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Abstract 
 
This paper shows how a discrete, n-dimensional eigenvector space can appear of lower 
dimension over long evolutionary timescales, ultimately compactifying to appear as a two-
dimensional subspace within three dimensions. 
 
Each excess dimension, i.e. any dimension higher than the third, has a unique, temporal 
coordinate, not necessarily associated with the familiar laboratory time, which controls the 
evolution of the dimension. Over a long evolutionary period, in a particular excess dimension, 
the dimension expands relative to all other excess dimensions, but appears to contract relative 
to the first three dimensions. Specifically, the entire n-dimensional space appears to align 
along a particular direction in the three-dimensional space, the direction given by one of the 
eigenvectors, which is physically associated with an acceleration vector, and specified by two, 
non-temporal, arbitrary parameters. The third parameter in the three-dimensional space is a 
temporal coordinate, which also controls the evolution of the three dimensions, and shows the 
same alignment behaviour as for the excess dimensions. The initial state of the entire space is 
specified by the initial values for the acceleration vector and, most importantly, a single 
energy-related constant controls the initial size of all excess dimensions. 
 
The paper mathematically details the compactification process by way of a four and five-
dimensional case, expressed in terms of the three-dimensional solution, with a full 5D 
numeric example provided in the Appendices. A complete n-dimensional solution is given 
and the compactification arguments generalised for an arbitrary number of dimensions. 
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1 Introduction 
 
A discrete1, n-dimensional, vector space2 can be generated from the eigenvectors of a unity 
root matrix, as first described in [1] for the three-dimensional case; see also [2], [3] for an 
extensive, freely available, PDF overview. Recent work [4] extends the three-dimensional 
case to four dimensions and beyond, driven primarily by physical requirements to obtain a 
proper, four-dimensional space-time and non-zero, relativistic intervals. From [4], it is evident 
that URMT actually generalises to any number of dimensions 'n ', for square, nn  matrices, 
whilst retaining all the physical features present in URM3, including conservation equations, 
related scalar invariants and a ternary nature, not least, its three-dimensional eigenvectors. 
 
The three-dimensional form of URMT, known as URM3 and summarised in Appendix (A), is 
a completely solved problem under special 'Pythagoras conditions' (I9), with the unity root 
matrix 30A  (A2b) producing three eigenvectors, 3X , 30X  and 3X  (A8), for eigenvalues 

C  (footnote3), 0  and C  respectively, where the two eigenvectors, 3X  and 

3X , are Pythagorean triples, and the third, 30X , satisfies a hyperbolic 'Dynamical 
Conservation Equation' (DCE), (5.7). Appendix (A) provides a complete analytic solution to 
URM3 with an example, )5,3,4(3 X , also included. 
 
The relevance of the DCE4 here is that the formulation of URMT can be expressed starting 
with this as an assumed conservation equation in the dynamical variables, for conserved 
quantity 2C . By applying a form of transformation invariance, both its dynamical equations 
and solutions can be obtained, [1],#15. This invariance6 generates a single, global variational 

                                                
1 URMT is currently formulated entirely in integers (14.2) and, hence, if it is a physical description of nature, it 
is a discrete description, which probably operates at the Planck scale upward, see [1] or [3]. However, this is 
speculative and a definitive scale is yet to be decided. 
2 An infinite set (space) of n linearly independent eigenvectors might be a preferable description for the purists, 
rather than 'vector space'. The space is not generally closed and neither is there a zero vector - although this 
could be added. See [5] for a strict definition of a vector space. The URM3 set of eigenvectors (space) is defined 
by the 'lattice' in [1] and [3]. The key point is that every vector in the lattice is an eigenvector of the unity root 
matrix and arbitrary, linear combinations of eigenvectors do not generally give another eigenvector in the lattice, 
as is true for any general set of eigenvectors for distinct eigenvalues. That is not to say the n URMT eigenvectors 
cannot form the basis of an n-dimensional vector space; indeed they can by their linear independence, which is 
why the term 'vector space' is used loosely. Currently, however, URMT focuses solely on the eigenvectors 
themselves, but not arbitrary functions of them, such as linear combinations. 
3 This is big 'C', a fundamental constant in URMT and not to be confused with little c, the speed of light. Albeit, 
big C also has a physical interpretation as a velocity constant and, more so, 2C  has an interpretation as that of 
energy (per unit mass), see (2.1). Big C was originally chosen as the first letter of the word 'Constant'. That it 
appears to be remarkably similar to little c in physical nature is purely coincidental but, admittedly, this will take 
some faith. 
4 The DCE (5.7) is also the singularity condition for the eigenvector matrix equation, i.e. 0)det( 330  IA C , 

where 3I  is the usual 33  identity matrix.  
5 Notation '[1],#N' denotes paper number N, N=1..6, in [1]. 
6 The term 'invariance' manifests itself in the static nature of the URM3 eigenvector 3X , which is not a 

function of any evolutionary parameter, whereas the other two URM3 eigenvectors, 30X  and 3X , are explicit 

functions of the URM3 evolutionary time, i.e. temporal parameter 3t . 
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parameter that can be physically associated with time ' 3t ' 7 (symbol m  or   in [1] to [3]) and, 
by varying this time, the evolution of the 3D eigenvector space can also be studied. 
 
Using a similar form of transformation invariance to URM3 (above), each excess (I4), jth 
dimension, nj 4 , (URM n ), is also attributed a unique temporal parameter jt . This 
parameter appears in the n-dimensional eigenvector solution and, therefore, the evolution of 
any specific, jth dimension can be independently varied by varying jt . In particular, by 
studying the behaviour of one or more dimensions for large evolutionary periods, the apparent 
relative contraction of all excess dimensions can be observed, i.e. compactification. 
 
As regards the first three dimensions, i.e. those of URM3, their evolution with respect to 3t  
(Appendix (B)), is well characterised in URMT and, for long evolutionary periods, i.e. large 

3t , the three-dimensional eigenvector space of URM3 is seen to 'flatten' (or align8). The 
concept of 'flattening' (I5) is described in [1],#3 and [3], and refers to the fact that the two 
eigenvectors 3X  and 30X  align anti-parallel9 to 3X  as URM3 evolves, i.e. as 3t  increases. 
 
In fact, exactly the same behaviour is seen to occur for all excess dimensions, i.e. the entire 
vector space aligns with the URM3 eigenvector 3X , as will be shown in this paper. This 
vector is parameterised by two arbitrary integers k  and l  (see footnote 7), and forms a 
discrete cone10 surface in three dimensions. Hence compactification can be thought of as 
stopping at the 2D conical surface residing in the three-dimensional eigenvector space of 
URM3. 
 
Because URM3 is a fully solved and documented mathematical problem (see any of [1] to 
[3]), only the compactification behaviour of the excess dimensions, with respect to the 3D 
world of URM3, is studied. 

                                                
7 Whilst the URM3 analytic solution is parameterised by a temporal parameter 3t , it is completely specified by 

two additional, arbitrary, integer parameters k  and l . However, only 3t  is of a true, temporal nature, and k  

and l  have units of   2/12LT , i.e. the square root of acceleration (eigenvector 3X ), and only ever appear in 

expressions of the second degree, e.g. klx 2 , see Appendix (A3). Suffice to note, the three eigenvectors 

3X , 30X  and 3X  are parameterised by all three parameters k , l  and 3t . 
8 It is an alignment in that the vectors converge to align in the direction of the single vector 3X , which is static 

and invariant to arbitrary variations in any evolutionary parameter. However, 3X  is actually a two-parameter 
family of integer vectors (footnote 7), hence a 2D discrete subspace of 3D and, in this sense, the 3D flattens (I5) 
to 2D, see also footnote (10). 
9 That they align anti-parallel, and not parallel, is largely a choice of sign convention. 
10 See [1],#3 and [3] regarding URM3 geometry, cones, hyperboloids and a lattice. 
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2 A Standard Physical Interpretation 
 
Since the mathematics of URMT is thought to have strong links to the subject of 'Physics in 
Integers', a standard physical interpretation11 (or association) is ascribed to all variables, see 
[1],#3, and [3]. A brief summary of the physical associations follows: 
 
(2.1) 3X , zyx ,, , acceleration or force per unit mass, 2LT  
 30A , 30X , RQP ,, , C , velocity12 or momentum per unit mass, 1LT  
 3X , position, L  

3t , m ,  , time, T  
 2C , velocity squared or total energy E  ( 2CE  ) per unit mass, 22 TL . 
 
The same interpretation generalises to all higher, n-dimensional quantities: vectors nX , nX , 

0nX  ( An0X , Bn0X , …) and their elements; matrix 0nA  and its elements (the dynamical 
variables); and evolutionary parameter nt , using the following notational equivalents13 
 
(2.2) 3X  ~ nX , acceleration 
 30A  ~ 0nA , 30X  ~ An0X , Bn0X , Cn0X , … velocity 
 3X  ~ nX , position 
 3t  ~ nt  time 
 2C , as above. 
 
The paper now proceeds to the mathematical formulation with which the compactification 
behaviour can be demonstrated. 

                                                
11 This is not the only physical interpretation but it currently seems the best as regards Physics. 
12 The elements of all unity root matrices, e.g. 30A  with elements RQP ,, , are termed 'dynamical variables' as 
they can be physically associated with velocity, or momentum per unit mass. 
13 The URM3 notation has been embellished in this paper to differentiate its vectors and matrices from those of 
URM4 and beyond. All URM3-specific variables are now subscripted with a '3', as are all URM n  variables 
subscripted with an n . 
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3 The General URM5 Formulation 
 
The most general form of URMT, i.e. the n-dimensional 'URM n ', is defined for a single, 
square nn  matrix A  and vector X , which is an eigenvector to matrix A  for eigenvalue C , 
i.e. XAX C . Specifically, for URM5, the unity root14 matrix A 15 is defined as follows: 
 

(3.1) 

























0
0

0
0

0

PQUJ
PRTN
QRSH
UTSM
JNHM

A , (footnote 16) 

 
comprising ten dynamical variables 
 
(3.2) JNHM ,,, ℤ 
 UTS ,, ℤ 
 RQP ,, ℤ, )0,0,0(),,( RQP , URM3 (A1b) 
 
and their conjugates 
 
(3.3) JNHM ,,, ℤ 
 UTS ,, ℤ 
 RQP ,, ℤ, )0,0,0(),,( RQP . (footnote 17), URM3 (A1c) 

                                                
14 Only the URM3 dynamical variables RQP ,,  and RQP ,,  are true integer, 'unity roots' (A13) and, only 
then, when eigenvalue 1C  (3.5). Otherwise, they are generally known as power-residues [6]. Both forms are 
isomorphic to the complex roots of unity, e.g. P ~ Z , P ~ *Z , for unity eigenvalue. The unity root aspect is not 
required in this paper but Appendix (A) provides some background detail at the end (A13). 
15 The A  matrix naturally embeds the URM3, 3x3 matrix 30A  (A2b) 
16 The usage of four, non-consecutive capitals, JNHM ,,,  in the top row and left column of A  is 
unfortunate, but primarily due to the inability to find four such consecutive capitals that are not already reserved 
in URMT. The peculiar alphabetic ordering, i.e. JNHM ,,, , is also legacy and due to some other unpublished 
simplifications to the matrix. A similar issue arises with the commonly used Pythagorean triple (3,4,5), which in 
URMT is ordered (4,3,5). Mathematically they are, of course, quite distinct, although URMT covers this, see [2]. 
17 Conjugates, such as RQP ,, , are linked to their standard forms RQP ,,  by conjugate relations [2], which 
are equivalent to the Pythagoras conditions (4.2c). 
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A single eigenvector X  is defined comprising five coordinates zyxwv ,,,,  
(3.4) 

(3.4a)  

























z
y
x
w
v

X  

 
(3.4b)  zyxwv ,,,, ℤ, )0,0,0,0,0(),,,,( zyxwv  
(3.4c)  1),,,,gcd( zyxwv  (footnote 18) 
 
which, as stated, is an eigenvector of matrix A , eigenvalue C 19 
 
(3.5)  XAX C , C ℤ, 1C  (see also footnotes 20 and 21) 

                                                
18 The gcd condition (3.4c) is primarily imposed to uniquely specify the elements (URM3 scale factors 

333 ,,   (A6)) for another eigenvector X  of A , eigenvalue C . See also Appendix (C15), (C16). 
19 The eigenvalue C  is of physical importance to URMT since it can be associated with a velocity and it appears 
of second degree (quadratic) in scalar invariants, i.e. equivalent to the kinetic energy per unit mass. Most 
notably, 2C  is the conserved quantity in the Dynamical Conservation Equation (5.7), also appearing in 
numerous other scalar invariants. 
20 Once a non-zero eigenvalue C  is imposed, the URM3 dynamical variables RQP ,,  cannot all be trivially 

zero, i.e. )0,0,0(),,( RQP  (3.2). By conjugate relations (footnote 17), neither are RQP ,,  all zero (3.3). 
One or two of the three RQP ,,  can possibly be zero, but not all three simultaneously. This also constrains the 
elements zyxwv ,,,,  of vector X  in the same way, (3.4b). That no vector in URMT can comprise all zeros, 
and therefore have zero magnitude, is an algebraic consequence of mandating 1C . Effectively, it means 
URMT has no singularities and, naturally, this is a highly desirable physical attribute. 
21 URM3 is generally solved for a unity eigenvalue, 1C , and the solution can then be used to obtain the 
solution for arbitrary eigenvalue, 1C , see [1],#6. The unity value is considered to be the normalised form of 
URMT, it also makes for a true definition of the dynamical variables as unity roots; see Appendix (A13). 
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4 Simplifications and Pythagoras Conditions 
 
As for all forms of URMT, i.e. URM n , 3n , the general case requires simplifying 
conditions to produce analytic solutions that are considered to be of physical relevance. There 
is a common set of conditions, termed 'Pythagoras conditions' (I9), that are present in every 
incarnation of URM n 22, and where the elements of every eigenvector X , for a non-zero 
eigenvalue ( C ), obey the Pythagoras equation, i.e. 
 
