 207 

Cross product 

... AVE II Part I [4] 35, Part II [4] 81 

... Eigenvectors, see Eigenvectors cross products 

... Electromagnetic field tensor form [4] 353 

... matrix forms [4] 36 

... Skew A matrix [3] 325 

Cubic case study [1] 46 

Curvature [1] 141, [1] 159, see also Flatness 

... Numeric data [1] 177, [1] 180 

... URM4 [2] 226 

Cyclic groups, see Groups 

 

D 

DCE see Dynamical Conservation Equation, Characteristic Equation 

Delta baryon particles 
Δ , 

Δ , 0
Δ , 

Δ   [5] 243 

Delta Equation [1] 37 

Delta variation, see Variational Methods 

Determinant 

... URM3 [1] 10 

... URM4 [2] 12, [2] 126 

... Potential energy [1] 11, [1] 116, [1] 196 

... Transforming [1] 14 
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... zero-valued [1] 58 

Difference set 

... Operators and Eigenvectors [5] 27 

... A matrices and eigenvectors [5] 45 

... of eigenvectors and matrices Glossary (I42) 

Dimensional analysis 

... [1] 149 

... [2] 24 

... see also SPI, Dual SPI, QPI,  

Divisibility (or Scale) Factors 

... URM3 [1] 38 

... URM4 [2] 47 

Doppler Solution - relativistic [3] 171 

Doppler Shift - relativistic [3] 195 

Down, see Charge Operators, Charges  

Down quark 

... Isospin state vectors [5] 75,  

... URM2 [5] 97 

... URM3 [5] 130 

... URM6 [5] 269 

Dual Conjugate Notation [1] 309 

Dual relations [1] 292 

Dual Evolution, see Eigenvector Evolution 

... Poynting Vector [4] 407 

Dual Formulation, time and frequency [4] 170 

Duality [1] 292 

... Electromagnetic [4] 379, [4] 407 

... Scale [1] 160 

Dual SPI [3] 105, [3] 116 

Dynamical Equations 

... URM3 [1] 9  

... URM3 derivation [1] 41 

... URM3 [1] 45, Solving [1] 189 

... URM4 [2] 134 

Dynamical Conservation Equation (DCE), see also Glossary (I19)  

... AVE I [3] 37, [3] 45, [4] 33 

... AVE II [4] 51, [4] 204 

... Characteristic Equation [3] 228, [3] 261, [3] 281 

... Electromagnetic [4] 360, [4] 369, [4] 398 

... Harmonic [3] 102, [3] 108, [3] 110 

... Lorentz transformation [3] 304 

... Quaternion body rates [4] 335 

... Skew [3](10-3) p321, [3] 332, [3] 352 

... Spin, angular velocity [4] 296 

... Three-axis expansion [5] 34 

... URM3 [1] 7 

... URM4 [2] 70 

... URM5 [3] 179, [3] 251 

... URM6 [5] 262, [5] 319 

Dynamical Variables 



Unity Root Matrix Theory 

Comprehensive Index 

http://www.urmt.org 

Issue 1.0 18/12/2019 

Page 6 of 37 

... Action variables [5] 180 

... Number Theory [4] 164 

... AVE II [4] 39 

... URM3 P,Q,R [1] 7 

... URM4 S,T,U [2] 4 

... URM5 M,H,N,J [2] 231 

 

E 

E see Residual Matrices 

Eigenvalues 

... URM3 unity eigenvalue [1] 10 

... URM3 Pythagoras [1] 59 

... URM3 [1] 322, [1] 348 

... URM3 AVE I [3] 36 

... URM4 [2] 28 

... URM4 AVE I [3] 43 

... URM4 AVE II [4] 52 

... URM5 Pythagoras [2] 237 

Eigenvectors, see also Eigenvector solution, Eigenvalues, Conservation Equations 

... as a basis [1] 130, [4] 108 

... as a relativistic event [3] 145 

... Cross products [1] 71, Skew [3] 335 

... Difference [5] 45 

... Expansion - see Expansion of Eigenvectors 

... Inner products [1] 70, [1] 131 

... Invariants [1] 157, also see Inner products 

... Skew [3] 315 

... Sum [5] 48 

... Triple products [1] 72 

Eigenvector Evolution 

... Conjugate [5] 163, [5] 190 

... Dual [4] 170, [4] 407 

... Electromagnetic [4] 399 

... Exponential [5] 157 

... and the Hamiltonian [5] 167 

... Lorentz transformations [3] 294 

... Skew [3] 373 

... State Transition [5] 147 

... Temporal [2] 213 

... Time Domain [2] 297, [3] 445, [4] 427, [5] 339 

... Time and Frequency Domain [4] 172, [5] 15 

... URM2 [5] 185 

... URM3 Pythagoras [1] 124 

... URM3 Skew [3] 373 

... URM4 [2] 248 

... URM4 Temporal [2] 218 

... URM5 [2] 241 

... URM6 frequency-domain [5] 266 

... URM6 time-domain [5] 252 

Eigenvector Matrix ][X  [5] 148 
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Eigenvector solution, 

... URM2 [2] 336, [5] 383 

... URM3 [1] 13, [1] 45 

... Pythagoras [1] 64 

... URM4 [2] 203 

... URM5 [2] 241 

... URM6 quarks [5] 255 

... AVE I, AVE II see Arbitrary Vector Embedding 

... by residual matrix method [1] 64 

... by variational methods [1] 11 

... electromagnetic [4] 359 

... nine different forms [1] 252 

... URM5 relativistic [3] 234 

Eigenvector Vector Space Glossary (I17) 

Electric Charge Operator 

... URM3 [5] 141 

... URM6 [5] 283 

Electric field intensity vector E [4] 37, [4] 342 

Electromagnetic 

... Field Tensor 'EFT' [4] 44 

... Field Tensor Formulation [4] 341 

... Plane Wave [4] 221, [4] 341 

... Quaternion link [4] 384 

Embedding URM3 in URM4 [2] 19 

Embedding general URMn-1 in URMn, n>=2, see Lifting Solutions 

Energy, see also Potential, Kinetic, DCE 

... relativistic [3] 229 

... momentum equation [3] 187, [3] 229, [4] 55 

Eta-meson   [5] 236 

Euler's equations of motion [4] 468 

Event relativistic URM5 eigenvector [3] 145 

Evolution of Eigenvectors – see Eigenvector Evolution 

Evolution of A Matrices [5] 172 

Evolution Matrix [5] 157 

... Frequency Domain [5] 170 

... Hamiltonian  [5] 167 

Excess dimension Glossary (I4) 

Expansion of Eigenvectors 

... URM3 Eigenvector space [2] 263 

... Cosmological Hubble [3] 207 

Exponential Evolution [5] 157 

Exterior product Glossary (I40) 

... AVE II Part I [4] 183, Part II [4] 203 

 

F 

Fermat’s Last Theorem, see Coordinate Equation 

Fermion half integer spin [4](13-7) p308 

Flattening URM4 [2](12-8) p223, see also Flatness 

Flatness [1] 132 

... Definition [1] 137 
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... Data table [1] 175 

Flavour, quarks [5] 

Force, see also Standard Physical Interpretation (SPI) 

... X  eigenvector [1] 152 

... Zero potential 'PS+RU' solution [2] 75 

... Induce by a delta variation [3] 48 

... Invariant Zero Potential [2] 157 

Foundations of URMT [1] 5 

Four-vectors, relativity 

... position [3] 145, [3] 255 

... velocity [3] 183 

Five-vectors, relativity [3] 150 

Frequency domain evolution operator [5] 170 

 

G 

G gravitational constant [1] 158 

Gamma scale/divisibility factor, see Alpha 

gcd [1] 15 

Gell-Mann 

... Matrices iλ , 8...1i  [5] 195 

... Nishijima formula [5] 142 

General n-dimensional solution [2] 265 

Generators, see also Angular Momentum, Gell-Mann, Pauli, Isospin 

... Lie Group [5] 354 

... Rotations [4] 153, [4] 159, [4] 455 

... Unity roots [1] 238 

Geometric and Physical Aspects of Pythagorean Triples as Eigenvectors [1] 103 

Geometric Evolution URM4 [2] 222 

Global Variation [1] 27, [1] 29, also see Variational Methods 

Gravitational constant – see G 

Graviton, see Massless Particles 

Groups,  

... Cyclic [1] 7, [5] 343 

... General, GL(2,C), Lie, SU(N) [5] 343 

... Orthogonal O(3) [4] 159 

... Unity roots [1] 238 

 