(4.1) 222220 zyxwv  . 
 
Because of the complexity and goals of URM5, it is currently only studied under Pythagoras 
conditions, noting that there are also a few additional conditions imposed to obtain some 
specific, highly desirable physical properties, e.g. an 'invariant, zero Potential', also present in 
URM3 and URM4. 
 
All work hereafter will assume to be formulated under Pythagoras conditions. 
 
URM5 Pythagoras Conditions 
 
The URM5 Pythagoras conditions on the conjugate dynamical variables (3.3) are 
 
(4.2) 
(4.2a) MM  , HH  , NN  , JJ   
(4.2b) SS  , TT  , UU   
(4.2c) PP  , QQ  , RR  . 
 
When under these conditions, matrix A  is relabelled 50A  (footnote 23) where the '5' in the 
subscript denotes URM5, and the '0' represents the standard form of the unity root matrix 
under Pythagoras conditions24. From here onward, all matrices and eigenvectors are 

                                                
22 All Pythagoras conditions for URM n  include URM )1( n  as a subset. 
23 In URM3, under a general, unified scheme [1],#5,  there are actually three such matrices, 0A , A  and A , 

albeit only 0A  (~ 50A  here, and 0nA  in general) is used explicitly in this paper. 
24 Regardless of the actual values of the elements of 50A  (4.3), any eigenvector X , for non-zero eigenvalue, 

actually satisfies the Pythagoras equation (4.1), e.g. for URM5 the eigenvector 5X  is a trivial Pythagorean 

quintuple ),,,0,0( zyx  as in 22222 000 zyx  . The other non-zero eigenvalue of note herein is 

C , the others all being zero, see (5.9). The associated eigenvector for the non-zero eigenvalue C  is 5X  
(11.1b), and is a non-trivial Pythagorean quintuple. It is no coincidence that the elements of the eigenvectors 

5X  and 5X  satisfy the Pythagoras equation (admittedly 5X  is really just a 3D embedding, see (5.17)). It 
was a goal of URMT to pursue such eigenvectors as they have a Minkowski form. It is actually eigenvector 

4X  (8.1b), (URM4), with a physical interpretation (2.1) as a position vector, that is considered to have its 

fourth-element ' 4 ' as the more familiar ct  in the STR four-vector position  ctzyx . Furthermore, 
and most importantly, the biggest reason to extend URMT to four and five dimensions was to specifically 
incorporate three spatial dimensions, one time dimension, and also allow for non-zero intervals c , i.e. proper 
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subscripted with an ' n ' according to which n-dimensional incarnation of URM n  they 
represent. 
 
Using conditions (4.2), matrix A  (3.1) becomes 50A : 
 

(4.3) 





























0
0

0
0

0

50

PQUJ
PRTN
QRSH
UTSM
JNHM

A . 

 
A kinetic term K  and Potential term V  are defined as follows, whereby these forms are 
intentionally chosen to simplify the characteristic equation for 50A  
 
(4.4) )( 2222222222 TSRNMHUQPJK   
 

(4.5) 

   
   
 2

22

22

)(

)()(

)()(

NSMRHT

MPJTNUMQJSHU

HPJRNQRUPSQTV







, footnote 25 

 
Using these two terms, K  and V , the characteristic equation, for matrix 50A , eigenvalue  , 
is 
 
(4.6) )(0 24 VK   . 

                                                                                                                                                   
time   as in 22222 )()( ctzyxc   . Keep in mind that the URM4, four-vector 4X  (8.1b) is the 

positional equivalent of the STR four-vector  ctzyx  since the four-vector  xyxw4X  is 

physically associated with an acceleration vector (2.2). Albeit, 4X  and 4X  are 'dual' to each other in URMT 
and the entire theory can be formulated in one or the other. This 'duality' is discussed, for URM3, in [1],#3,#5 
and [3]. 
25 The form of the Potential (4.5) is specific to each incarnation of URM n . Under URM3 Pythagoras conditions 

it is always zero. In URM4 it is given by just the first term in (4.5), i.e.  2)( RUPSQTV  , and is not 
generally zero under URM4 Pythagoras conditions without further simplifications, see [4]. 



Page 10 of 82 
Unity Root Matrix Theory Compactification 

Issue 2.0 06/05/2012 
 Micro SciTech Ltd. 2012 

 
5 Invariant Zero Potential Conditions 
 
With the specific goal of obtaining two symmetric, non-zero eigenvalues, with all others zero, 
i.e. 0,0,0,C  for URM5 (5.9), it is desirable to make the Potential V  zero (4.5). Not only 
that, but keep it zero for arbitrary evolutionary times jt , nj 3 , which is termed an 
invariant, zero Potential in URMT. 
 
An invariant Potential (not specifically zero) is also very important in URMT physics 
because, as in any energy conservation equation, it means the kinetic energy is a constant. In 
this case, the DCE (5.7) has a constant kinetic term K  equal to the total energy E , 
i.e. KCE  2 . It also means there is no kinetic/Potential energy interchange and, hence, no 
force, or at least no forces that do any work. In brief, it makes a good simple case to study. 
 
With these factors in mind, and with the benefit of a lot of hindsight, explained in [4], the 
additional conditions for such a zero, invariant Potential, 0V , are as follows, with some 
explanation given shortly after: 
 
The first two coordinates of 5X  are zeroed, i.e. 
 
(5.1) 
(5.1a) 0v , 0w , 
 
and the URM4 and URM5 dynamical variables, UTS ,,  and JNHM ,,, respectively, are 
assigned as scalar multiples of the eigenvector 5X  (3.4a), now with two zero coordinates 

wv,  (above), where the scalars are the evolutionary parameters 4t  and 5t , 
 
(5.1b) 0M , xtH 5 , ytN 5 , ztJ 5  
(5.1c) xtS 4 , ytT 4 , ztU 4  
(5.1d) 44 , tt ℤ. 
 
With these conditions (5.1), the matrix 50A  and eigenvector X  (now relabelled 5X ) become 
 

(5.2) 
































0
0

0
00
00

45

45

45

444

555

50

PQztzt
PRytyt
QRxtxt

sztytxt
ztytxt

A , 

























z
y
x
0
0

5X , (footnote 26), 

 
with eigenvector equation 
                                                
26 The eigenvector 5X , whilst five-dimensional, evidently only occupies the subspace of URM3 vector 3X . 
This is, of course, intentional. Non-trivial (I7) 4D and 5D vectors, i.e. those with four and five, non-zero 
elements respectively, will emerge as the work progresses; they are the eigenvectors to the other eigenvalues 
(5.9). 
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(5.3)   5550 XXA C . 
 
A justification for the form of 50A  and 5X , for the general, n-dimensional version, is given 
in Appendix (C). 
 
An explanation of conditions (5.1) follows shortly after a quick summary of their effect on the 
energy terms and eigenvalues. 
 
Every bracketed term in the Potential V  (4.5) is now zero and so too, therefore, the overall 
sum 
 
(5.4) 0V . 
 
Substituting for the dynamical variables UTSJNHM ,,,,,,  from (5.1) into the kinetic term 
K  (4.4), and using the Pythagoras equation (4.1), gives 
 
(5.5) 222 RQPK  . 
 
By associating K  with the positive constant 2C , i.e. 
 
(5.6) 2CK  , 
 
then, for a zero Potential (5.4), the kinetic expression (5.5) becomes the familiar URM3 
Dynamical Conservation Equation (DCE), as per URM3 Pythagoras conditions 
 
(5.7) 2222 RQPC  , the DCE. 
 
With a zero Potential (5.4), and a kinetic term (5.6), the characteristic equation (4.6) becomes 
 
(5.8) )(0 223   C . 
 
This characteristic equation factors with the following five eigenvalues as roots, three of 
which are zero 
 
(5.9) 0,0,0,C , (footnote 27). 
 
An explanation on the choice of conditions (5.1), and the rather abstract form of 50A  (5.2), is 
now given. 
 
By writing 50A  (5.2) in the following block matrix form in terms of URM3 vectors 3X , 3X  
and unity root matrix )( 330 tA , all reproduced below from Appendix (A), 
                                                
27 Each dimensional extension of URMT, i.e. URM n  to URM )1( n , adds another zero eigenvalue, starting 
with one zero eigenvalue for URM3, i.e. 0,C , two for URM4, 0,0,C , and three for URM5, 

0,0,0,C  etc. 
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(5.10) 
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(A1e) 

















z
y
x

3X , (A10c)  zyx 3X , (footnote 28) 

 

(A2b)  

















0
0

0
)( 330

PQ
PR
QR

tA , (footnote 29), 

 
then 50A  can be seen to be decomposed into three, time-dependent matrix components 53A , 

54Δ  and 55Δ , i.e. 
 
(5.11) 55554435350 )( ΔΔAA ttt  . (footnote 30), 
 
where 53A , 54Δ  and 55Δ  are defined as follows, and 330  is defined as a 33  matrix of zeros, 
 

(5.12) 

















)(00
000
000

330

53

tA
A , 

 

                                                
28 The vector 3X  is the 'reciprocal' of 3X  and related via the URM3 matrix operator 3T  (~ 3T ) (H14), as in 

 T
  3

33 XTX  and, conversely,  T
 

3
33 XTX . See Appendix (E) for more information on reciprocal 

eigenvectors and the T  operator. 
29 Matrix )( 330 tA  is also a function of URM3 evolutionary parameter 3t  since the dynamical variables 

RQP ,,  are functions of 3t , see (A4) and (A5).  It is defined in [1],#1 as Ptt 3330330 )( ΔAA  , where the 

primed superscript denotes an initial value as in )0( 33030  tAA , and P
3Δ  is defined as PΔ  (or A ) in 

[1], [3]. Matrix P
3Δ  (~ PΔ ) is an annihilator, like 55Δ  and 54Δ  (5.14), because it has the property 

033 XΔP . This decomposition of )( 330 tA  into 30A  and P
3Δ  is not required in this paper and provided as 

background information - it does give some insight into URM3's variational nature and the origin of parameter 

3t . 
30 The subscript '54' in 54Δ  denotes the 55  matrix for coefficient 4t . Likewise, the subscript '55' in 55Δ  

denotes the 55  matrix for coefficient 5t . 



Page 13 of 82 
Unity Root Matrix Theory Compactification 

Issue 2.0 06/05/2012 
 Micro SciTech Ltd. 2012 

(5.13) 


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
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0X
XΔ , 
























333

3

55

0
000

00

0X

X
Δ , (footnote 31) 

 
The matrices 55Δ  and 54Δ  are known as variational 'delta' matrices in URMT and they have 
the following annihilator property 
 
(5.14) 0555 XΔ  and 0554 XΔ  (footnote 32) 
 
The annihilation property works because the 3X  vector (A10c), embedded in the first and 
second rows of 55Δ  and 54Δ  respectively, is orthogonal to the 3X  vector (A1e), embedded in 
the 5X  vector (5.2), i.e. 
 
(5.15) 0222

3
3 
 zyxXX  Appendix (F1), Pythagoras, orthogonality 

 
The first and second row of matrix product 550 XA  (5.3) is simply equivalent to the inner 
product 

  3
3 XX  (5.15), which is just the Pythagoras equation, and therefore zero. 

 
Using this annihilator property, the eigenvector equation 550 XA  (5.3) becomes 
 
(5.16)   553550 XAXA  
 
Writing 5X  (5.2) in block matrix form in terms of 3X  
 

(5.17) 





















3

5 0
0

X
X , 

 

                                                
31 Since 3X  and 3X  are defined purely in terms of coordinates zyx ,, , and are completely invariant to 

variations in 3t , (or 4t  and 5t  for that matter), then the matrices 55Δ  and 54Δ , which comprise 3X  and 
3X , are also static, i.e. not a function of time. 

 
32 The 3X  vector embedded in the first column of 55Δ  and the second column of 54Δ , is seemingly useless 

since it only multiplies the first two, zero elements of 5X . Whilst it is intentional to have no effect, i.e. remain 

invariant, it raises the question as to why not use any three arbitrary elements and not, specifically, the 3X  

vector? The answer is simple: the  3X  in the column is the negative conjugate of 3X  in the row and, 

ultimately, it means dynamical variables JNH ,,  and their conjugates JNH ,,  satisfy the Pythagoras 

conditions (4.2a). This is a must and, since 3X  cannot be chosen arbitrarily (it must satisfy orthogonality 
(5.15)), it forces the two columns in 55Δ  and 54Δ  to embed  3X , and not any just any arbitrary vector. 
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then, from the definition of 53A  (5.12) in terms of )( 330 tA  (A2b), the product 553XA  in the 
eigenvector equation (5.16) is effectively the same as 330 XA  (disregarding dimensionality). 
Furthermore, since   3330 XXA C  by its URM3 eigenvector definition (A1f), the original 
URM5 eigenvector equation (5.3) is restored, i.e.   5550 XXA C . 
 