H 

h, hbar Planck’s constant, equivalence with eigenvalue C [5] 36 

H dynamical variable, see URM5 

Hadrons [5] 223 

Hamiltonian 

... Electromagnetic A matrix [4] 356 

... Time-domain Eigenvector Evolution [5] 167 

Hamilton-Cayley, see Cayley-Hamilton theorem 

Harmonic Oscillator [3] 97 

Hermitian 

... A Matrices [4] 138, see also Hermitian-like 

... Conjugate [5] 101 

... Isospin [5] 89 
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... Operators [4] 177 

... Observables [4] 176 

Hermitian-like [1] 11, [1] 24, [1] 307 

Higher Dimensional Extensions [2] 

Hilbert-Polya Conjecture [2] 34 

Hubble constant [3] 207 

Hyperboloid [1] 118 

Hyperbolic Eigenvectors, see Zero Eigenvectors 

Hypercharge 

... URM3 [5] 139 

... URM6 [5] 282 

 

I 

Infinities [1] 155 

Inflation [1] 159, [3] 209 

Inner products, see Eigenvectors 

... quarks [5] 81, [5] 134 

Interval relativistic [3] 24 

Invariance Principle [1] 8 

... Action, QPI [5] 180 

Invariance Standard and Dual [5] 13 

Invariance Transformation 

... local URM3 [1] 8 

... global, see Global variations 

Invariant eigenvalue, eigenvector, See Variational Methods  

Invariant Zero Potential Conditions URM5 [2] 235 

Invariant Zero Potential Solution URM4 [2] 157 

... Non-invariant [3] 226 

Invariants [1] 157 

Inverse Square Law curvature [1] 142, [3] 208 

Isospin [5] 75 

... Operators [5] 78 

... Composite Particles [5] 231 

... URM2 [5] 93 

 

J 

J dynamical variable, see URM5 

zyx ,,J  see Angular momentum 

 

K 

K Kinetic Energy 

Kinetic Energy, see also DCE, Potential energy 

... AVE I [3] 37, [3] 45, [3] 77 

... AVE II [4] 49 

... Electromagnetic [4] 360,  

... Harmonic Oscillator [3] 108 

... Lorentz Transformations [3] 280 

... Mass energy [3] 228 

... Relativistic momentum term [4] 55 

... Relativistic Doppler solution [3] 179 
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... Skew complex [3] 320 

... Spin [4] 297 

... URM2 [5]  383 

... URM3 [1] 7, Pythagoras [1] 37 

... URM4 [2] 10, Pythagoras [2] 70 

... URM5 [2] 234 

 

L 

Lagrangian 

... Electromagnetic [4] 354 

... QPI [5] 179 

Lattice [1] 118, see also Curvature, Flatness 

Lambda matrices – Gell-Mann matrices 

Levi-Cevita permuting symbol ijk  [3] 327, [4] 156, [5] 91, [5] 356 

Lie algebra [5] 356 

Lie groups [5] 349 

Lifting solutions [2] 101 

... URM5 [3] 219 

... URM5 relativistic [3] 261 

... URM6 Quarks [5] 252 

Local and Global Variations see Variational Methods 

Lorentz Transformations [3] 275 

Lowering Operator, see Raising and Lowering 

 

M 

M dynamical variable, see URM5 

Magnetic field/intensity vector H [4] 342 

Magnetic field/induction vector B [4] 342 

Magnitude vector [1] 113, Glossary (I7) 

Mass, see also dynamical variable M 

... Energy [3] 147  

... Four-vector momentum [3] 186 

... Potential energy [3] 180, [3] 229 

... Relativistic [3] 180, [3] 189, [3] 219, [3] 229, [3] 249 

Massive particles, see Potential Energy 

Massless particles, graviton, photon, zero potential energy [2] 157, [3] 30, 

[3] 74, [3] 180, [3] 188, [3] 224, [3] 233, [3] 253, [3] 259, [3] 267, [3] 271, 

[4] 49, [4] 183, [4] 310 [4] 360, [4] 375 

Mesons, see also Pion 

... hypercharge [5] 138 

... tensor products [5] 225 

Minus eigenvector Glossary (I9) 

Minimal/Minimum polynomial, see Residual Matrix Method 

Minkowski geometry [1] 161, [1] 295 

Minkowski metric [2]  319, [3] 24, see also T operator 

Mirror manifold symmetry [1] 161 

Modified FLT Equation, see Coordinate Equation 

Momentum, see Force, see also Mass 

Multiplets SU(2) and SU(3) [5] 237 
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N 

N dynamical variable, see URM5 

Neutrino [4] 311 

Non-singular matrix condition URM3 [1] 10 

Non-unity Eigenvalues [1] 107, [1] 166, [1] 313 

Norm [1] 112, Glossary (I8) 

Normalising to the DCE Glossary (I38) 

... Electromagnetism [4] 377 

 

O 

Oblique eigenvector basis [1] 134 

Observables [3] 26, [3] 272, [3] 382 

... unobservable [3] 250 

Omega minus baryon particle 
Ω  [5] 241 

Orthogonal Group O(3) [4] 159 

Orthogonality 

... of Eigenvectors, see Eigenvector Inner Products 

... of Projection Operators [4] 122 

Oscillator, see Harmonic 

Outer Product [4] 115 - Corrected in the online Errata document 

... Tensors, Hadrons [5] 223 

 

P 

P dynamical variable, unity root, see Dynamical Variables 

Parametric Solution 

... URM3 Pythagoras [1]#2 Appendix (A) p80 

... URM3 Skew (complex) eigenvectors [3] 343 

... URM4 AVE [3] 39 

... URM4 Harmonic Oscillator [3] 97 

... URM4 Relativistic [3] 259 

... URM5 Relativistic 'Doppler' [3] 172 

Parity Transformation [1] 289 

Pauli (spin) matrices 31, iiσ  [5](4-3) p78 

Permittivity of free space [4] 37, [4] 343, [4] 352 

Physics in Integers [1] 

Pi meson, see Pion 

Pion [5] 231 

Pilot wave [3] 233, [3] 239, [3] 250, [3] 268 [3] 272, [4] 365, [4] 395 

Planck 

... Constant [3] 124 

... Energy, see frequency, below 

... Frequency [1] 157 

... Length [1] 158 

... Eigenvalue C [1] 160 

... Time [1] 158, [2] 221, [3] 203, [3] 206 

Plus eigenvector Glossary (I9) 

Photon, see Massless Particles 

Physical Associations [1] 152, see also SPI, Dual SPI, QPI 

Position eigenvector vector X  [1] 153 

Potential Energy 
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... AVE I [3] 37 

... AVE II [3] 45, [4] 45 

... Determinant [1] 11 

... Harmonic Oscillator [3] 77, [3] 98, [3] 108 

... Mass [3] 229 

... Self-interaction [4] 48 

... URM3 [1] 7 

... URM4 [2] 70, 

Potential Equation 

... URM3 [1] 17, Pythagoras [1] 38 

... URM4 [2] 58, [2]  325, [3] 459, [4] 441, [5] 371 

... Quarks [5] 318 

Poynting Vector electromagnetism [4] 343 

Poynting Vector formulation [4] 367 

Primitive Roots, see Unity Roots 

Projection Operators [4] 107 

... Reformulation of URMT [4] 128 

Proper time relativity [3] 255 

PS+RU solution [2] 75 

Pythagoras delta equation [1] 37 

Pythagoras equation [1] 33 

Pythagoras Conditions 

... URM3 [1] 33 

... URM4 [2] 69 

... URM5 [2] 232 

Pythagorean Eigenvalues Glossary (I14) 

Pythagorean Doubles, see URM2 

Pythagorean Triple 

... (4,3,5) Analytic solution [1] 171 

... Definition [1] 58 

... Example Data [1] 97 

Pythagorean Triples as Eigenvectors and Related Invariants [1] 57 

Pythagorean Quadruplets – URM4, URM5 lifting from (0,1,1) [2] 111 

Pythagorean Quintuplets, see URM5 

Pythagorean Sextuplets as Quarks Example [5] 305 

 

Q 

Q dynamical variable, unity root, see Dynamical Variables 

Q electric charge eigenvalue - see Electric Charge Operator 

Quantisation [1] 155 

QPI see Quantum Physical Interpretation 

Quantum Physical Interpretation [5] 177 

Quark, See also Bottom, Charm, Down, Isospin, Strange, Top, Up 

... eigenvector matrix ][q  [5] 181 

... Evolution [5] 181 

... URM2 see Isospin 

... URM3 see Strange quark 

... URM6 [5] 251 

Quaternions 

... Algebraic Fundamentals [4] 225 
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... Matrix Representation [4] 44, [4] 243 