The important point here is that the eigenvector equation (5.3) is invariant to arbitrary 
variations 555Δt  and 544Δt  (5.11). The eigenvector equation holds in URM5 just as it does 
in URM3 (and also URM4 or URM n  in general), invariant to any arbitrary variations 555Δt  
and 544Δt  in matrix 50A  (5.10). This might well seem pointless since nothing has been 
achieved. Which, in a sense, is the whole point of invariance transformations - to do nothing. 
But, and it’s a big but, the transformations do not leave the other four eigenvectors 5X , 

A50X , B50X , C50X  (for eigenvalues, 0,0,0,C ) invariant, on the contrary, they will 
change according to the values of 4t  and 5t . Consequently, it is these latter four vectors that 
generate an evolving eigenvector space in URM5. 
 
If anything, a fair criticism would be that 5X  (5.17) is nothing more than 3X  with a couple 
of zeros added to the front to extend it from three to five dimensions. However, not all 
eigenvectors are quite so simple - two of the eigenvectors, B50X  (11.1d) and C50X  (11.1e), 
have four non-zero elements, and 5X  (11.1b) has a full five, non-zero elements, making it a 
non-trivial (I7), five-dimensional vector. Although it may seem that such vectors are, 
therefore, only parameterised in terms of the two variational parameters 4t  and 5t , the 
solutions themselves are expressed in terms of the URM3 eigenvectors, which are fully 
parameterised by three parameters, 3t , k  and l . Hence they are 5D vectors with a 5D 
parameterisation ( 543 ,, ttt , k  and l ). This has the caveat that not all eigenvectors utilise the 
full parameterisation. For example, A50X  (11.1c) will be seen to be simply an embedding of 
the URM3 vector 30X , so it is actually only parameterised by the three URM3 parameters, 3t , 
k  and l . Nevertheless, in general, all five parameters are used in the complete solution for 
URM5 (9.6). 
 
This completes the justification for the form of 50A . 
 
Before proceeding to obtain all five eigenvectors from 50A , and thereafter analysing the 
compactification behaviour of URM5, a formal definition of what is meant by 
compactification, in the context of URMT, has to be given. 
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6 The Compactification Ratio 
 
Since the aim of the paper is to show compactification occurs over long evolutionary 
timescales, in one or more excess dimensions, a quantitative measurement of the relative size 
of a dimension j , with respect to the first three dimensions of URM3, is required. Such a 
measurement is termed a compactification ratio j , defined further below, in terms of the 
'magnitude' of a dimension, which is defined next. 
 
(6.1a) Definition: The magnitude (or size), symbol 

j
X , of a particular, excess jth dimension, 

4j , is a measure (usually an approximation) of the dominant jth coordinate in that 
dimension. For advance information, this measure is invariably approximated as the time-
scaled multiple of the eigenvalue, i.e. CtCt jj 22  , where 0jt  by convention (7.2) and 

1C  by definition (3.5). 
 
(6.1b) The magnitude of the first three dimensions, symbol 

3
X , is a measure of the size of 

the URM3, 3D subspace of the full n-dimensional, eigenvector space. This measure is 
invariably approximated from just the dominant nX  vector, and then only using the quadratic 

term 3
2Xjt , 4j . That 3j  here is intentional, see footnote 33. 

 
(6.2) Definition: The compactification ratio of dimension j , denoted by j , is the ratio of 

the magnitude 
j

X  (6.1a) of the jth dimension to the magnitude 
3

X  (6.1b) of the first three 

dimensions (URM3), i.e. 
 

(6.3) 
3

X

X j
j  . 

 
With a compactification ratio j  defined, then showing compactification occurs over 
evolutionary timescales translates to showing the ratio j  decreases to zero as the jth 
dimension's evolutionary time jt  increases without bound, i.e. 
 
(6.4) 0lim 

 jt j

 . 

 
Since the above definitions for magnitudes 

j
X  and 

3
X  allude to the fact that they are 

approximated as follows: 
 
(6.5) Ct jj

2X  

 
(6.6)  3

2
3 XX jt  
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then the compactification ratio j  (6.3), of dimension j , is approximated by 
 

(6.7) 



3

2
Xj

j t
C , 0jt , use (6.3) when 0jt . 

 
From this approximation it is seen that j  is inversely proportional to time jt , hence the limit 
(6.4) is satisfied. Moving on to specifics, the calculation of the compactification ratio, and its 
behaviour for the URMT eigenvector solutions, is now the main focus of the paper with 
regard to demonstrating compactification in URMT. 
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7 Eigenvector Solutions 
 
Equipped with a URM5 unity root matrix 50A  (5.10), and a definition for eigenvector 5X  
(5.17), the other four eigenvectors 5X , A50X , B50X , C50X , (11.1b) to (11.1e), are determined 
using what is termed the 'Residual Matrix Method' in URMT. Because this method is outlined 
in Appendix (C), and fully explained in [1],#2 and [2], the eigenvector solution is quoted 
further below, without explanation. 
 
Before proceeding to examine the URM5 solution (11.1), it is preferable to study the URM4 
solution (8.1) first, which is given in terms of the URM3 eigenvector solution, detailed in 
Appendices (A) and (B). The reasoning behind this is that URM4 is, of course, the first 
dimensional extension to URM3 and the arguments on compactification, for URM5 and 
beyond, are easily established with URM4. It is actually very easy to obtain the URM4 
solution (8.1) from the URM5 solution (11.1) by setting the URM5 evolutionary parameter 5t  
to zero. It could also be obtained algebraically using 50A  (5.10) with 05 t , and obtaining 
the URM4 eigenvectors 4X  (8.1b), A40X  (8.1c) and B40X  (8.1d) from scratch, using the 
residual method with this cut-down, 44  variant ' 40A ' of )0( 550 tA . The 4X  eigenvector 
is trivially obtained from 5X  (5.17) by eliminating its first, zero element and retaining the 

remaining four, i.e. Tzyx ),,,0(  ~  T30 X . 
 
Three sets of eigenvector solution are given as follows: 
 
(7.1) 
 1. URM4 in terms of URM3 
 2. URM5 in terms of URM3 
 3. URM n  in terms of URM3, 4n  
 
The URM3 eigenvector solution33 is given in Appendices (A) and (B). 
 
All solutions are given in block matrix form. Keep in mind all standard (lower subscript) 
URM3 vectors, e.g. 3X , are 13  column vectors, and their reciprocal forms34 (raised 
subscript), e.g. 3X , are 31  row vectors. Likewise, for URM4, standard forms of 
eigenvectors such as 4X  are 14  column vectors, and their reciprocal forms, e.g. 4X , are 

                                                
33 The evolutionary forms of the URM3 eigenvectors, for the solution sets (7.1), have not been expanded in full 
as functions of parameter 3t , since this isn't particularly necessary for the analysis of compactification of the 

excess dimensions, and only the behaviour for large evolutionary times, 04 t  and/or 05 t , is required. 
See Appendix (B) for the URM3 eigenvector equations. The evolutionary behaviour in URM3 is also fully 
documented in [1],#3, with an overview in [3]. 
34 The reciprocal vectors are also often referred to as dual vectors in the literature since they form the basis set, 
dual to the standard eigenvector basis. However, URMT has a 'dual' formulation, which is not quite the same 
thing, i.e. it doesn't mean the formulation of URMT in terms of a dual basis. On the contrary, in [1],#5, the dual 
of 3X  is 3X  and vice-versa, with 30X  defined as self-dual, none of which reference the reciprocal vectors. 

In fact, URMT can be formulated in standard form using 3X , or dual form using 3X , but not both 
simultaneously - this is URMT's form of duality. 
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41  row vectors. Generally, however, discussion will only refer to the standard vector forms, 
and not their reciprocals, since every reciprocal vector can be obtained from its standard form 
using the T  operator relations; see Appendix (E). Identical comments are assumed to apply to 
the reciprocal forms, as for the standard forms, except where specifically highlighted 
otherwise. 
 
In all discussion, the first element of the vector is always the nth dimension in URMn , and 
the remaining )1( n elements represent the )1( n  dimensions in URM )1( n . The last three 
elements are always dimensions one to three, i.e. URM3, and referred to as 'the first three 
dimensions'. 
 
To keep things simple, it will be assumed that all evolution proceeds in the forward, positive 
direction, i.e. 
 
(7.2) 0jt , nj 3  
 
However, this is convention only, none of the work specifically requires such an assumption, 
and jt  can be positive or negative. Remember, jt  is a variational parameter and it certainly 
could be positive, negative, proceeding forward or backward. Nevertheless, using the standard 
physical interpretation, Section (2), it always has physical units of time. 
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8 URM4 Eigenvector Evolution Equations 
 
The eigenvector evolution equations for the URM4 eigenvectors, in terms of the URM3 
eigenvectors, are as follows: 
 
(8.1) 

(8.1a) 
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Before proceeding with a more detailed analysis in Section (9), the following observations of 
this solution are made: 
 
(8.2a) Regardless of the size, relative or absolute, of the fourth dimension's evolutionary time 

4t , the only vectors that contribute anything to the size of the fourth dimension are 4X  and 

B40X  since they have a non-zero component, eigenvalue C , as their first element. 
 
(8.2b) In fact, looking ahead to the general, n-dimensional solution, Section (13), C  is the 
only quantity, other than evolutionary time, that is present in each excess dimension, and then 
it only appears in the linear product term Ct j , nj 4 , or the constant term, as itself, C . 
Note too that C  does not explicitly appear in any of the three URM3 eigenvectors; see (A8). 
The contribution of the jth dimension at the initial stage of evolution, i.e. 0jt , is thus 
governed by the magnitude of C  compared to the magnitude of the URM3 eigenvectors. 
Given C  is related to the total energy, 2CE   (2.1), it means that at 0jt  a comparatively 
large value for C  would make for a sizeable excess dimension with a lot of energy in it, C  
being suitably chosen as an initial condition. 
 
(8.3) For any sufficiently large35 evolutionary time 4t , the URM3 vector 3X  dominates the 
entire solution. See, for example, 4X  (8.1b) with a quadratic ' 2

4t ' term. Since 30X  and 3X  

                                                
35 The caveat 'sufficiently large evolutionary time' appears repeatedly throughout. In general it means any time t  
large enough such that the approximation under discussion is valid. In actuality it means the magnitude of the 
quadratic term in 2

jt , in the nX  eigenvector, for excess dimension j ,  nj 4 , dominates all other terms 
in all eigenvectors. It is discussed again in Section (10). 
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are functions of the evolutionary time 3t , Appendix (B), they also grow with 3t . However, for 
a large URM3 evolutionary time 3t , regardless of time 4t , URM3 itself converges (flattens) to 
also align with 3X  and, ultimately, all evolution tends to align with 3X . Nevertheless, that 
any excess dimension is dominated by one or more of the URM3 vectors, 3X , 30X  and 3X , 
only serves to bolster arguments that the compactification reduces from the higher, excess 
dimensions to those of URM3. Suffice to note, it is not the relative size of URM3 vectors that 
matters with regard to compactification of excess dimensions, but the size of the excess 
dimensions relative to those spanned by the URM3 vectors. 
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9 Analysis of URM4 Compactification 
 
Looking at the URM4 eigenvector solution (8.1) in more detail, the only two vectors in 
URM4 that contribute to the fourth dimension are 4X  and 40X , i.e. they have a non-zero 
first element. In vector 4X , the size of the fourth dimension (first element) is controlled by 
the linear term Ct42 , and in vector 40X , the size of the fourth dimension is controlled by the 
constant term C . There are a few sensible ways to combine these two sizes, e.g. root sum 
squares or summation of the magnitude of the individual components, i.e. 
 
(9.1) 22

44
)2( CCt X  or CCt  44

2X , 
 
but, given the analysis is primarily interested in large evolutionary times, i.e. 04 t , it is 
clear that only the Ct42  term from 4X  will dominate, i.e. 
 
(9.2) CCt 42  for 04 t . 
 
Therefore, the magnitude of the fourth dimension is simply approximated as the magnitude of 
the time-dependent component, i.e. 
 
(9.3) Ct44

2X , 04 t . 
 
From here onward, to avoid repetition, the following two points are assumed throughout this 
section, and stated here  
 
(9.4a) All calculations of 

3
X  are restricted to their URM3 components only (last three 

elements). 
 
(9.4b) All approximations for 

3
X  are assumed valid for sufficiently large 4t (footnote 36), 

with some justification given in Section (10). 