... Single Axis Rotations [4] 259, [4] 287, [4] 321 

... Three Axis Rotations [4] 271 

... Rates [4] 275, [4] 326 

Quintic case study [1] 51 

 

R 

R URM3 dynamical variable, unity root, see Dynamical Variables 

Raising and Lowering operators [5] 21, [5] 142 

... SU(3) [5] 212 

... composite Particles [5] 234 

Reals to Integers Conversion [3] 381 

Reciprocal Eigenvectors [2] 317, [3]  451, [4] 433, [5]  365 

Relativity Special - see Special Relativity 

Relativistic time, see Proper time 

Relativistic mass, see Mass 

Residual Matrices [1] 65 

... as projection operators [1] 72 

Residual Matrix Method 

... URM3 [1] 65 

... URM4 [2] 37, [2] 59, [2] 82, [3] 85 

... AVE II [4] 207 

Rest mass, see Mass 

Riemann Hypothesis [2] 34 

Rigid Body Dynamics [4] 315, [4]  453 

Rotation matrices [4] 159, see also Euler's Equations, Quaternions, Spin 

 

S 

S dynamical variable, see URM4 

Scale 

... duality [1] 160 

... factors – see Divisibility factors 

... geometric [1] 158 

... Transformation [1] 289 

Self-interaction energy [4] 48 

Sigma baryon particles 
Σ , 0

Σ , 
Σ  [5] 243 

Simple analytic solution, odd exponent, [1] 205 

Singularity [1] 155 

Skew URMT, see also Complex Eigenvectors 

... Eigenvectors [3] 315 

... Evolution (of eigenvectors) [3] 373 

... Parametric Solution [3] 343 

... T operator [3] 330 

Solving Unity Root Matrix Theory [1] 189 

Special Relativity [3] 143 

... URM5 Eigenvector as an STR event [3] 145 

Special Unitary Groups [5] 343, see also SU(N) 

Spectral decomposition [4] 129, [5] 18 

Speed of light, see c 
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Spin [4] 285, see also, Isospin, Rotations, Angular dynamics 

... and Massless Particles [4] 306 

SPI see Standard Physical Interpretation, Dual SPI 

Standard Physical Interpretation [1] 162, [2] 345, [3] 491, [4] 499, [5] 413 

State Transition Evolution [5] 147 

State Transition Matrix [4] 328, [5] 148 

Static non-evolving, invariant eigenvector, Glossary (I16) 

STR Special Theory of Relativity, see Special Relativity 

Strange quark URM3 [5] 129 

Strangeness, see Charge operators and Charges 

Sum set of eigenvectors and matrices, [5] 48, see also Glossary (I43) 

Sum and Difference Operators [5] 27 

SU(2) [5] 3, [5] 93, see also Isospin, SU(N) 

SU(3) [5] 136, see also Gell-Mann, Strangeness, SU(N) 

SU(3) vs. URM3 [5] 218 

SU(4) [5] 275, see also SU(N) 

SU(6) [5] 271, see also SU(N) 

SU(N) [5] 343, see also Unitary Transforms 

Symmetry [1] 156 

Symmetry Groups, see SU(N) 

 

T 

T dynamical variable, see URM4 

T Operator Pythagoras, see also Glossary (I28a) 

... URM2 [2] 336 

... URM3 Conjugation matrix [1] 111 

... URM4 [2] 319 

... URM5 [3] 151 

T Operator Skew, see also Glossary (I28b) 

... URM2 [5] 54 

... URM3 [3] 330 

 

Tangents [1] 132 

Temporal Evolution URM4 [2] 213 

Tensor Products, Hadrons [5] 223 

Three-fold degeneracy 

... eigenvalues of raising and lowering operators A , A  [5] 4, [5] 159, [5] 170 

... Quark colour [5] 243 

... Pythagorean eigenvector solution [5] 51, [5] 264 

Time domain evolution, see Evolution 

Top, see Charge Operators, Charges 

Top quark, see URM6 

Total Angular Momentum (squared) 2
J  [5] 41 

Total Isospin (squared) 2
I  [5] 80 

Transition Evolution operator tM  [4] 328 

... frequency domain fM  [5] 154 

... time domain tM  [5] 148 

Two-slit experiment [3] 250 
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U 

U dynamical variable, see URM4 

U ‘U-channel’ quarks, see Raising and Lowering Operators, SU(3) 

Up, see Charge Operators, Charges 

Up quark, see Down quark 

Unified Approach (to URMT formulation) [4] 134 

Unifying Concepts of Pythagorean Triples as Eigenvectors [1] 255 

Unitarity [5] 114, [5] 169 

Unitary 

... operators [4] 175 

... Transformations [5] 113 

Unity Root Matrix Theory 

... A Quark Flavour Model [5] 

... Foundations [1] 5 

... Higher Dimensional Extensions [2] 

... Mathematical and Physical Advances Volume I [3] 

... Mathematical and Physical Advances Volume II [4] 

... Physics in Integers [1] 

Unity Root Matrix 

... AVE I [3] 11, [4] 7, [2] 28  

... AVE I Rotation/Spin form [3] 292  

... AVE II [4] 36, [3] 185 

... Electromagnetic field tensor form [4] 353, [4] 359,  

... Electromagnetic Poynting vector form [4] 371, [4] 359,  

... Harmonic Oscillator [3] 107, [3] 121, [3] 131 

... Lifting form [2] 107, [2] 112, [2] 116 

... Lorentz Transform [3] 301 

... Quarks URM6 

... Relativistic Doppler URM5 [3] 178 

... Relativistic STR event URM5 [3] 154 

... Skew URM3 [3] 319 

... URM2 [2]  335, [5]  383 

... URM2 Isospin [5] 94 

... URM3 general [1] 10 

... URM3 under Pythagoras conditions [1] 33 

... URM4 2a2p1 solution [2] 94 

... URM4 general [2] 4  

... URM4 PS+RU Zero Potential solution [2] 76 

... URM4 under Pythagoras conditions [2] 70 

... URM5 general [2] 231 

... URM5 under Pythagoras conditions [2] 236 

... URM6 Six Quarks [5] 253 

Unity (primitive) roots [1] 18, [1] 200, [1] 218, 

see also Dynamical Variables 

... Overview [1] 234 

... loss of in URM4 [2] 13 

... Skew complex [3] 359 

URM2 [2] 335, [5] 53, [5] 383 

... Isospin [5] 93 

... Evolution [5] 185 
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URM3 [1] 6 

... Pythagoras [1] 57 

... Summary [2] 285, [3] 429, [4] 413, [5] 325, 

... Skew and Complex Eigenvectors [3] 315 

... Three-axis expansion [5] 27 

URM4 

... Foundations [2] 3 

... Unity Eigenvalue 2a2p1 Solution [2] 91 

URM5 [2](13) p231 

... Numeric Example [2] 305 

... Quaternions and Rotations [4] 330 

URM6 

... Quarks, Charm, Bottom, Top [5] 251 

... Numeric Example, six quarks, [5] 289 

 

V 

V ‘V-channel’ quarks, see Raising and Lowering Operators SU(3) 

V Potential Energy 

Variational A Matrices [1] 259 

Variational Matrices, see Variational Methods 

Variational Methods, see also Glossary (I20) 

... Delta variation [1] 27 

... Electromagnetic [4] 396 

... Gamma, Delta Epsilon, see Local below 

... Global [1] 27 

... Lifting URM4 [2] 199 

... Local [1] 27 

... Lorentz transformations [3] 291 

... URM3 [1] 27, [1] 259 

... URM4 '2a2p1' solution, [2] 181 

... URM4 Pythagoras [2] 25, [2] 121 

... URM4 AVE I [3] 69 

... URM5 [2] 238 

... URM6 see Eigenvector Evolution 

Vector space, see Eigenvector Vector Space, Glossary (I17) 

Velocity eigenvector 0X , [1] 153 

Virtual Particles [3] 48, [3] 250, [4] 51 

 

W 

Wave-function [5] 167 

Winding Number [1] 161, [4] 168 

 

X 

Xi baryon particles 0
Ξ , 

Ξ  [5] 243 

 

Z 

Zero Divisors [1]#1(5) p13 

Zero Eigenvector, Glossary (I18), see also Dynamical Conservation Equation, 

... URM3 [1]#2(2) p62 

... URM4 [2](3-4) p50 
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... URM5 [2](13-4) p241 

... URM6 quarks [5] 256 

Zero magnitude and norm (Skew eigenvectors) [3] 340 

Zero-point energy [1] 156, [4] 65 

Zero Potential [1] 34, [1] 108, [1] 156, [2] 75, [2] 157 
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Glossary of Terms and Definitions 

Appendix (I) books [2] to [5] 

This is a subset of the full URMT terminology covering terms either uniquely defined within 

URMT or those in wider use, but with a specific meaning to URMT. 