                                                
36 Note that there is a subtle distinction here between a large time 4t , as in much greater than zero ( 04 t ), 

and a 'sufficiently large' 4t , such that any approximation is actually valid. In the first case (9.3), of sizing the 

fourth dimensional component, the 04 t  criterion is sufficient given (9.2). In the second case, of sizing the 

other three dimensions, having 04 t  might not, by itself, be sufficient to justify the approximation, with a 
more exact definition required. This topic is considered again in Section (10). 
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The magnitude of the first three dimensions, denoted by 
3

X , might seem a much messier 
affair because there are now three URM3 vectors 3X , 30X  and 3X  embedded within the 
URM3 dimensions (last three elements) of URM4. Looking at the URM4 eigenvectors (8.1), 
the URM3 components for each vector are 
 
(9.5) 
(9.5a)   34 XX , URM3 components only 
 
(9.5b)   33

2
44 XXX t , ditto 

 
(9.5c) 3040 XX A , ditto 
 
(9.5d)  3440 XX tB , ditto 
 
A measure of 

3
X  can be obtained by combining the magnitudes of these above components 

and, again, a root sum squares or sum of individual vector magnitudes are the two common 
methods of combination37: 
 
(9.6) 
 

(9.6a) 2
4

2
40

2
04

2
43   XXXXX BA , root sum of squares. 

 
(9.6b)   4404043

XXXXX BA , sum of magnitudes 
 
Of the four vectors (9.5) in these expressions, only 4X  (9.5b) is dominant because it is the 
only vector with a quadratic term in 4t . Therefore, 

3
X  can be approximated by 4X  for 

some sufficiently large time 4t , i.e. 
 
(9.7)  43

XX . 
 
Furthermore, (9.5b) shows that 4X  is dominated by the term  3

2
4 Xt , when assuming the 

following, which is basically the criteria of a 'sufficiently large time 4t , 
 
(9.8) 3

2
4 Xt 3X . 

                                                
37 It should be noted that all URMn vector spaces are, generally, highly oblique, i.e. the eigenvectors, as a basis, 
are far from orthogonal to each other, and neither are they are of unit magnitude. Therefore, any such measures 
(root sum squares, etc.) are relatively basic estimates, but considered acceptable if consistently applied. 
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Under this assumption, 4X  is approximated by  3
2
4 Xt , formalised as 

  
(9.9) 4X 3

2
4 Xt . 

 
(9.10) 
However, although not shown, 3X  also evolves with URM3's evolutionary time 3t , and it 

too can be approximated, for some sufficiently large 3t , by 3
2
3 Xt , i.e. 3X 3

2
3 Xt . Thus, 

it is easily possible a time 3t  can be found such that the magnitudes 3X  and 3
2
4 Xt  are 

comparable, i.e. 3
2
4 Xt 3X  3

2
3 Xt . It might then be better to use a combined estimate 

such as    3
2
3

2
4 Xtt  for 4X . In fact, the first, simpler approximation 3

2
4 Xt  will be used, 

ignoring 3t  completely, by virtue of the explanation given next. 
 
(9.11) 
Fortunately, these aforementioned concerns about 3t , and the comparative size of its evolving 
vectors, are all irrelevant for the following reason: given the definition of j  has the URM3 

magnitude 
3

X  in its denominator, a smaller estimate for 
3

X  will give a larger ratio j , i.e. 
a more pessimistic measure of compactification. If a pessimistic measure of j  can be shown 
to converge to zero, for large evolutionary times, then it will also converge to zero quicker, 
i.e. for smaller evolutionary times, when the true magnitude of 

3
X  is greater than that used in 

the calculation.  
 
Since 

3
X  is dominated by 4X  due to the domination of the term  3

2
4 Xt , and disregarding 

any URM3 contribution due to 3t  for reasons given above (an increasing 3t  only grows the 

relative size of URM3, and betters the compactification), then the approximation  3
2
4 Xt  

will be used as measure 
3

X  of the magnitude of the last three dimensions of URM4, i.e. 
 
(9.12)  3

2
43

XX t . 
 
Having established approximations for 

4
X  (9.3) and 

3
X  (9.12), the URM4 compactification 

ratio 4  can now be calculated. 
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The URM4 Compactification Ratio 4  
 
Substituting the approximation for 

4
X  (9.3), and 

3
X  (9.12) into (6.3), for 4j , the 

compactification ratio 4  of the fourth dimension in URM4, is approximated as follows; see 
also Section (10) which shows this approximation improves as 4t  increases. 
 

(9.13) 



34

4
2
Xt
C , for sufficiently large 4t , 

 

Note that 04   since 0C  by definition (3.5), and 04 t  by convention38 (7.2). This 
convention is strictly 04 t , but the ratio is only calculated for 04 t  for the obvious reason 
to avoid a zero divisor in (9.13). A different compactification ratio for 4t , at time zero, could 
be calculated but it is rather pointless since the focus is on large evolutionary times. 

 
The vector magnitude 3X  (footnote39) is constant with respect to time because the vector 

3X  is static (I11), i.e. it has no dependence on any evolutionary parameter, notably 3t ; see 
also footnote 7. So too is eigenvalue C  also a constant and, additionally, an initial condition. 
The ratio 4  is therefore just inversely proportional to the time 4t , and so tends to zero as 4t  
tends to infinity, i.e. 
 
(9.14) 0lim 4

4





t
. 

 
To conclude then, in the four-dimensional vector space of URM4, the excess, fourth 
dimension is seen to contract as the evolutionary time 4t , for that dimension, grows ever 
larger, eventually appearing to have zero size as 4t  grows infinite. Hence, under assumption 
(9.4b), the four-dimensional vector space compactifies to that of the eigenvector space of 
URM3, as evolution progresses. Specifically, all 4D eigenvectors align with the single, static 
URM3 eigenvector 3X , which occupies a 2D subspace (footnote 7) of URM3; hence URM4 
compactifies to appear two-dimensional. 
 

                                                
38 The convention is actually 04 t  but the ratio is only calculated for 04 t  for obvious reasons in (9.13). A 

different compactification ratio for 4t  at time zero could be calculated but, since the focus is on large 
evolutionary times, it is rather pointless. 
39 By the definition (A1e) of 3X  in terms of acceleration coordinates zyx ,, , the magnitude 3X  is actually 

z23 X . By the Pythagorean relation (F1) between zyx ,, , z  is always greater than zero, see (A3c) 

and (A3d), and increases with increasing values for parameters k  and l , hence only increasing compactification 
by decreasing the compactification ratio. 
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As regards URM4, it remains to define what is meant by a 'sufficiently large evolutionary 
time', and justify the assumption (9.4b) made. This follows next, and is applicable to any 
excess dimension j , nj 4 . 
 
Following this, the same compactification analysis is performed on the 5D solution, which is 
seen to have evolutionary terms in both 4t  and 5t . 
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10 A Sufficiently Large Evolutionary Time 
 
Until now, the term 'sufficiently large evolutionary time' has been considered as any 
evolutionary time t , large enough such that the approximation under discussion is valid. Now 
that a specific approximation for the size 

3
X  of the URM3 dimensions, embedded within 

URM4, has been given, i.e. 3
2
4 Xt  (9.12), the term 'sufficiently large evolutionary time' can 

be made more definitive. 
 
Although only URM4 has been analysed, this section will generalise to the jth dimension, 

nj 4 , for URM n , which basically just means replacing every subscript of '4' by 'j', as 
regards results obtained in the previous section. 
 
Firstly, the same approximations used in URM4 are now generalised for an arbitrary 
dimension j , nj 4 , as follows: 
 
(10.1) 
(10.1a)  jXX 3 , see (9.7) for URM4 

(10.1b) jX 3
2Xjt , see (9.9) for URM4. 

 
The two above approximations are combined to give 
 
(10.1c) 

3
X 3

2Xjt , see (9.12) for URM4. 
 
Readers are also referred to the general solution in Section (13) to see these approximations. 
 
A measure of the relative error   in the approximation (10.1c) of 

3
X  by 3

2Xjt , at any time 

jt , is given by 
 

(10.2) 
3

3
2

3

X

XX 


jt
 , estimate of relative error in approximation at time jt . 

 
(10.3) 
It is at this stage that a potential problem appears. Whilst the approximation (10.1c) 3

2Xjt  is 
acceptable when calculating the compactification ratio j  ( 4 ) (9.13), using just time jt  ( 4t ) 
(for reasons outlined in (9.10) and (9.11)), it is not so good when calculating the relative error 
  in (10.2). The idea behind the calculation of  , as seen further below in this section, is that 
it removes the quadratic term 2

jt  from the numerator in (10.2), leaving only linear terms in jt . 
However, by ignoring all other evolutionary times it , where ji  , nji 3,  , from 
approximation (10.1c), and using just jt , leaves quadratic terms in it  which can be as large as 

jt , if not larger. In other words, the error   is not small in these circumstances, i.e. when 
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ignoring it , and it will not always converge to zero as jt  grows, even though the 
compactification ratio will converge, as per (9.14). 
 
There are three methods to overcome this: 
 
(10.3a) Replace the crude approximation 3

2Xjt  by a better approximation 3
2XnT , where 





n

k
kn tT

3

22 . This is alluded to in point (9.10) where it is suggested that    3
2
3

2
4 Xtt  be used 

instead of 3
2
4 Xt . 

 
(10.3b) Assert ij tt  , ji  , i.e. make the jth evolutionary time much greater than all others 

it . 
 
(10.3c) Set all 0it , where ji  , nji 3,    
 
The first (10.3a) seems a good, obvious choice since the original approximation is very crude 
and, in reality, this better approximation, using 2

nT , should always be used for both an 
accurate calculation of the compactification ratio and in any error analysis. Nevertheless, it 
will not be used here solely because it makes the analysis clumsy and, most importantly, it 
isn't really necessary because the third option, (10.3c) below, circumvents the problem. 
 
The second choice (10.3b) will do the job, i.e. make the approximation (10.1c) reasonable, but 
is disliked because it means the evolution times can never be comparable, i.e. it becomes a 
condition that the jth evolutionary time jt  is always much greater than every other, ith time 

it . Since the evolutionary times may well all be identical, this solution is not acceptable 
except when all other times it  are zero. This then is the third solution (10.3c), discussed next. 
 
The third choice (10.3c) is the preferred option because it makes the analysis simple and will 
make the approximation (10.1c) valid, even if it is an artificial condition. Although artificial 
in that all evolutionary times are zero, other than jt , the computation of j  remains 
unchanged and valid. As noted for URM4, points (9.10) and (9.11), ignoring non-zero it  will 
give a worst-case estimation of j , and any non-zero times it  will only make j  better 
(smaller), i.e. faster compactification. 
 
Lastly on this issue, if true accuracy is required, it is a simple matter to revert to method 
(10.3a), i.e. replace time 2

jt  with the combined, quadratic time 2
nT  in the approximation of 

3
X  (10.1c), which can then be used to calculate j . 
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To conclude the above, for the purposes of this section only, the calculations will assume all 
times it , other than jt , are zero; jt  being both non-zero and likely 'large' 
 
(10.4)  0jt , 0it , where ji  , nji 3,  . 
 
Returning then to the calculation of the relative error   (10.2), under the assumption (10.4), 
this calculation requires a true (accurate) expression for 

3
X . This was left undecided in the 

previous section, with one of two options, (9.6a) and (9.6b), available. Given jX  is the 

dominant term in 
3

X  then, whichever one of the two is chosen, they both approximate to 
(10.1b), (10.1c). The best form for analysis is the sum of magnitudes, e.g. (9.6b), and is thus 
chosen as a measure of 

3
X , now formally defined by 

 

(10.5) 



n

i
i

1
3 XX , for all eigenvectors iX  in the n-dimensional basis. 

 
To see how the relative error   behaves with respect to time jt , it is also useful to define an 
absolute error   for the approximation (10.1b), calculated as follows, 
  
(10.6)   3

2XX jj t . 
 
Using this, and the sum form (10.5) for 

3
X , then the numerator of   (10.2) is re-written as 

 

(10.7) 




 








  

3

1
003

2
3

n

i
innnjt XXXXX . 

 
For example, using the URM4 eigenvectors (9.5), and assuming   is small, this becomes 
 
(10.8)  BAt 404043

2
43 XXXXX   , URM4. 

Looking at (10.7), and ahead to (13.2b) for jX , then because the quadratic term in 2
jt  has 

been removed by the subtraction of 3
2 Xjt  on the left of (10.7),   is only of linear order in 

time jt  ( 4t ), for large jt , and ignoring it  ( 3t ) by assumption (10.4), then 

(10.9) jtO  )( . 
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Likewise, from the general solution (13.2), or using the URM4 vectors (9.5) as an example, 
all vectors in the bracketed term on the right of (10.7) and (10.8) are also only of linear order, 
since jX  ( 4X ) is the only vector with a quadratic factor in jt  ( 4t ), i.e. 
 

(10.10) j

n

i
innn tO 







 






3

1
00 XXX . 

 
Therefore, the entire order of the numerator term (10.7) is linear in jt . 
 
(10.11) jj ttO  3

2
3 XX . 

 
Conversely, the denominator 

3
X  still contains jX  and remains a quadratic function of jt , 

i.e. 
 
(10.12) 2

3 jtO X  
 
Therefore, inserting numerator (10.7) and denominator (10.5) into (10.2) shows that the error 
  is now inversely proportional to time jt , i.e. 
 

(10.13) 
jt

1
 , under assumption (10.3c), footnote40 

 
In other words, choosing 

3
X  as the form (10.5), and using the quadratic approximation 

(10.1c), gives an estimate for the approximation error  , which is inversely proportional to 
time and, thus, decreases to zero as time increases. 
 
This last result (10.13) is pivotal in defining the term 'sufficiently large...' because, basically, 
it means that, for any time greater than jt , the relative error   will always be less than its 
value at time jt , which is formalised next. 
 
Finally then, by choosing a value of the maximum, permissible error j  as a pre-condition: 
 
(10.14) j  = the maximum, permissible error for   (10.2), e.g. 0.01 for 1% error, 
 
then a definition for 'sufficiently large evolutionary time' is given as follows: 
 
(10.15) Definition: a sufficiently large evolutionary time is considered to be a time jt , for a 
specific dimension j , nj 4 , if, for all times t  greater than jt , the relative error   (10.2) 

                                                
40 If the assumption (10.3c) is unpalatable, then follow the suggestion in (10.3a), i.e. replace 2

jt  with a better, 

more accurate time 2
nT  in both the calculation of   and  . Doing so will then give the same, inverse-time 

result (10.13) for  . 
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in the estimate for the size 
3

X  of the first three dimensions, i.e. the size of URM3 embedded 
in URM n , is less than j , i.e. 
 
 if j   for all jtt  then jt  is 'sufficiently large' 
 
Furthermore, the error decreases with increasing time such that it converges to zero, i.e. 
 
(10.16) 0lim 




t
 

 
Admittedly, this does not give any actual sufficiency time, but merely shows that by 
approximating the magnitude 

3
X  by selecting the dominant, quadratic, evolutionary terms in 

jt , under certain assumptions (10.4b) (which can be rectified - footnote 40), the error in this 
approximation converges to zero as evolutionary time progresses. The numerical example in 
Appendix (D) provides some values of   versus jt . 
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11 URM5 Eigenvector Evolution Equations 
 
The eigenvector evolution equations for the URM5 eigenvectors, in terms of the URM3 
eigenvectors, are as follows: 
 
(11.1) 

(11.1a)  





















3

5 0
0

X
X  

 

(11.1b)  








































































33

4

3

5

3

2
4

2
55 0

00
2020

0
)(

X00X
X Ct

C
ttt  

 

(11.1c)  

















30

50 0
0

X
X A  

 

(11.1d)  


































 33

450

0
0
0

0X
X CtB  

 

(11.1e)  


































 33

550 00
0

0X
X

C
tC  

 
Looking at this solution, there are no mixed 54 , tt  terms, and it splits nicely into independent 
terms in 4t  and 5t . The vector 5X , that contains terms in 4t  and 5t , is split into its 5D and 
4D components, denoted by )( 45 tX  and )( 55 tX , as follows: 
(11.2) 

(11.2a)  























































33

4

3

2
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0

2
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0
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0
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X0X
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(11.2b)  
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

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



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




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














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


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3

2
555 0

0

2
1020

0
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X0X
X

C
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(11.2c)  )()( 55455 tt   XXX  
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The zero eigenvectors (I12) B50X  and C50X  are also, rather conveniently, already separated 
into a 4D and 5D, time-dependent form41, with each uniquely associated to its dimension, i.e. 

B40X  with the fourth, and C50X  with the fifth, trivially expressed as 
 
(11.2d)  BB t 50450 )( XX   
 
(11.2e)  CC t 50550 )( XX  , 
 
Not only does the URM5 solution separate into a unique 4D and 5D term, but these terms are 
identical, disregarding the particular excess dimension. They are 'identical' in so far as the 
URM4 component contributes a linear term Ct42  in )( 45 tX  and C  in )( 450 tBX , and the 
URM5 component contributes a term Ct52  in )( 55 tX  and C  in )( 550 tCX , which are 
identical upon interchange of times 4t  and 5t . Since it is only the magnitude of the 
contribution in the excess dimension that matters in the analysis of the ratio  , each 
dimension can be treated separately and, furthermore, identical findings for one dimension, 
apply to the other. 
 
Concluding from the previous paragraph, the separability of the URM5 solution into 4D and 
5D unique components, and the interchange symmetry of 4t  and 5t  between the two 
components (as regards calculating the ratio  ), means that each dimension acts 
independently, with identical behaviour with respect to their individual evolutionary times.  
 
The compactification behaviour of the fifth dimension, isolated from the 4D behaviour, can 
easily be analysed by equating time 4t  to zero, and thereby nullifying the 4D component, 
leaving only the 5D solution in terms of 5t . However, as stated, barring the fact that the 5D 
component affects the fifth dimension, and not the fourth, it is effectively the same solution as 
that for URM4 (8.1), by virtue of the interchange symmetry between 4t  and 5t . Thus, the 
same arguments used for URM4 can be applied to URM5 and, most importantly, the 
expression for 5 , i.e. the URM5 equivalent of URM4's ratio 4  (9.13), is simply written 
down by interchange of 4t  with 5t , i.e. 
 

(11.3) 



35

5
2
Xt
C , for sufficiently large 5t , 

 
As regards URM5, it only remains to examine when both 4t  and 5t  are comparably large, i.e. 
 
(11.4) 45 tt   
 
Unsurprisingly, given the above discussion, if either one of 4t  or 5t  is sufficiently large, then 
compactification will still occur since the dimensions act independently. If both 4t  and 5t  are 
                                                
41 Time-dependent for excess dimensions only, and not A50X  (11.1c), which is simply an embedding of the 

URM3 vector 30X , and a function of URM3's time 3t . 
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large, it will only serve to increase this compactification process further. However, this 
process is nicely illustrated with regard to what is really, physically happening, and that is that 
URM3, from the perspective of the fourth or fifth dimension, appears to expand with a 
constant acceleration. 
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12 An Expanding URM3 Vector Space  
 
Whilst the analysis and discussion is focussed on the concept of compactification, i.e. relative 
shrinkage of dimensions, it is not that any dimension actually shrinks, but rather that the 
URM3 dimensions appear to expand, and then with a constant acceleration (constant with 
respect to evolutionary time), that of the URM3 static vector 3X 42. Simultaneously, the 
excess dimensions expand linearly with a constant velocity (eigenvalue C ). Because the 3D 
expansion is a static acceleration, URM3 spatially expands along 3X  (within 5X ) 
quadratically with respect to the evolutionary times 4t  and 5t , as witnessed by the solution for 
vector 5X  (11.1b); there is also the linear expansion (due to velocity C ) in the excess 
dimensions of both 5X  and the zero vectors B50X  (11.1d) and C50X  (11.1e). But, of course, 
these linear terms becomes less important relative to the quadratic term, as the evolution 
progresses, hence the apparent contraction of the excess dimensions relative to URM3. 
 
Looking at the URM5 eigenvector solution (11.1), it is clear, for sufficiently large 4t  and/or 

5t , the solution is dominated by the quadratic term in 5X  scaling the vector 5X . This vector 

5X  is really just the URM3 vector 3X  embedded in URM5 with a zero fourth and fifth 
dimensional contribution. As noted earlier, (9.10) and (9.11), ignoring the vector 3X  gives a 
worst-case ('pessimistic') compactification ratio. Therefore, just concentrating on 5X , it is 
approximated as follows, for sufficiently large 4t  and/or 5t , 
 
(12.1)   5

2
4

2
55 )( XX tt . 

 
Given 5X  is really just a 5D embedding of 3X , the URM3 vector space grows quadratically 
with respect to either 4t  or 5t , along 3X , and it matters not if 4t  is small relative to 5t  
( 45 tt  ), providing 5t  is sufficiently large. Likewise, in the converse case, 54 tt  , there is 
still quadratic growth in URM3 along 3X . Thus, either the fourth or fifth dimension can act 
in isolation to increase the size of the URM3 space, by growth in its evolutionary parameter, 

4t  or 5t  respectively; both evolutionary times acting together can only increase this growth 
further. Given all excess dimensions only grow linearly with evolutionary time, the quadratic 
growth in 3X  will have the desired effect of making all the excess dimensions appear to 
shrink (compactify) and align along 3X , as also happens in URM3 for large evolutionary 
periods 3t . 

                                                
42 This is the reason why all the other eigenvectors align with 3X  over times jt , since they are related to 3X  

by calculus relations, e.g. the velocity jn0X  is the integral of acceleration nX  (~ 3X ), and the position nX  
is the corresponding integral of the velocity (both to within a constant factor), see Appendix (G) for more details. 
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To summarise, when both evolution times are comparable, and at least one of them is 
sufficiently large, then the compactification process still occurs. Thus, for any large, fourth or 
fifth-dimension evolutionary time, the five-dimensional vector space compactifies to that of 
the eigenvector space of URM3 as evolution progresses, for 'sufficiently large evolutionary 
times' 4t  or 5t . Specifically, all 5D eigenvectors align with the single, static URM3 
eigenvector 3X , which occupies the discrete, 2D, conical subspace of URM3, hence URM5, 
like URM4, also compactifies to appear two-dimensional within the 3D space of URM3.. 
 
The final stage then is to show that this same compactification behaviour arises for any 
arbitrary, n-dimensional space, which is demonstrated using the general, n-dimensional 
solution. 
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13 The General n-dimensional Solution 
 
The general solution for URM n , 4n , is actually obtained recursively by calculating the 
residual matrix for 0nA  using an embedded matrix 0)1( nA ; Appendix  (C) gives an outline. 
However, the recursive solution is best given in a much simpler, unravelled form in terms of 
the URM3 vectors. Barring a single, linear Diophantine equation in URM3, see (A4), URMn  
is a completely solved problem with an analytic solution for the eigenvectors parameterised 
by all n  parameters, i.e. 2n  temporal parameters jt , nj 3 , and two non-temporal 
parameters k  and l  (A3d). 
 
With 330  defined as a 33  matrix of zeros, and 3nI  as the )3()3(  nn  identity matrix, 
then a constant, nn  matrix nM  is constructed as follows: 
 

(13.1) 







 

33

3

0
0

0
I

M n
n C  

 
The subscript n  on nM  will be dropped from here onward and M  assumed a square nn  
matrix. 
 
The matrix M  has a lead diagonal with all elements equal to eigenvalue C  except for the last 
three diagonal elements, which are zero. These last three zeros are, of course, so that the 
matrix M  has no URM3, 3D contribution. Equally importantly, M  is a constant matrix and 
has no time dependence; the ith column43 of M  is the equivalent of the initial value, zero 
eigenvector at 03 jt , denoted by primed vector jn0X , see further below. 
 
The general solution for the vector nX  is nothing more than the embedding of the static, 
URM3 vector 3X  in its last three elements, padded with 3n  leading zeros. 
 
(13.2) 

(13.2a)  














3

3

X
0

X n
n  

 
Denoting the kth element of nX  by kn ,X , nk 1 , then the general solution for vector 

nX  is given by 

(13.2b) 













 






























3

1
3

3

32
3

3

3
, 2

n

j
kij

k

n
j

k

n
kn tt M

X
0

X
0

X , 

nk 1 , 4n , )2(  jni , footnote 43 

                                                
43 The index i , as in )2(  jni , (13.2b), goes from 3n  to 1 as j  goes from 1 to 3n , and works 
across the first 3n  columns of M , which are non-zero, unlike the last three columns. 
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The first zero vector An0X  (~ jn0X , 0j ) is just an embedding of the URM3 zero vector 30X  
 

(13.2c)  







 

30

3
0 X

0
X n

An , An0X  ~ jn0X , 0j . 

 
For all other zero vectors, denoting the kth element of jn0X  by kjn ,0X , nk 1 , then the kth 
element of the jth, zero eigenvector jn0X , 31  nj  , is given by 

(13.2d) ki
k

n
jkjn t M

X
0

X 














3

3
3,0 , 

31  nj  , nk 1 , 4n , )2(  jni . 

Bn0X  ~ 01nX  ( 1j ), Cn0X  ~ 02nX  ( 2j ) etc. 

By setting the evolutionary time 3jt  to zero, it is seen that the ith column of M , where 
)2(  jni , is the initial, zero vector jn0X , for the jth dimension, 31  nj   

( 13 ni ), i.e. 
 

(13.3) kikjn MX  ,0  at 03 jt , 31  nj  , nk 1 , 4n , )2(  jni . 

e.g. for URM4, 4n , 1j , 1i , 41k , 1,401 kk MX   

(13.4) 









333

0
00

M
C

, 1kM 









3
401 0

X
C

, 04 t  

 
e.g. for URM5, 5n  
 

(13.5a) 

















3333

00
00

000
M C

C
, 1j , 2i , 51k , 2,501 kk MX   
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(13.5b) 

k

k C

















3

,501

0

0
X , 2kM 501X  ~ )0( 450 tBX  

2j , 1i , 51k , 1,502 kk MX   

(13.5c) 

k

k

C


















3

,502 0
0

X , 1kM 502X  ~ )0( 550 tCX . 

Some points on this general solution are made following: 
 
(12.10) The two vectors nX  (13.2a) and An0X  (13.2c) remain, effectively, the URM3 vectors 

3X  (B2a) and 30X  (B2b), embedded as the last three elements within their n-dimensional 
counterparts, and padded with 3n  leading zeros. 
 