Important. The ordering of entries is alphabetic, not numeric, and is done to achieve 

compatibility between all five published books. To aid in its use, both an alphabetic and 

numeric index is given beforehand on the next two pages. 
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Alphabetic Index 

A Matrices (I22) 

Alignment (I1) 

Annihilator (I23) 

Base set (I41) 

Bilinear form (I46) 

Compactification (I32) 

Cone (I27) 

Difference set (I42) 

Divisibility factors, 

scale factors (I2) 

Dyadic product (I3) 

Dynamical Conservation 

Equation (DCE) (I19) 

Dynamical equations (I21) 

Excess dimension (I4) 

Exterior product (I40) 

Flattening (I5) 

Hyperboloid (I26) 

Invariant eigenvalue (I37) 

Invariance Principle (I36) 

Invariant Zero Potential 

solution (IZP) (I35) 

Lattice (I25) 

Lifting (I6) 

Magnitude (I7) 

 

Minus eigenvector (I9) 

Non-trivial eigenvector (I10) 

Norm (I8) 

Normalising to the DCE (I38) 

No singularity (I34) 

Parity operator (I39) 

Plus eigenvector (I11) 
Primitive Pythagorean 

n-tuple (I12) 

Pythagoras conditions (I13) 

Pythagorean double (I44) 

Pythagorean triple (I45) 

Pythagorean Eigenvalues (I14) 

Scale factors (I15) 

Skew conditions (I33) 

Static (I16) 

Sum set (I43) 

T Operator (I28) 

Unity Root Matrix (I31) 

Variational Matrices (I24) 

Variational Methods (I20) 

Vector space, 

eigenvector space (I17) 

Zero Eigenvector (I18) 
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Numeric Index 

(I1) Alignment 

(I2) Divisibility factors, 

scale factors 

(I3) Dyadic product 

(I4) Excess dimension 

(I5) Flattening 

(I6) Lifting  

(I7) Magnitude  

(I8) Norm  

(I9) Minus eigenvector 

(I10) Non-trivial eigenvector 

(I11) Plus eigenvector 
(I12) Primitive Pythagorean 

n-tuple 

(I13) Pythagoras conditions 

(I14) Pythagorean Eigenvalues  

(I15) Scale factors 

(I16) Static  

(I17) Vector space, 

eigenvector space 

(I18) Zero Eigenvector 

(I19) Dynamical Conservation 

Equation (DCE) 

(I20) Variational Methods 

(I21) Dynamical equations 

(I22) A Matrices 

 

(I23) Annihilator 

(I24) Variational Matrices 

(I25) Lattice  

(I26) Hyperboloid  

(I27) Cone 

(I28) T Operator 

(I29) deleted 

(I30) deleted 

(I31) Unity Root Matrix 

(I32) Compactification 

(I33) Skew Conditions 

(I34) No singularity 

(I35) Invariant Zero Potential 

solution 

(I36) Invariance Principle 

(I37) Invariant Eigenvalue 

(I38) Normalising to the DCE 

(I39) Parity operator 

(I40) Exterior product 

(I41) Base set 

(I42) Difference set 

(I43) Sum set 

(I44) Pythagorean double 

(I45) Pythagorean triple 

(I46) Bilinear form 
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(I22) A matrices 

The definition of A matrices, as first given in Volume I [3], was exclusively defined in terms 

of matrices formed from the method of arbitrary embedding AVE I, which was new to 

URMT at the time. This AVE I method produces an )1()1(  nn , 1n , A matrix defined 

in terms of an arbitrary, n -element column vector X, its row-vector transpose XT and an 

annihilator matrix ∆ (I23) of X; see Section [4],1 for a full review of this method. 

As of the last publication [4], the term A matrix was extended to all URMT matrices, 

specifically the founding ‘unity root matrix’ A (~A0) and its two partners, the plus and minus 

matrices A+ and 
A . These three matrices formed the complete set of A matrices under study 

in URMT until this latest publication. The matrix A0 is the starting point, and the matrices A+ 

and 
A  can be considered subsidiary, generated from the eigenvectors of A0. This founding 

set of three is now known as the Base set },,{ 0  AAA  (I41), to differentiate it from two, 

new additional sets, each comprising three A matrices, termed the Difference set 

},,{ 0  DDD AAA  (I42) and the Sum set },,{ 0  SSS AAA  (I43). Each set of three can be 

related to an axis in three-dimensional space, i.e. the x, y and z-axis, three matrices per axis. 

The two matrices subscripted ‘+ and ‘-‘ are equivalent to raising and lowering operators in 

quantum mechanics, and the zero subscripted matrices are unity root matrices, e.g. A0, whose 

eigenvectors also comes in three sets of plus, minus and zero forms, i.e. },,{ 0  XXX , 

},,{ 0  DDD XXX  and },,{ 0  SSS XXX . Each zero matrix },{ 000 SD AAA  can be thought of 

as a generator of rotation about an axis },,{ zyx , as per quantum mechanical angular 

momentum or spin. 

Returning now to the legacy, founding unity root matrix A (~A0). URMT starts with the 

single, 3x3 unity root matrix A (A1a) whose elements, known as the dynamical variables, are 

all unity roots or power residues (A2). This matrix, in its most general form, has links to both 

Fermat’s Last Theorem (via the invariant eigenvector) and The Riemann Hypothesis (via its 

eigenvalues). However, URMT quickly steered away from its number-theoretic origins to 

physics, most of which comes when the unity root matrix theory is simplified under 

Pythagoras conditions (I13) or, more recently, Skew conditions (I33). 

This and the last two publications, [3] and [4], study URMT and its A matrix eigenvector 

solution exclusively under Pythagoras or Skew conditions, and it can be assumed that one of 

these two conditions always applies unless stated otherwise. Note that they are mutually 

exclusive. 

URM3 encapsulates most of the general properties of URMT, and the following properties 

are illustrated by reference to URM3 detailed in Appendix (A), but note that Appendix (A) 

only specifically deals with A0. More detailed information on all three types of matrices 

},,{ 0  AAA  can be found in the main sections of this book - references given shortly. 

The elements of A0 are known as dynamical variables, e.g. RQP ,, (A1a) URM3. 
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The elements of A+ are known as coordinates, e.g. zyx ,,  (A3) URM3 

The elements of 
A  are known as scale factors (I2), e.g.  ,,  (A13) URM3 

Each of the three matrices, A0, A+ and 
A , annihilate the eigenvectors X0, X+ and 

X  (A33) 

of A0, i.e. 

0XA , 000 XA , 0XA  

and thus each matrix has at least one, zero eigenvector. 

General, n-dimensional A matrices, with the above properties, can currently be constructed 

by the method of lifting (I6), or AVE I and II, see [4]. Lifting of the URM3 solution is used 

in this latest publication to produce the URM6, six-quark solution, Section (13). Conversely, 

AVE methods have not been required herein. 

All three A matrices (plus, minus and zero) have a zero trace and, as a consequence, their 

eigenvalues always sum to zero. In fact, when using the exterior product formulation [4],5 it 

is shown that the matrix A0 has two non-zero eigenvectors, C , with all others zero. The 

other two matrices, A+ and A-, have all n eigenvalues zero. 

The true, founding, unity root matrix A (or A0, A30) only exists for the integer formulation of 

URM3 (and not higher order incarnations URM4 and beyond) when the invariant eigenvalue 

C  (A4) is unity. For all other integer values, 1C , the unity roots are nth order power 

residues, and quadratic residues when under Pythagoras conditions (I13). When A is under 

Pythagoras conditions it is also denoted by symbol A0 or A30. The subscript ‘0’ denotes A 

when it is under Pythagoras conditions, and the additional subscript ‘3’ denotes it is a 3x3, 

URM3 matrix, where each subscript may or may not be employed depending on the context. 

All A matrices have a sign symmetry about the lead diagonal, which is either Pythagorean 

(I23c) or skew-symmetric (I23b). There is no explicit symmetric A matrix as it has currently 

has no physical application in URMT. 

See also Annihilators (I23), the Dynamical equations (I21), Lifting (I6) and Variational 

methods (I20). 

(I1) Alignment - see Flattening (I5). 

(I23) An Annihilator is defined as any nn  matrix, general symbol ∆, that is symmetric, 

barring the sign of its elements, with an all-zero lead diagonal that, when operating on an 

invariant eigenvector X of A, eigenvalue  , reduces it to zero, i.e. 

(I23a) 

if XAX   then 0ΔX , njijiij ..1,,  ΔΔ , 0ijΔ , ji  . 

To all intents and purposes, ∆ is either a plus or minus matrix, i.e. A  or A  when using the 

Base set (I41). 
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Caution. This definition (I23a) of an annihilator matrix is that strictly used in [1] and [2], but 

has been broadened slightly since the method of arbitrary vector embedding (AVE I) was 

introduced in Volume I [3],1 and widened to AVE II in [4]. A looser definition is now used 

to specify any matrix that annihilates an arbitrary vector X, which is not necessarily an 

eigenvector of any A matrix. The text that follows here in this glossary entry is still the strict 

definition, but the definition and context in which ∆ is used throughout should be sufficient to 

determine its strict adherence or otherwise to this description.  

From the above definition (I23a), X is a zero eigenvector (I18) of the annihilator matrix Δ  

for eigenvalue zero. In linear algebra X is said to occupy the kernel (or null) space of ∆; see 

[5]. 

If 0  then A is also an annihilator of X  by definition. 

The key property of an annihilator matrix is that, when added to matrix A, it leaves the 

eigenvector X and eigenvalue   invariant, i.e.  

XXΔAAX  )(  

Because of this invariant property, ∆ can be used to vary A whilst keeping X and   constant, 

and is thus also known as a variational matrix in URMT and described in full in [1]#5,2 and 

[2],8. 

Whilst it leaves X and   invariant, the other eigenvectors and eigenvalues of A generally 

vary (evolve) according to the parameterisation of ∆, and it is the study of their evolution that 

is of interest in URMT. 

All A matrices, unity root matrices and annihilators come in two sign forms, Pythagoras and 

Skew: 

(I23b) S
Δ  Skew sign structure, 

 TSS
ΔΔ  , skew or anti-symmetric 

Example 

























0

0

0

xy

xz

yz
S

Δ , sg( S
Δ )=























0

0

0

. 

(I23c) p
Δ  Pythagoras sign form 

The Pythagoras sign-form is defined in terms of a skew symmetric matrix operated upon by a 

Pythagoras T operator (I28a), equivalent to the Minkowski metric in Special Relativity [9]. 
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SP
TΔΔ  , for Pythagoras T operator (I28a). 

Example 

























0

0

0

xy

xz

yz
P

Δ , sg( p
Δ )=























0

0

0

. 

Although not of particular significance, the Pythagoras form can be split into the following 

sum of a symmetric and skew (anti-symmetric) matrix: 

























0

00

00

xy

x

y
P

Δ






















000

00

00

z

z

. 

(I41) The Base set of eigenvectors and A matrices (I22) comprises the eigenvectors 

},,{ 0  XXX and matrices },,{ 0  AAA  respectively, defined in full below, in terms of the 

coordinates ),,( zyx  (A3), dynamical variables ),,( RQP  (A18), and scale factors (I15) 

),,(   

























0

0

0

xy

xz

yz

A ,


















0

0

0

0

PQ

PR

QR

A (A19), 























0

0

0







A  



















z

y

x

X , 


















R

Q

P

0X , 


























X , (A33) 

The eigenvectors and matrices are the founding matrices of URMT under Pythagoras 

Conditions (I13). The base set of A matrices forms one of three sets of A matrices, and 

represents the x-axis components of a three-axis scheme, whereby the other two sets, i.e. the 

Difference (I42) and Sum (43) sets represent the y and z-axis components respectively. 
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(I46) A Bilinear form ‘B’ in URMT is simply a matrix formed from the outer product of two 

vectors (L6d), or linear sum of such products, i.e. if  X and Y are column vectors, with T
Y  

the row-vector, transpose of Y, then the bilinear form B  is simply the outer product 

(I46a) T
XYB  . 

This satisfies the more formal, conventional definition of a bilinear form as a function that 

takes two vector arguments and returns a scalar. For example, if U and V represent two 

arbitrary vectors with the same dimensions as X and Y then 

(I46b)  VXYUVUB
TT),(    VYXU

TT scalar, 

since both XU
T

 and VY
T

 are inner products (L6b), resulting in a scalar, such that the 

function (bilinear form) B returns a scalar. There are additional linearity criteria on B as per a 

vector space, for which the reader is referred to the literature, e.g. [5]. 

(I32) Compactification is the process whereby all excess dimensions, i.e. those higher than 

three, appear to shrink relative to URM3 as their evolutionary parameter grows. In fact, 

URM3 also flattens (I5) as its evolutionary parameter 
3t  grows. This geometric feature is a 

URMT property of lifted solutions (I6). Note that with this book comes the dual, frequency-

domain evolution, which can also give the same behaviour as the evolutionary, frequency 

parameters grow larger in magnitude. 

Each dimension, three and higher, possesses its own unique evolutionary time, i.e. 
3t  for 

URMT3, 4t  for URM4 etc., and, just like URM3, converges (flattens) to align with the 

URM3 cone 
UC  (I27) as evolution progresses. The higher dimensions also appear to shrink 

relative to URM3 as their evolutionary times, 4t , 
5t  etc. grow - the entire n-dimensional 

solution exhibiting the geometric property of compactification. See [2],14 for more 

information. 

(I27) The Cone comprises the eigenvector solution set of all plus (I11) and minus 

eigenvectors (I9) when under Pythagoras conditions (I13). Using URM3 as an example, 

under such Pythagoras conditions the eigenvectors are Pythagorean triples, specified as a 

two-parameter family, and form a discrete cone in 3D Euclidean space. In URMn this 

extends to an n-dimensional 'cone'. By URMT convention, the set of all points representing 

the plus eigenvector solution is termed the upper cone, symbol 
UC , whilst the lower cone, 

symbol LC , comprises the set of points representing the minus eigenvector. The union of the 

two sets is referred to as the cone (cones), symbol C , i.e. 

LU CCC  . 

The upper and lower cones tend to be thought of as mirror images of each other since they 

are inverted with respect to each other, with their conceptual tips meeting at the origin, albeit 

the tip T)0,0,0(X  and T)0,0,0(X  is not defined in URMT, see (I34), hence it is 

conceptual only. Likewise, the cones are not a true mirror image of each other but they do 

still point in opposing directions by their stricter definition given in [1]#3,4. 
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See [1]#3,4 for a full definition. 

See also Hyperboloid (I26) and Lattice (I25). 

(I42) The Difference set of eigenvectors },,{ 0  DDD XXX  and A matrices (I22) 

},,{ 0  DDD AAA  is the y-axis equivalent of the x-axis Base set (I41) and z-axis Sum set 

(I43).  

(I2) Divisibility factors, also known as scale factors (I15), are the last three elements of the 

URM n  eigenvector n
X  (or nX ), denoted by n , n  and n , 3n , see (A15) for URM3, 

[2],3.56 for URM4 and [2],C16 for UMR n . 

(I3) The Dyadic product is synonymous with the outer product (L6d) of two vectors. In the 

context of URMT, the dyadic product of two vectors, iX  and j
X , nji 1,  , gives a square 

matrix, 
j

iij XXM  , of size nn . The term 'dyadic product' is quite old and is replaced by 

'outer product' in modern texts. Nevertheless, the name appears in the earlier URMT 

literature, e.g. [1], albeit it has been replaced in [2] and herein with the term 'outer product'. 

(I19) The Dynamical Conservation Equation (DCE) is the non-singular condition on the 

matrix A possessing solutions, i.e. 

(I19a) 0)det(  IA  , eigenvalue , CTn , 

for nT see further below, 

and is known as the characteristic equation (or characteristic polynomial) in matrix algebra, 

[5]. This equation can be considered as the founding equation upon which URMT can be 

derived, albeit this is not the only approach. 

The DCE is actually treated as an energy conservation equation (hence its name), and is 

usually expressed in terms of a kinetic energy term K and potential energy term V  (per unit 

mass or inertia). In addition, from [4] onward, the DCE is given for both the Pythagoras (I13) 

and Skew (I33) conditions, which are differentiated by the usage of the Parity operator nT  

(I39), (new to [4]), briefly summarised as follows: 

1nT , iTn  , Skew conditions 

1nT , 1nT , Pythagoras conditions. 

12 nT . 

The key URM n  incarnations of the DCE as a characteristic equation (I19a) are 

(I19b) VCTK n 30 , URM3, see also (A7)-(A9) 
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(I19c) 2240 CVTK n  , URM4 (lifts URM3) 

(I19d)  2240 CVTK n  , URM5 (lifts URM4). 

The URM6, six-quark solution has a more restrictive form of characteristic equation, with the 

eigenvector solution termed an Invariant Zero Potential (IZP) solution (I35) in URMT. 