(13.6) All expressions for arbitrary dimension n  (including 3n ) are quadratic only in the 
evolutionary time; there are no higher order terms. Furthermore, it is only the nX  vector 
(13.2b), physically equated with a position (2.1), which contains this quadratic term. 
 
(13.7) Each additional dimension adds a new zero eigenvalue and associated eigenvector, e.g. 

B40X  (8.1d) for URM4, and C50X  (11.1e) for URM5. 
 
(13.8) Eigenvector nX  generally always comprises n  non-zero elements. Because such 
vectors are Pythagorean n-tuples, the Pythagoras equation acts as a constraint, and so the n  
elements occupy an 1n , discrete hypersurface of the n-dimensional space. Hence the 
geometric interpretation of 3X  and 3X  as 2D, discrete cones in URM3's 3D space (lattice), 
see [1],#3 and [3]. Note too that An0X  (13.2c) is equivalent to 30X , and 30X  forms the 
discrete hyperboloid in URM3. 
 
(13.9) The zero vectors Bn0X , Cn0X  etc., always comprise four or less (usually always exactly 
four), non-zero elements, but never more than four in any arbitrary dimension n , i.e. they 
contain at least 4n  zero elements and generally occupy a 4D subspace of URM n . The 
missing zero vector, An0X  (13.2c), in this point, is mentioned above in point (13.8). 
 
(13.10) The zero vectors An0X , Bn0X , Cn0X  etc., with their reciprocals An0X , Bn0X  and Cn0X  
etc., Appendix (E), satisfy the same, hyperbolic DCE (5.7) as per URM3, which is given by 
the scalar product 0

0
n

n XX  , see Appendix (F10). 
 
(13.11) Each zero vector An0X , Bn0X , Cn0X  etc., is implicitly parameterised in terms of the 
URM3, three-parameter solution k , l  (A3d) and 3t  (A4c), by virtue that they all embed the 
URM3 vector 30X  (A8b). However, eigenvalue C  is also present in all these vectors, except 
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An0X  (13.2c), and acts as an initialisation parameter, dictating the total conserved energy (per 
unit mass) of the space, as in 2CE   (2.1). 
 
Continuing with the analysis of the nth dimension solution, for large evolutionary times nt , 
identical remarks made for the URM4 and URM5 solutions also apply to the general case 
URM n . Therefore, generalising these remarks to URM n : 
 

The only time-dependent ( it , ni 4 ) vectors with a non-zero contribution to the excess 
dimensions are nX  and the zero eigenvectors jn0X , 31  nj  , 01nX ~ Bn0X , 02nX ~ Cn0X  
etc, i.e. all but nX  and An0X  (~ 0,0 jjnX ). The zero eigenvectors jn0X  are also naturally 
separated into one vector for each dimension. 

There are no mixed terms comprising products of two or more evolutionary times, e.g. 54tt , 
and nX  can be decomposed into independent terms in each evolutionary time it , hence the 
summation form of nX  (13.2b). 
 

Not only does the URM n  solution separate into a vector term for each unique, excess 
dimension, but also the terms are identical, when disregarding the particular, excess 
dimension. They are identical in so far as the rth dimensional component ( nr 4 ) 
contributes a linear term Ctr2  in )( rn tX , and C  in )()3(0 rrn tX , and the s  dimensional 
component ( ns 4 , sr  ) contributes a term Cts2  in )( sn tX  and C  in )()3(0 ssn tX , 
which are identical upon interchange of times rt  and st . Since it is only the magnitude of the 
contribution in the excess dimension that matters in the analysis of the compactification ratio 
 , Section (6), each dimension can be treated separately and, furthermore, identical findings 
for one specific dimension apply to all the others. The separability of the URMn  solution into 
unique dimensional components, and the interchange symmetry between any two components 
(as regards ratio  ), means that each dimension acts independently of the other, with 
identical behaviour for equal evolutionary times; the same general expression for   being 
used in each case. 

The solution for a single, excess rth dimension can be isolated from all the other 4n  
dimensions s , where ns 4 , rs  , by setting all other evolutionary times to zero, i.e. 

0rt , 0st . 
 
With these points in mind, then generalising to a specific rth dimension, nr 4 , 
evolutionary time rt , for sufficiently large times rt  (10.15), the rth dimension's 
compactification ratio r  is given in an exact and approximated form as follows, which are 
simply relabelled versions of (6.3) and (6.7) respectively, 
 

(13.12) 
3

X
X

r
r  , exact form, (6.3) 



Page 40 of 82 
Unity Root Matrix Theory Compactification 

Issue 2.0 06/05/2012 
 Micro SciTech Ltd. 2012 

 

 



3

2
Xr

r t
C , (6.7), 0rt , use (6.3) when 0rt . 

 
Since r  is inversely proportional to time rt , it will converge to zero for all times rtt   and, 
by preceding arguments in Section (9) onwards, the entire solution compactifies to URM3. 
 
To summarise, when any one or more evolutionary times in any excess dimension, is 
sufficiently large, the n-dimensional vector space compactifies to that of the eigenvector space 
of URM3. Specifically, all n-dimensional eigenvectors align with the single, static URM3 
eigenvector 3X , which occupies a 2D conical subspace of URM3, hence URMn  
compactifies to appear two-dimensional. The conical subspace is actually a 2-parameter, 
discrete surface termed the 'cone' in URMT (footnote 10). 
 
This completes the general analysis of compactification for an n-dimensional space in URMT. 
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14 Answers to Anticipated Questions 
 
Before summarising and concluding the paper, a few anticipated questions are answered. 
 
(14.1) Why not set all evolutionary times equal? 
 
As currently formulated, n-dimensional URMT has 2n  temporal parameters controlling the 
evolution, of which 3n  parameters control the evolution of each of the 3n  excess 
dimensions, one for each dimension; the last three dimensions, that of URM3, share the single 
evolution parameter 3t . As concluded, if any one or more of these 2n  parameters is 
sufficiently large (Section (10)), then the entire n-dimensional eigenvector space compactifies 
to a two dimensional, conical subspace of URM3, that of eigenvector 3X . Because of this, 
there is no compelling reason to make them all the same parameter, as doing so would only 
hasten the compactification, but not change the final result - with one small exception: if only 
the jth parameter of an excess dimension were made large, and all others, say, relatively small 
or zero, i.e. jinitt ij  ,34,  , then the jth dimension would appear relatively larger 
than all other excess dimensions, by a factor of ij tt , because the jth dimension is of size Ct j  
and the ith dimension of size Cti . Of course, relative to URM3 and 3X , and under the 
sufficiency condition (14.82), the jth dimension would still appear small. Thus, this exception 
might be justification to set all evolutionary parameters equal so that all excess dimensions 
appear of the same relative size; this issue remains open. 
 
(14.2) Does it have to be in integers? 
 
Integers are used throughout URMT but, as regards compactification, it is not currently 
known whether this is strictly necessary. Certainly URMT in [1],#1 can go quite a long way 
before integers are required, and then they only enter when gcd conditions are imposed, which 
is after transformation invariance is imposed. Provided some form of quantisation is 
mandated, it may well be feasible to broaden the compactification aspects to the real and 
complex domains. Nevertheless, URMT is currently formulated entirely in integers, and 
therefore the mathematics of URMT compactification is also formulated in integers. It is 
anticipated that complex integers may well enter in further development of the theory, but this 
matter is still in its infancy. 
 
(14.3) Why stop at URM3, why not URM2 or lower? 
 
Firstly, there is no meaningful URM1, but URM2 is perfectly plausible, see Appendix (H). 
 
The compactification has been shown to terminate at the 2D conical subspace, represented by 

3X , of URM3's three-dimensional eigenvector space. However, can the compactification 
continue within URM3 down to URM2? 
 
The answer is yes, if a trivial (I7) initial solution for 3X  is acceptable, and no, if 
unacceptable - which is the eventual answer, i.e. it isn't acceptable on the grounds of being too 
simplistic. However, assuming yes for a while, such a trivial solution would be a vector 

T)1,1,0(3 X , where the x  coordinate in 3X  is zero and 1y , 1z , giving the trivial 
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Pythagorean twin )1,1(  where 22 11  ! This twin pair )1,1(  is the realm of URM2, and the 
solution T)1,1,0(3 X  is basically a URM2 'lifted' (I6) solution T)1,1(2 X  (the only such 
non-primitive (I8) solution) embedded within URM3. Whilst this pair )1,1(  is considered 
rather simple, it can actually be used as the starting point to generate 3D and higher solutions. 
In other words, URMT can start at URM2 and work upward, just like URM3 works upward to 
URM4 etc. However, because T)1,1(2 X  is the only primitive, non-trivial solution, it is not 
even 2D or even 1D, but just a point in space. A non-primitive solution such as Tyy ),(2 X , 
parameter y , is mathematically acceptable, giving a 1D, straight line solution, but then the 
gcd criterion (3.4c) on 2X  is not satisfied since y  is a common factor of both elements. 
More importantly, even this solution is limited, and 'lifting' it to 3D (I6) only gives a subset of 
the full URM3 formulation. 
 
As a consequence of the above, URM2 is considered too limited to be of physical use, at least 
at present, i.e. it has not been rejected, and its place in URMT is left undecided - it does have 
a beauty in its simplicity, but perhaps just a bit too simple. A good reason not to dismiss it 
lightly is that does not (cannot) have its own evolutionary parameter 2t , and cannot therefore 
compactify from two to one dimension, at least not by the growth of an evolutionary 
parameter. Secondly, its only free parameter is the eigenvalue C , which, as noted (2.1), 
relates to the total conserved energy 2CE  . Eigenvalue C  is an initial condition since it is 
conserved, i.e. invariant to arbitrary variations in all n  free parameters of URM n  (when 
under Pythagoras conditions - there are many more when not under these conditions). 
 
Knowing there is the capability to reduce to URM2, the next question is, why doesn't this 
appear in the URM3 evolution equations, Appendix (B)? 
 
Basically, the triad of URM3 eigenvectors flattens (or aligns), in the large evolutionary limit, 

3t , to align with 3X , see (I5), but none of the elements of the vector 3X  shrink 
relative to each other because 3t  scales every element of the vector 3X  equally, and every 
element zyx ,,  of 3X  is trivially non-zero. The vector 3X , as for all higher dimensional 
forms nX , is static, i.e. not a function of any evolutionary time jt , but it is still a function of 
two free parameters, k  and l . Whilst a subset of solutions for 3X  could have one of k  or l  
zero, but not both (A3d), generally neither are zero and 3X , therefore, comprises three non-
zero elements, i.e. it is classed as non-trivial. Alternatively stated, none of the two elements x  
or y  of 3X  is always zero, and z  is never zero by Pythagoras (F1). 
 

The non-triviality of 3X  is the absolute key as to why the example 5D formulation, vector 

5X  (5.2) embeds 3X  as zyx ,, , but is zero in its fourth and fifth dimensional elements (the 
first two elements of the vector). In effect, it is an embedding of a non-trivial 3D formulation, 
i.e. that of URM3. Conversely, a non-trivial 4D embedding, i.e. four non-zero elements 

zyxw ,,, , would compactify to URM4 but not compactify further to URM3. 

Concluding the above, the compactification can be made to stop with URM2 according to the 
initial conditions, i.e. by arranging the number of non-zero elements in the lowest dimension 
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of nX , but with the simplest and only primitive, 2D solution, T)1,1(2 X , it would 
compactify to the point )1,1(  - perhaps this really is telling us something! In the work 
presented herein, it stops at three by virtue of three non-zero elements zyx ,,  in 3X . 
Therefore, the biggest reason not to stop at URM2 is one of too much simplicity and not 
enough complexity. Mathematically this is fine, but physically it is rather simplistic. 
However, this raises the next question. 
 
(14.4) Why not stop at URM4 or higher? 
 
From the arguments at the end of the previous question, it would seem that setting all four 
elements zyxw ,,,  of X  (3.4a) non-zero, and the first element v  to zero, is sufficient to stop 
the compactification process at URM4 instead of URM3. 
 
First and foremost, there is a strong case against this given the following physical constraints 
placed upon the solutions. 
 
(14.4.1) The solution for nX  must be invariant to all arbitrary variations in all evolutionary 
parameters - this is a URMT imposed, general constraint arising from the 'Invariance 
Principle' in [1],#1, which is essentially a postulate of URMT, see [3]. 
 
(14.4.2) The Potential V  must be zero and invariant for all arbitrary variations in all 
parameters. In URM4 and URM5, at least, this condition makes for only two, non-zero 
eigenvalues C , with all others zero; see [4]. In essence, an invariant, zero Potential solution 
is desirable from a physical viewpoint as it represents a constant energy, force-free trajectory 
through the eigenvector 'lattice', see [1],#3 and 3. To satisfy this invariant, zero Potential 
constraint, there are the two further constraints, (14.4.2a) and (14.4.2b) below. 
 
(14.4.2a) The matrix 0nA  must satisfy Pythagoras conditions - primarily for Minkowski, 
metrical reasons and, physically, URMT must accommodate STR somewhere; see also 
footnote 24. 
 