This IZP is also applicable to URM3 onward, and has a general form of the DCE given by 

(I19e)  2220    CTn
n , 3n , 0V , 

and so there are always two, non-zero eigenvalues, CTn , plus 2n  zero eigenvalues. 

As regards a non-zero potential energy, there are currently two important physical cases 

where this occurs: 

 The DCE for the URM4 harmonic oscillator solution [3],4 

 The DCE for the URM5 relativistic 'mass' solution [3],7, where mass is equated to the 

potential energy, and the DCE is the relativistic energy-momentum equation per unit 

mass - see further below. 

Looking at the URM3, 3n  case (I19b), this is rearranged as 

(I19f) VCTK n 3 , 

and substituting for CTn , using 12 nT , then dividing throughout by the non-zero 

eigenvalue C , gives 

(I19g) VKCTn 2 . 

This is a common, quoted form of the DCE in terms of the kinetic and potential energy terms. 

Note that these are not, in general, the Newtonian forms of kinetic and potential energy. In 

fact, as regards URM5 (I19d), the kinetic term is related to the relativistic momentum, and 

the potential energy is related to the rest mass energy, as per the relativistic momentum 

energy equation – see [3],7 and [4],2-10. 

In addition to the characteristic equation, the DCE is also written as the inner product of the 

zero eigenvector and its reciprocal as in 

2

000

0 )2( Cnnnn

n  XXXX , 3n  (F11). 

(I21) The Dynamical equations are the n linear equations specified by the single, invariant 

eigenvector equation 

(I21a)   XXA CTn0 , 0C , 
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which was updated [4] to incorporate the parity operator nT  (I39), and takes the following 

two values in this particular equation: 

1nT , Pythagoras 

iTn  , Skew. 

Because the matrix 0A  has a zero lead diagonal, each element, zyx ,,  etc., of the invariant 

plus eigenvector X  (I11) is a function of only the other 1n  coordinates, but not itself, i.e. 

the coordinates zyx ,,  etc. do not couple to themselves. 

The dynamical equations (I21a) have an equivalent form given in terms of the 
A  matrix and 

0X  eigenvector as: 

(I21b)   XXA C0 . 

(I4) An Excess dimension is any dimension higher than the third, i.e. the fourth or higher. In 

an n-dimensional space, an excess dimension r  is such that nr 3 , and its associated 

temporal (evolutionary) parameter is denoted by 
rt  [2],C. 

(I40) The Exterior product (symbol ^) of two, arbitrary, n-dimensional vectors is defined in 

URMT as 

TT
YXXYYX  XYYX  , the exterior product of X and Y, 

 

which is the difference of the two, outer vector products T
XY  and T

YX  (or YX  and 

XY ). 

This product is also known as an ‘alternating’, ‘wedge’ or  ‘Grassman’ product [5]. 

See also the Errata online PDF: http://www.urmt.org/urmt_errata_books1to5.pdf 

In the strict mathematical definition, the exterior product is expanded in terms of basis 

element known as bi-vectors, whereas the URMT definition above uses matrices. Albeit this 

is really just a representation issue since URMT can decompose its A matrices (formed from 

exterior products) into elemental matrices, each effectively a bi-vector representation – see 

[4],6-3 for example. 

For more details on the URMT definition and its properties see [4],7-4, particularly [4],7.38 

onward. 

See [5] for a formal mathematical definition and associated algebra. 

 (I5) Flattening is the term used to describe the eigenvector evolution in URM3 whereby the 

two eigenvectors 30X  and 3X  align anti-parallel to 3X  as evolution progresses, i.e. as 

evolutionary time m  (or 3t ) increases, see Appendix (B) for the URM3 eigenvector 

evolution equations. As of this book, this flattening behaviour also occurs with the dual, 
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frequency-domain evolution, whereby the vectors align with 3X  (using URM3 as an 

example). The vector 3X  itself is static (I16) and invariant to arbitrary variations in the 

time-domain. However, note that 3X  is actually a two-parameter family of integer vectors, 

parameters k  and l  (A26), and hence occupies a 2D discrete subspace of 3D; in this sense 

the 3D flattens to 2D. Because it is an alignment of vectors, the process is also known as 

'alignment' herein, but 'flattening' is used exclusively in earlier URM3 literature. That the 

eigenvectors align anti-parallel, and not parallel, is largely a choice of sign convention. 

See also Compactification (I32) and [1]#3 for full details. 

(I26) The Hyperboloid is the set, symbol H , of all URM3 zero eigenvectors 
30X  (I18), 

under Pythagoras conditions (I13), which satisfy a hyperbolic equation otherwise known as 

the DCE (I19). This set forms a discrete hyperboloid sheet with a finite, non-zero radius 

(eigenvalue C , 0C ) at the origin. In URM n , using the method of lifting (I6), there is just 

one unique hyperboloid given by the vector 
A0X , which is, itself, just an n-dimensional 

embedded (zero-padded) form of the URM3 eigenvector 
30X  - see also [2],7 URM4, [2],13 

URM5 and Appendix (F), (F10). 

The hyperboloid is strictly known as a 'hyperboloid of one sheet' in geometry, and is formed 

by the rotation of a hyperbola about the z-axis (actually the axis is that of the dynamical 

variable R in the third element of the URM3 zero eigenvector 
30X  (A33b)), and is therefore a 

surface of revolution, albeit a discrete surface of points. 

See [1]#3,4 for a full definition and [3] for a geometric overview. 

See also Cone (I27) and Lattice (I25). 

(I36) The Invariance Principle 

See the main text Section (1), (1.29). 

(I37) Invariant eigenvalue – see Variational Methods (I20). 

(I35) The Invariant Zero Potential (IZP) solution is a URMT eigenvector solution that has a 

zero potential energy term in the DCE (I19), which remains invariant to all variations (I20) 

of the unity root matrix 0A . The IZP solution is of prime importance to URMT because 

potential energy is equated with mass, and so a zero potential energy solution represents a 

massless particle moving at the speed of light, e.g. a photon or graviton. 

For URM3, under either Pythagoras (I13) or Skew (I33) conditions, the potential energy is 

always zero, so every URM3 solution under these conditions is an IZP. For URM4 and 

beyond, additional constraints on the dynamical variables are required to give a zero 

potential. For URM4, the problem was first addressed in [2],5, and then progressed to URM5 

later in Section (13) of the same book [2]. This latest book extends URMT, once again, to 

URM6, for its six-quark representation, Section (13). This URM6 quark solution is also an 

IZP. URMT does not now currently go beyond 6x6 A matrices (I22), i.e. URM6, albeit it is 

clear that as the order increases, so too do the number of constraints on the dynamical 



Unity Root Matrix Theory 

Comprehensive Index 

http://www.urmt.org 

Issue 1.0 18/12/2019 

Page 30 of 37 

variables (elements of the unity root matrix 0A ) required to retain a zero potential energy 

term. 

The general, n-dimensional, IZP solution was first obtained in [2] by a method known as 

lifting (I6), whereby an existing URM3 solution is lifted to higher matrix orders, i.e. URM4 

and above. However, the general, lifted solution uses an existing URM3 solution, and cannot 

embed two, arbitrary, n-dimensional vectors, unlike the exterior product method of arbitrary 

vector embedding (AVE II), [4],5, which can embed two, arbitrary, n-dimensional vectors 

into a general, )1( n -dimensional URMT matrix scheme, and also generate IZPs. 

 

Both the lifting and exterior product methods generate IZPs, which have two non-zero 

eigenvalues, with all others zero. This combination brings with it three unique types of 

eigenvector: X  and X  for the non-zero, positive and negative eigenvalues ( C ), plus a 

third, composite, zero eigenvector 0X  (I18) formed from a linear combination of all other 

zero eigenvectors completing the set. 

 

The geometric and physical aspects of an IZP solution are discussed in [4],7-2, with a 

mathematical discussion on obtaining the particular eigenvalue solution given in [4],5-3. 

(I25) The Lattice is the union of the upper and lower cones (I27) and the hyperboloid (I26), 

formally defined as the union of the sets C  and H , symbol L , where 
LU CCC   (I27) and 

therefore 

HCL  . 

In other words, the lattice represents the complete, n-dimensional eigenvector solution. Care 

has to be exercised in the usage of 'dimension' given here. For example, URM3 comprises 

two, 2D, discrete cone surfaces and also a single, discrete hyperboloid sheet. All three 

surfaces (sheets of discrete points) are strictly 2D, but the complete URM3 eigenvector 

solution is a three-parameter family comprising integer parameters k , l  (A26d) and 

evolutionary parameter 
3t  ( m~ ) (A28c), hence 'three-dimensional'. 

The lattice exhibits numerous geometric properties such as flattening (I5) and 

Compactification (I32). 

See [1]#3,4 for a full definition and [3],7-2 for a geometric overview. 

See also Compactification (I32), Cone (I27) and Hyperboloid (I26). 

(I6) Lifting, in the context of URMT, is the process of generating eigenvector solutions for 

an )1()1(  nn  matrix 1nA  using an eigenvector solution to the nn  matrix nA , 2n . 

The matrix nA  is embedded in 1nA , and an eigenvector solution X  to nA  is also a solution 

to 1nA , with appropriate zero padding, see [2],7. The matrix 1nA  is usually under 

Pythagoras conditions (I13) with the additional constraint of a zero potential energy. 

See [2]7-2 for lifting the URM2 Pythagorean twin (1,1) to form URM3 Pythagorean triples, 

[2],4 for lifting URM3 to URM4, and [2]13-3 for lifting URM4 to URM5. 
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(I7) The magnitude of a vector is the positive square root of the inner product of a vector 

with itself, e.g. for 
X  (URM4) then 

X =   XX 2222 zyxw  , 0X , 

hence z2X  when 2222 zyxw  . 

Under Pythagoras conditions (I13), the magnitude of a URMT eigenvector is always greater 

than zero, but under skew conditions (I33) the eigenvector has one or more complex elements 

and the magnitude is zero. See also the norm (I8). 

(I9) A Minus eigenvector nX , 2n , is any vector that satisfies the eigenvector equation 

  nn CXAX  for negative eigenvalue C , matrix A . See also plus eigenvector (I11) and 

zero eigenvector (I18). Note that minus eigenvectors are only defined under Pythagoras 

(I13) or Skew conditions (I33) because these conditions give a conjugate pair of eigenvalues 

C  (Pythagoras) and iC  (Skew). 

(I10) A Non-trivial eigenvector is a Pythagorean n-tuple with three or more non-zero 

elements. For example, a trivial URM3 eigenvector ),,(3 zyxX  has only two non-zero 

components, e.g. ),0,( zx 0y , 0, zx , where 22 zx  , i.e. zx   - this is technically then a 

Pythagorean double (I44) In the case of URM4, ),,,(4 zyxwX , the same trivial vector 

would be ),0,,0( zx , with 0w  and 0y . A non-trivial URM4 eigenvector would normally 

be all four elements non-zero, e.g. (2,3,6,7), but it is acceptable to have a URM4, non-trivial 

eigenvector that comprises only three non-zero elements, e.g. (0,3,4,5), which is just the 

Pythagorean triple (3,4,5).  

(I8) The norm of a vector in URMT, using the standard definition of the norm, see [5], is the 

square root of the inner product of itself with its conjugate, Appendix (E). For example, the 

norm of 
X , denoted by X , is given by 



  XXX = XX . Normally the 

positive square root is assumed unless otherwise stated. If 
X  is an n-element Pythagorean 

n-tuple then the norm is zero since 0 


XX , e.g. (F7). The same remarks also apply to 

X  and its conjugate form 
X , but note that the norm of any one of URM n 's, zero 

eigenvector jn0X , 30  nj  ,n>=3, is non-zero as given by 

2

0

0

0 Cjn

jn

jn  XXX  (F10). 

See also the magnitude (I7) and DCE (I19). 

(I38) Normalising to the DCE is the process by which the zero eigenvectors (I18) are scaled 

such that their norm (I8) is consistent with the DCE (I19), i.e. the inner product of a zero 

eigenvector 0X  with its conjugate 0X  (or 
0

X ) is just the square of the invariant eigenvalue 

C , to within a sign, as dictated by the Parity operator nT  (I39), i.e. 

2

0

0

00 CTn XXXX , the DCE (I19), see also (2.42) 
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(I34) URMT has no singularity because it excludes the all-zero, null vector as an 

eigenvector, i.e. it excludes the origin from the eigenvector solution. This is not just an 

arbitrary rule or definition, but a genuine algebraic consequence of defining the invariant 

eigenvalue C as non-zero (I21a), which ultimately constrains all eigenvectors to be non-null. 

Physically speaking, this means that there are no singularities, and the zero point (null vector 

or origin) is not required in URMT as currently formulated. This is also discussed in [1]#3. 

Note that C cannot be defined as zero because, for example, URM3 already has a zero 

eigenvalue, and if C were also defined as zero then the third eigenvalue would also have to be 

zero for a zero trace A matrix. This would then give three zero eigenvalues and a virtually 

worthless solution. Hence C  is defined as non-zero, and unity or greater when in integers; 

when in reals it is still defined as non-zero, but is usually the magnitude X  (I7) of an 

arbitrary vector X, as per AVE I and II, [3] and [4]. Regardless of the actual value of C, it 

will always be greater than or equal to the smallest, positive real value chosen to represent a 

unit in URMT, i.e. the smallest quantum of measurement. The conditions on C are 

algebraically expressed as 

(I34a) C  ℤ  1C  

(I34b) X,C ℝ 0, XC . 

(I39) The Parity operator, symbol nT , is simply the scalar, unity magnitude value 1  

(I39a) 1nT ,  

(I39b) 12 nT . 

Its value is determined according to whether the A matrix (I22) is under Skew (I33) or 

Pythagoras (I13) conditions, i.e. 

(I39c)  1nT , Skew conditions 

(I39d) 1nT , Pythagoras conditions. 

For more details, see the [4],1.73 onward. 

Note that this symbol has not been used in this book because only solutions under Pythagoras 

conditions are used, i.e. there are no Skew condition solutions. 

(I11) A Plus eigenvector X , e.g. nX , 2n , is any vector that satisfies the eigenvector 

equation   XAX C  (I21a) for positive eigenvalue C , 0C , of matrix A . See also minus 

eigenvector (I9) and zero eigenvector (I18). Since the eigenvector equation (I21a) is a 

fundamental definition in URMT, there is always at least one plus eigenvector X . 

(I12) A primitive Pythagorean n-tuple is that which has no common factor in its elements, 

i.e. all its elements are co-prime (when in integers). 

(I13) The Pythagoras conditions are a set of relations between the standard and conjugate 

dynamical variables, i.e. the elements of nA  URM n , e.g. 
3A  URM3 (A1a), and are such 
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that the eigenvectors of the nn  matrix nA , for non-zero eigenvalues, are Pythagorean n-

tuples. The unity root matrix nA  is formed exclusively from the dynamical variables, and the 

conditions make the matrix skew-symmetric in the first 1n  rows and columns, and 

symmetric in the last row and column. All Pythagoras conditions for URM n  include 

URM )1( n  as a subset. 

See [1]#1-15, [1]#2 for URM3, [2],4 for URM4, [2],13 URM5, and this book for URM6, 

Section (13). 

(I44) A Pythagorean double is best defined in terms of a Pythagorean triple (I45), i.e. the 

ordered triple ),,( cba , 
2220 cba  , but where one, and only one, of the two elements a 

or b, is zero. For example, if a is zero, then 
220 cb   so that bc  , with the condition 

that 0b . The non-zero, ordered pair ),( cb  is then termed a Pythagorean double. Whilst 

seemingly trivial, it does permit the 2x2 matrix incarnation of URMT, i.e. URM2, to talk in 

terms of its eigenvectors as Pythagorean doubles, just like URM3’s eigenvectors are 

Pythagorean triples – actually just the plus (I11) and minus (I9) eigenvectors, since the zero 

eigenvectors (I18) are known as hyperbolic in URMT because they satisfy the hyperbolic 

DCE equation (I19), and not Pythagoras. By URMT’s method of lifting (I6), such URM2, 

two-element, Pythagorean double eigenvectors can be lifted to URM3 Pythagorean triples, 

which can then be further lifted to URM4 Pythagorean quadruples etc. - this process is 

described in [2],7. 

(I45) A Pythagorean triple comprises any ordered triple ),,( cba , of integers cba ,,  that 

satisfy the Pythagoras equation 
2220 cba  . This definition is to be interpreted in its 

loosest sense with the only condition being that )0,0,0(),,( cba . In other words, ,a  b  and 

c  are allowed to be positive or negative integers, and a  may be less than or greater than b ; 

a  can be zero, in which case cb  , or b  can be zero, in which case ca   - these ‘triples’ 

are then known as Pythagorean doubles (I44). Non-primitive triples are also included, i.e. 

those such that for non-zero, integer factor k , if ),,( cba  is a Pythagorean triple then so too is 

),,( kckbka . Otherwise, primitive solutions are co-prime, i.e. 1),,gcd( cba . 