(14.4.2b) The matrix 0nA  must have a certain form whereby all the rows and columns, 
barring the last three (URM3) or four (URM4), are multiples of the eigenvectors  )1(nX  
(rows) and  )1(nX  (columns) see Appendix (C). This latter point is subtle and discussed more 
fully in [4]. It is very important though for the purposes of obtaining a quadratic expression 
for the eigenvectors. This then leads to the highest order terms in any expression being a 
quadratic function of the evolutionary parameters njt j 3,  , and making all scalar 

invariants quadratic in the eigenvalue, i.e. 2C , which is very important to physically associate 
the general DCE (F10) with an energy conservation equation, irrespective of dimension n . 
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To satisfy the above conditions for URM3 is relatively easy and leads to an infinite set of 
solutions for eigenvectors 3X  and 30X , parameterised by 3t  ( m  or   in [1]-[3]), for every 
static eigenvector 3X . As noted, 3X , itself, is a full, two-parameter family, parameters k  
and l , see footnote 7. 
 
All these above points are very important because it seems to be all change in URM4. Taken 
together, the above conditions, (14.4.1) and (14.4.2), are severe and, to meet them in URM4, 
it seems there is only one solution for 4X . It is actually considered remarkable that there is 
exactly one solution44 and not two or more, or even no solutions - just one single solution? 
Even more curious, this solution is the simplest it could possibly be, namely the Pythagorean 
quadruple )3,2,1,2(  , with strict adherence to the sign of its elements. It also only arises by 
adding in a lot of simplifications. Whilst this particular solution can be shown to be the only 
solution, under its 'PS+RU' parameterisation scheme, no general proof that URM4 cannot 
satisfy the above conditions, without more simplifications, exists. The most notable 
simplification is to change 4X  from four non-zero elements to three, and thereby reduce the 
theory to that of URM3, under the above conditions. Whilst no proof is offered, the author has 
not found any general solution, of any worth, without having to add too many simplifications, 
or reducing URM4 back to URM3. 
 
With four-dimensional STR in mind, it might seem nicer to stop at URM4. This would mean 
all four eigenvectors of URM4 would, generally, be non-trivial (four non-zero elements). 
However, non-trivial 4D vectors, specifically 4X , can already be generated from the URM3 
formulation, as can higher, n-dimensional vectors nX , by embedding URM3 within URM n . 
Given nX  can be physically associated with a position vector, it would seem URM3 will 
suffice, at least spatially speaking, to give a four-vector position. Of course, that's just 
position, and not the only four-vector, so it is nicer to have a bit more flexibility, which is why 
URMT was originally extended from its 3D origins in [1]. 
 
From another physical perspective though, nature is generally ternary, everything (almost) 
appears to come in threes, from spatial dimensions to families of particles. It is also of note 
that URM5 (a favourite of the author and a reason behind its usage in this paper), has three 
evolutionary time parameters, 3t , 4t  and 5t , which makes a nice symmetric triplet to go with 
the spatial dimensions of URM3. Admittedly this is aesthetics; after all, this does not include 
the laboratory time t , which is considered to be an interval (in URMT anyhow), not an 
absolute evolutionary time. The laboratory time is conjectured to hide in the last element of 

4X ; see footnote 24. 

                                                
44 This solution is cryptically known as the 'PS+RU' solution in [4] because of its condition PS+RU=0 on the 
dynamical variables, P, R, S and U. 
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However, the original URMT formulation in [1] seems at its best for URM3, at least in terms 
of results, physical interpretation and tractability. It has three sets of standard variables, plus 
their conjugate and dual forms, see [1],#5. Additionally, the dynamical variables RQP ,, , and 
their conjugates RQP ,, , are isomorphic with the complex roots of unity, whereas in the most 
general, n-dimensional formulation of URMT, the dynamical variables, e.g. those (3.2) in the 
URM5 50A  matrix (3.1), lose this complex nature. This may seem a whim, but it is a nod to 
the fact that mathematical physics uses complex numbers as a given, and it is felt URMT 
requires an equivalent algebra in its discrete formulation. So, whatever n-dimensional URMT 
formulation is used, it is desirable it to encompass URM3 as a subset, and this is one reason 
why the matrix 30A  (A1a) is embedded in 50A  (3.1). 
  
To conclude these questions, starting the general, n-dimensional URMT formulation at URM3 
seems to offer the best combination of being able to extend to any number of dimensions, 
whilst retaining all physical properties of URM3. Although stopping the formulation at 
URM3 means that compactification also stops at two spatial dimensions, it also ensures that it 
doesn't descend into triviality, i.e. too much physical simplicity. 
 
(14.5) One last question 
 
If a velocity eigenvector, e.g. B50X , grows linearly with time, by virtue of a constant 
acceleration 3X , as in  3450 XX tB  (11.1d), will it not at some stage exceed the speed of 
light, little c? 
 
Strictly yes, but this is a 'space' and it is not physically clear what the expansion limit of the 
space is or, indeed, whether it has a physical presence (for want of a better term). It could 
simply be that the acceleration is so tiny that the evolutionary time has to be enormous to 
compensate, and no such evolutionary stage has yet been reached. Going back to URMT's 
roots in URM3 [1], the space is basically a discrete, infinite set of points, i.e. the eigenvector 
space, also known as a lattice, and it is the underlying space upon which it is thought that 
physics plays-out as functions on this lattice. 
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15 Summary 
 
In brief, the entire compactification process shows that the first three dimensions expand 
relative to the excess dimensions, making the excess dimensions appear to shrink over time 
with respect to the first three. However, the expansion in the first three dimensions is in a 
particular vector direction, characterised by two, free parameters. Hence the compactification 
is said to converge to a two-dimensional subspace of the first three dimensions. 
 
Note, all quantities are in integers; all spaces are discrete sets of points. 
 
Before commencing, the URM5, five-dimensional eigenvector solution is reproduced below, 
and recommended for a quick visualisation of the points made. 
 
The URM5 eigenvector solution, reproduced from Section (11), 
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(11.1d)  
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It is important to note that the entire paper focuses on the evolution of the eigenvectors 
relative to those of URM3. Keep in mind that the URM3 eigenvectors also evolve in an 
identical fashion, all converging on the single 3X  vector, see Appendix (B). It is chiefly this 
reason that it is not necessary to delve into URM3's eigenvector evolution herein; the 
compactification conclusions are the same. URM3's geometric evolution, in terms of 
'flattening', cones and hyperboloids, is fully covered in [1],#3 and summarised in [3]. 
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Eigenvectors and Eigenvalues 
 
The general, n-dimensional unity root matrix theory, URM n , 3n , for a square nn  matrix 

0nA , has n  linearly independent eigenvectors, each with n  elements. The first element is the 
nth dimensional coordinate, and the last three elements are the first three dimensions, and 
functions of the three URM3 eigenvectors 3X  (acceleration), 30X  (velocity) and 3X  
(position). 
 
The eigenvectors split into three types, as per URM3, a single acceleration vector nX  
(eigenvalue C ), a single position vector nX  (eigenvalue C ), and 2n  velocity vectors 

jn0X , 30  nj   (for 2n  zero eigenvalues). 
 
The entire vector space is characterised by 2n  temporal parameters jt , nj 3 , and two 
non-temporal, k  and l , i.e. n  parameters in total. 
 
The first three dimensions (last three elements) have a single evolutionary time parameter 3t , 
the remaining 3n  excess dimensions each have their own temporal parameter. 
 
Each temporal parameter emerges from an invariance transformation on the elements of the 
unity root matrix 0nA , which leaves the eigenvector equation   nnn CXXA 0  invariant to 
any arbitrary variation in these parameters. 
 
The other two, non-temporal parameters k  and l , control the URM3 vector solution, most 
notably, the acceleration 3X  and, hence, also nX . 
 
Other than these n  parameters ( k l , jt , nj 3 ,), there is a single, fundamental constant, 
the eigenvalue C  (big C ), which is the only contributor to all excess dimensions, excepting 
their respective evolutionary, temporal parameters, which also affect the first three 
dimensions. 
 
The constant eigenvalue C  is equated with a scalar velocity (speed), and controls the size of 
all excess dimensions. It is related to the total conserved energy 2CE  , and is the single 
tuning constant, dictating the initial, time-zero, expansion velocity jn0X  of the excess 
dimensions, 31  nj  . 
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Eigenvector evolution 
 
The first three dimensions (last three elements) of the acceleration vector nX  (13.2a) are just 
the URM3 acceleration vector 3X , which is a non-trivial (three non-zero elements), static (no 
evolutionary time-dependence) acceleration vector. 
 
The first three dimensions of the jth velocity vector jn0X , 31  nj   (13.2d), are a linear 
function in time 3jt  of the URM3 acceleration vector 3X , i.e. the integral of acceleration to 
give velocity,  njjn t XX 30 . This is also true for the URM3 velocity vector 30X  scaled by 

3t , i.e. 0j . 
 
The first three dimensions of the position vector nX  (13.2b) are a quadratic function in time 
of the URM3 acceleration vector 3X , with a contribution for each excess temporal 
coordinate jt , 31  nj  , i.e. the sum   3

2
3XX jn t . The magnitude of this growth is 

approximated by  3
2

3Xjt , e.g. 3
2
5 Xt  (11.1b), for one specific evolutionary time jt , a 

summation more appropriate for evolution in two or more dimensions - see (9.10) pr (10.3a). 
This is also true for the URM3 velocity vector 3X  scaled by 2

3t , i.e. 0j . 
 
All excess dimensions (the first 3n  elements) of the acceleration vector nX  (13.2a), are all 
zero, i.e. there is no acceleration (dimensional growth) in the excess dimensions. 
 
The jth excess dimension (element )2(  jn ) of each velocity vector jn0X , 31  nj   
(13.2d), comprises the constant eigenvalue C  only, with no time-dependence, i.e. static in all 
excess dimensions. Therefore, the excess dimensions of the velocity vector remain a constant 
'size', i.e. constant velocity (or speed) C . 
 
The jth excess dimension of the position vector nX  (13.2b) is a linear function in 
evolutionary time jt  of the velocity constant C , i.e. the integral Ct j2 , e.g. Ct52  in (11.1b). 
 
All the above eigenvector integrals are really just Newton II, to within a sign and scale factor. 
But note that the excess dimensions are a first integral of the constant velocity C , whereas the 
first three dimensions are first and second integrals of a constant acceleration 3X . 
 
Of all these eigenvector growth rates, only the first three dimensions of the position vector 

nX  have a quadratic dependence on time. There is no quadratic time contribution in any 
excess dimensions, only linear. All quadratic growth is therefore in the nX  vector, which 
aligns, over time, in the direction of the 3X  acceleration vector, embedded in the first three 
dimensions, i.e. the home of URM3. 
 
Although URM3's own explicit evolution has not been detailed, see further above, the URM3 
eigenvector evolution equations in Appendix (B) show identical evolutionary behaviour for 



Page 49 of 82 
Unity Root Matrix Theory Compactification 

Issue 2.0 06/05/2012 
 Micro SciTech Ltd. 2012 

all URM3 eigenvectors; in particular, quadratic growth with respect to time 3t  in the 3X  
vector and in the direction of the acceleration 3X . 
 
Summarising the above: for any single, sufficiently large (Section (10)), evolutionary time jt , 
where jt  is any one of the 2n  evolutionary time parameters, the entire n-dimensional 
vector space converges on the nX  position vector, which, itself, aligns and grows along 
URM3's 3X  acceleration vector. Simultaneously, the excess dimensions continue to grow, 
albeit as a linear function of time with a constant velocity C  in each excess dimension. 
 
Comparing the linear growth of the jth excess dimension Ct j2 , for a specific evolutionary 

time jt , with the simultaneous, quadratic growth  3
2

3Xjt  of the first three dimensions, gives 
a measure of the relative size of the jth excess dimension with respect to the first three 
dimensions. This measure is termed the compactification ratio of the jth dimension, denoted 
by j  and approximated as follows; see Section (6), (6.3) for the exact form for j . 
 

(6.7) 



3

2
Xj

j t
C , the compactification ratio of the jth dimension. 

 
Note that j  is dimensionless, and the ratio is inversely proportional to the evolutionary time 

jt  such that it limits to zero, i.e. 
 
(6.4) 0lim 

 jt j

 . 

 
The relative error   (10.2) in the approximation also limits to zero, i.e. the approximation 
gets better with increasing time jt . 
 
As a consequence of j  limiting to zero then, over a sufficiently large evolutionary time jt , 
the size of the excess, jth dimension appears to shrink into insignificance with respect to the 
first three dimensions; concurrent growth in any other excess dimension only hastening the 
compactification. 
 
Lastly though, the 'first three dimensions' are really just the single direction of the acceleration 
vector 3X . Whilst this might seem to be a compactification to one dimension, the vector 3X  
is arbitrarily specified by two other, non-temporal parameters k  and l . In fact, 3X  is 
actually a Pythagorean triple, where the two parameters form the standard Pythagorean 
parameterisation. Thus, 3X  is really a 2D, discrete, conical surface, described as two cones, 
'upper' and 'lower', in URMT [1],#3, [2], [3].