 

(I14) The Pythagorean eigenvalues comprise the set of two, non-zero eigenvalues C , 

with all others zero. E.g., for URM4, the four eigenvalues are C  and 0,0 , i.e. the 

zero eigenvalue is repeated with a 'multiplicity' [5] of 2. For URM n  there are two, non-zero 

eigenvalues, C , and the zero eigenvalue is repeated with a multiplicity 2n . The 

specific plus, minus and zero eigenvalues are usually labelled  ,   and 0  respectively, 

i.e. },,{ 0  . They are termed Pythagorean because, under URMT Pythagoras 

conditions (I13), the eigenvectors to the non-zero eigenvalues ( C  here) are 

Pythagorean n-tuples. Strictly speaking, URMT under Pythagoras conditions only actually 

mandates at least two non-zero eigenvalues, and the others may not necessarily be zero. For 

example, in URM4, if the potential is non-zero then complex eigenvalues can arise in place 

of the zero eigenvalues. In such a case, the complex eigenvectors also satisfy the Pythagoras 

equation, as do all eigenvectors for non-zero eigenvalues, when under Pythagoras conditions. 

Note that the exterior product formulation, [4],7 and [4],8, always gives Pythagorean 

eigenvalues and eigenvectors when the parity operator (I39) is set to unity, i.e. 1nT . 
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See [4],5-3 and the IZP, (I35) or [4],7-2, for more information on this Pythagorean 

eigenvalue combination. 

(I15) Scale factors, see Divisibility factors (I2). 

(I33) The Skew Conditions are a set of relations between the standard and conjugate 

dynamical variables in URM n  that make the A matrix 
 
skew-symmetric (or anti-symmetric), 

i.e. 

(I33a) T
AA  , Skew or anti-symmetric. 

The conditions are such that the eigenvectors of an nn  matrix nA , for non-zero 

eigenvalues, have both a zero magnitude (I7) and norm (I8), in contrast to the Pythagoras 

conditions (I13), where the eigenvectors have a zero norm but non-zero magnitude. The 

eigenvectors of a skew matrix A , for non-zero eigenvalues, are complex, and hence skew 

conditions represent the complex 'flavour' of URMT. Note that the dynamical variables, i.e. 

the elements of A , are not necessarily complex and, in fact, they are usually only complex 

after variational methods are applied. 

(I16) A Static quantity in URMT is any quantity (invariably an eigenvector or matrix) not 

dependent on any evolutionary time parameter t or jt , nj 3  (time-domain evolution) or 

frequency jf  (frequency domain evolution) – see the main text, Section (1-7). The plus 

eigenvector nX  (I11), 2n  (this includes URM2), is the classic URMT example of a static 

eigenvector when under time-domain evolution, and nX when under frequency domain 

evolution. 

(I43) The Sum set of eigenvectors },,{ 0  SSS XXX  and A matrices (I22) },,{ 0  SSS AAA   is 

the z-axis equivalent of the x-axis Base set (I41) and y-axis Difference (I42) sets. 

(I28) The T Operator is an nn  ( 2n ) matrix defined in two different forms, Pythagoras 

or Skew, as follows: 

(I28a) 













10

01nI
T  Pythagoras 

(I28b) 
nIT   Skew, 

where 
nI  is the identity matrix order n , 2n . 

As of [4], the T operator is also written in the more general form in terms of the parity 

operator nT  (I39) as 















10

01nn
n

T I
T . 
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In both Pythagoras and skew forms, T is all zero except for the lead diagonal, which 

comprises plus or minus unity elements only, i.e. +/-1. 

The Pythagoras form is the same as the Cartesian, Minkowski metric in Special Relativity 

[17], disregarding sign convention. 

The main use for T is to convert between standard and conjugate  eigenvectors, see Appendix 

(E). 

The Pythagoras T operator (I28a) is n -dimensional, and the presence of the 1n  order 

identity matrix 1nI  in its upper left means that the sign of each of the first 1n  elements of 

X  remains the same, whilst only the last, nth vector element changes sign when operated on 

(multiplied) by T. Conversely, the skew form of T flips the sign of all n  elements. 

Note that the T  operator also has the following useful properties: 

(I28c) IT 2 , TT 1 , TT T . 

Strictly speaking, each form of T splits into two more forms, standard and reciprocal: 

nT  standard nn  form 

n
T  reciprocal nn  form. 

However, they are both identical, i.e. 

n

n
TT  . 

(I31) A Unity Root Matrix, denoted by generic symbol nA  (or 0A , 0nA ), is defined as an 

integer, nn  matrix with an all-zero lead diagonal, that is symmetric in its elements (known 

as dynamical variables) to within URMT conjugation (conjugate relations, e.g. (A2g) to 

(A2i)), where all the off-diagonal elements satisfy unity root or power-residue definitions 

(A2). See the founding, URM3 matrix 
3A  (A1a), and [1]#1 for full information, in 

particular, [1]#1, Appendix (C1) for a cubic example. 

(I24) Variational Matrices 

See annihilator matrices (I23) and variational methods (I20) next. 

(I20) Variational Methods 

Any variation to the fundamental A matrix, (A1a) or its n-dimensional variant, such that its 

fundamental defining equation  

(I20a)   XAX C , C , 0C , 
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remains invariant to the variation, is termed a variational method in URMT. Applying this 

method (variation) leaves both the plus eigenvector X  (I11) and the eigenvalue C invariant, 

but invariably modifies ('evolves') all other eigenvectors of the A matrix. 

Such variational methods are achieved by adding an annihilator matrix ∆ (I23) to A, where 

∆ can be absolutely any matrix that satisfies its annihilation definition ∆X=0 (I23a). Usually 

this annihilator is the ‘plus’ A matrix ‘
A ’, and the vector X is 

X , since 0XA . 

Conversely, in the dual URMT formulation, the annihilator matrix is 
A , and X is 

X , since 

0XA . Whilst these two matrices, 
A  and 

A , are commonly used as annihilators of 

X  and 
X  respectively, they are not the only annihilator matrices, and ∆ is generally 

arbitrary so long as it satisfies its definitions. 

There are two types of variation, global and local, where each type changes the dynamical 

variables in the A matrix. A global change affects every dynamical variable in the same way, 

and is the same as adding (or subtracting) a scalar multiple m  of ∆ to A as in the following 

mapping: 

(I20b) ΔAA m . 

By the annihilator definition, 0ΔX  (I23), this transformation on A leaves the eigenvector 

X  invariant as follows: 

(I20c)    ΔXAXXΔA mm XAX C , C . 

Whilst a global variation involves just a single parameter, e.g. m  in (I20b), local variations 

act internally on ∆, and there are far more possible variations satisfying the same property 

(I20c). See [1]#1 and [2],8 for full details. 

(I17) Vector space, eigenvector space 

These two interchangeable terms are used loosely throughout URMT since they refer to the 

eigenvectors of the unity root matrix A (A1a), but not linear combinations of them, i.e. the 

whole of URMT currently studies the vector basis comprising the eigenvectors, but not 

arbitrary vectors generated from them. Thus, for the purists, the vector space would be better 

described as an infinite set (space) of linearly independent eigenvectors, rather than 'vector 

space' in the true, mathematical sense of the word. See [5] for a strict definition of a vector 

space. For instance, the URMT discrete, vector space is not generally closed and neither is 

there a null vector, i.e. a vector of all zeroes, see also no singularity (I34). 

The URM3 set of eigenvectors is defined by the infinite set of points termed the lattice (I25). 

The key point is that every vector in the lattice is an eigenvector of the unity root matrix, and 

arbitrary, linear combinations of eigenvectors do not generally give another eigenvector in 

the lattice, as is true for any general set of eigenvectors for distinct eigenvalues. For example, 

the eigenvector sum   33 XX  is not an eigenvector of 30A  even though 3X  and 3X  are 

both eigenvectors, eigenvalues C  and C  respectively, Appendix (A). That is not to say that 

the n URMT eigenvectors cannot form the basis of an n-dimensional vector space - indeed 

they can by their linear independence, which is why the term 'vector space' is used loosely. 
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Currently, however, URMT focuses solely on the eigenvectors themselves but not arbitrary 

functions of them. 

(I18) A Zero Eigenvector in URMT is defined as an eigenvector 0nX  satisfying 00 nAX , 

i.e. an eigenvector for eigenvalue zero. In linear algebra, such vectors are said to occupy the 

null or kernel space of the matrix A. The URMT eigenvectors 0X , 30X , An0X , Bn0X , Cn0X , 

jn0X , 30  nj   etc., are all zero eigenvectors since they are the eigenvectors for the 

repeated, zero Pythagorean eigenvalue (I14). Generally, zero eigenvectors are only 

considered under Pythagoras or Skew conditions, e.g. (A19) for URM3 Pythagoras. 

 