Page 50 of 82 
Unity Root Matrix Theory Compactification 

Issue 2.0 06/05/2012 
 Micro SciTech Ltd. 2012 

 
16 Conclusion 
 
The n-dimensional, discrete eigenvector space of Unity Root Matrix Theory appears to reduce 
its dimensionality, i.e. compactify, as its temporal evolution progresses, to a two-dimensional, 
discrete, conical surface embedded within a three-dimensional, discrete, eigenvector space. 
The conical surface is formed from the elements of a two-parameter, static acceleration 
eigenvector, to which all eigenvectors align in the limit as the evolutionary time, in one or 
more dimensions, tends to infinity. 
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19 Appendix (A) URM3 Background Information 
 
This Appendix provides some basic background information on URM3. For a full account, 
see [1], [2] and [3]. 

The general, unity root matrix 3A , comprising 'dynamical variables' RQP ,,  and their 
conjugates RQP ,, , is defined as 

(A1) 

(A1a)

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




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0

0
0
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A  

(A1b) RQP ,, ℤ, )0,0,0(),,( RQP  

(A1c) RQP ,, ℤ, )0,0,0(),,( RQP  

(A1d) Notation 

 3A ~ A  in [1] for general URM3 

 3A ~ 30A  ~ 0A  in [1],#2 under URM3 Pythagoras conditions, below. 

An eigenvector 3X  to matrix 30A , for eigenvalue C , is defined as 
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(A1f)   3330 XXA C , C ℤ, 1C  
 
(A1g) Notation 
 3X  ~ X  in general URM3 
 3X  ~ X  when under URM3 Pythagoras conditions, below. 
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The Pythagoras conditions on the dynamical variables are 
 
(A2a) PP  , QQ  , RR  , 
 
and the matrix 3A  becomes 
 

(A2b) 










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0
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0
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PQ
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A , see (A1d) notation 

 
There are now three distinct eigenvalues 
 
(A2c) C , 0 , C , 
 
and, consequently, two additional eigenvectors 30X  and 3X , defined by their eigenvector 
equations as 
 
(A2e) 03030 XA , 0  
(A2f)   3330 XXA C , C . 
 
URM3, under Pythagoras conditions (A2a), is a completely solved problem with an analytic 
solution for all variables. The zyx ,,  coordinates forming 3X  (A1e) are parameterised by 
two, arbitrary integers k  and l . 
 
(A3) 
(A3a) klx 2  
(A3b) )( 22 kly   
(A3c) )( 22 klz   
(A3d) lk, ℤ, )0,0(),( lk , 1),gcd( lk  
 
The scale factors 333 ,,   (A6), (I2), and dynamical variables RQP ,,  (A5) are obtained by 
solving the following linear Diophantine equation using Euclid's algorithm [6], for unknown 
integers s  and t 45, given k  and l  
 
(A4) ltksC  , ts, ℤ. 
 
Solving this very simple equation introduces some indeterminacy into URM3 in an otherwise, 
completely deterministic, analytic solution. It has to be solved algorithmically, with no 
analytic solution. Physically, this indeterminacy is very likely a good thing; without it, the 
                                                
45 The usage of symbol t  here is slightly unfortunate in that it is not a time parameter. It is retained for 

compatibility with all existing URMT literature. In fact, it is shown in [1] that t  has units of L , but since it 

always multiplies k  or l , with units of 1TL , or appears in squared form, then potentially irrational 
quantities do not appear in the solution, in keeping with one of the URMT postulates, 'all observables are 
integers', see [3]. 
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entire n-dimensional URMT solution would be completely deterministic once initial 
conditions are imposed. 
 
To obtain a particular solution s  and t  , this equation has to be solved algorithmically. Once 
a particular solution is obtained, then an infinite family of solutions is obtained, denoted by 
integers s  and t , and parameterised by another arbitrary integer 3t . This parameter 3t , is 
none other than the URM3 evolutionary time. 
 
(A4a) ltss 3  
(A4b) kttt 3  
 
(A4c) 3t ℤ, notation 3t  ~ ,m  in [1] 
(A4d)  ts , ℤ, )0,0,0(),,( 3  tts  
 
The dynamical variables RQP ,,  are parameterised in terms of k , l  and 3t , implicitly via the 
general solutions for s  (A4a) and t  (A4b), as follows, and likewise for the URM3 scale 
factors46 (I10) 
 
(A5) 
(A5a) )( ltksP   
(A5b) )( ktlsQ   
(A5c) )( ktlsR   
 
(A6) 
(A6a) st23  , 3  ~   in [1] 
(A6b) )( 22

3 st  , 3  ~   in [1] 
(A6c) )( 22

3 st  , 3  ~   in [1] 
 
(A7) 
The following table gives the solutions in, all variables, for eigenvalue 1C  and 03 t , for a 
few small values of the parameters k  and l . 
 l  k   x   y   z  s  t   P   -Q   R      3    3  - 3 
-- -- --- --- --- -- -- ---- ---- ---- ---- ---- ---- 
 2  1   4   3   5  1  0   -1   -2   -2    0   -1   -1 
 3  2  12   5  13  2  1   -7   -4   -8   -4   -3   -5 
 4  1   8  15  17  1  0   -1   -4   -4    0   -1   -1 
 4  3  24   7  25  3  2  -17   -6  -18  -12   -5  -13 
 5  2  20  21  29  3  1  -11  -13  -17   -6   -8  -10 
 5  4  40   9  41  4  3  -31   -8  -32  -24   -7  -25 
 6  1  12  35  37  1  0   -1   -6   -6    0   -1   -1 
 6  5  60  11  61  5  4  -49  -10  -50  -40   -9  -41 
 7  2  28  45  53  4  1  -15  -26  -30   -8  -15  -17 
 7  4  56  33  65  2  1  -15  -10  -18   -4   -3   -5 

                                                
46 Note too that the scale factors 333 ,,   form a Pythagorean triple. 
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 7  6  84  13  85  6  5  -71  -12  -72  -60  -11  -61 
 8  1  16  63  65  1  0   -1   -8   -8    0   -1   -1 
 8  3  48  55  73  3  1  -17  -21  -27   -6   -8  -10 
 8  5  80  39  89  5  3  -49  -25  -55  -30  -16  -34 
 8  7 112  15 113  7  6  -97  -14  -98  -84  -13  -85 
 9  2  36  77  85  5  1  -19  -43  -47  -10  -24  -26 
 9  4  72  65  97  7  3  -55  -51  -75  -42  -40  -58 
 9  8 144  17 145  8  7 -127  -16 -128 -112  -15 -113 
 
The standard eigenvectors 3X , 30X  and 3X  are defined in terms of the coordinates zyx ,, , 
dynamical variables RQP ,, , and scale factors 333 ,,   respectively as 
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The reciprocal eigenvectors 3X , 30X  and 3X , (A10) further below, are obtained from the 
standard forms (A8) using the URM3 3T  operator relations: 
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(A9b)  T

  3
33 XTX , (A9c)  T30
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33 XTX  

(A9f)  T3
3

3 TXX 
  , (A9g)  T3

30
30 TXX  , (A9h)  T3

3
3 TXX 
   

 
(A10) 
(A10a)  333

3 X  
(A10b)  RQP 30X  
(A10c)  zyx 3X . 
 
All three sets of variables zyx ,, , RQP ,, , 333 ,,   and eigenvalue C  are related via the 
divisibility relations, see [1],#1, 
 
(A11) 
(A11a) xPC 3

22   
(A11b) yQC 3

22   
(A11c) zRC 3

22   
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It is from these that a clue to the name 'unity roots' arises since they satisfy the following 
congruences: 
 
(A12) 
(A12a) )(mod22 xPC   
(A12b) )(mod22 yQC   
(A12c) )(mod22 zRC  . 
 
If the eigenvalue is unity, i.e. 1C , then RQP ,,  are the square roots of unity in modulo 
arithmetic. 
 
(A13) 
(A13a) )(mod12 xP   
(A13b) )(mod12 yQ   
(A13c) )(mod12 zR   
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20 Appendix (B) URM3 Eigenvector Evolution  
 
The URM3 eigenvector evolution equations are given below, reproduced from [1],#2 where 
the initial values at URM3 time zero ( 03 t ), are superscripted with a prime. Note that 
symbol 3t  is denoted by m  in [1]. 
 
(B1) 
(B1a)  )0( 333   tXX  
(B1b)  )0( 33030  tXX  
(B1c)  )0( 333   tXX . 
 
The evolution equations in standard vector form are: 
 
(B2) 
(B2a)    33 XX , static, no 3t  dependence 
(B2b)  3033330 )( XXX  tt  
(B2c)    33033

2
333 2)( XXXX ttt , 

 
and their reciprocal forms 
 
(B2d)    33 XX , static, no 3t  dependence 
(B2e)  303

33
30 )( XXX  tt  

(B2f)    XXXX 30
3

32
33

3 2)( ttt . 
 
Notice that 3X  has exactly the same quadratic degree in the evolutionary parameter 3t  as the 
general, n-dimensional vector nX  (13.2b). 
 
Given that )( 33 tX  (B2c), with its quadratic term in 3t , will dominate all three eigenvectors, 
for sufficiently large 3t  (further below), the eigenvector 3X  will align with 3X  as will 30X , 
i.e. 
 
(B3)    3

2
333 )( XX tt ,  

 
where the term 'sufficiently large' here, really means any time 3t  such that 

  33033
2
3 2 XXX tt  in (B2c). This then depends on the initial conditions for the size of 

the vectors 30X  and 3X .
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21 Appendix (C) The Residual Matrix Method 
 
The residual matrix method47 is used to determine eigenvectors in URMT, giving both the 
standard eigenvector and its reciprocal, e.g. nX  and nX  (footnote 48). It is the same method 
as used in URM3 [1],#2 and [2] to evaluate the URM3 eigenvectors. The reader is referred to 
these references for full details since the matrix polynomials, used below, are identical in the 
determination of the URM n  eigenvectors nX  (from nX , using 0nA ), and 0nX  (from 0nX , 
using 0nA ); see note (C19) about obtaining nX  and nX . 
 
The residual matrices nE  and 0nE  are defined as the following polynomials in the 
eigenvectors, for eigenvalues C  and 0 . The outer products (or 'dyadic' (I3)), 


n

n XX  
and 0

0
n

n XX  on the right of these definitions, are nn  matrices, identical to the residual 
matrices (footnote 49). 
 
(C1) 

  n
nnnn C XXAAE )( 0

2
0 , C  

(C2) 0
0

22
00 )( n

nnnn C XXIAE  , 0 , see note (C18) 
 

(C3) 








 






0)1()1(

)1(

0

0

nnn

n
n

n t
t
AX

X
A . 

 
Using 0nA  the residual matrix nE  is calculated as 
 

(C4) 
















)1(

)1(
)1(

2
)1(2

00

n
n

nnnn
n tCt EXXX

E . 

 
Given that  )1(nE  and nX  are defined as 
 
(C5) 

  )1(
)1()1(

n
nn XXE . 

 

(C6) 












)1(

0

n
n X

X , 









3

0
X

 , 

 
then, from 

 
n

nn XXE  (C1), the vector nX  is deduced to be 
 

                                                
47 The name 'residual' is unique to URMT and coined only for want of a name given none can be found in the 
literature, see [2] for some background. 
48 The reciprocal is also known as the dual conjugate in URMT. Note that the dual conjugate is not the same as 
the transpose conjugate in URMT, see [1],#5. 
49 The general residual matrix, as defined by an outer-product of vectors, e.g. 

 
n

nn XXE , is actually a 
form of projection operator. Such operators are usually discussed under the subject of 'Spectral Decomposition' 
or 'Spectral Resolution', in linear algebra texts, see [5]. 
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(C7)        )1()1(2 0020 n
n

n
n

n Ctt XXX . 
 
Using 0nA  the residual matrix 0nE  (C2) is calculated as 
 

(C8) 





















0)1(
)1(

)1(
2

)1(

)1(2

0
n

n
nnnn

n
n

n tCt
CtC

EXXX
X

E . 

 
The matrix 0nE  is now split into two components, )(0 nnE  and )1(0 nnE , 
 

(C9) 













 




)1(
)1(

2
)1(

)1(2

0 )( n
nnnn

n
n

n tCt
CtC

n
XXX

X
E , 

 

(C10) 









 0)1(
0 0

00
)1(

n
n n

E
E . 

 
The second component )1(0 nnE  is recursively defined in terms of 0)1( nE , which can be 

calculated using 0)1(
0)1(1

22
0)1(0)1( )( 

  n
nnnn C XXIAE  etc. 

 
Armed with the knowledge that  Tn

nn
0

0 XTX   (E3), and 0
00

n
nn XXE   (C2), then 0nX  

and 0nX  are 
 

(C11) 



























 0)1(1)1(
0

00

nnn
nn

C
t

X0X
X  

 
(C12)      0)1(1)1(0 00   nnn

n
n Ct X0XX . 

 
Using nX  (C7), nX  is then obtained from the T  operator relation (E4) 
 

(C13) 






























)1(1)1(

2 0
2

0

nn
n

n
nn

C
tt

X0X
X . 

 
Using nX  (C6), nX  is then obtained from the T  operator relation (E2) 
 
(C14)    )1(0 nn XX ,   30 X  
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For future reference, the two vectors nX  (C13) and nX  (C7) are usefully written in terms of 
the scale factors n , n  and n  as 
 

(C15) 

























n

n

n
n





X ,  nnn
n X , 4n  

 footnote50 
 
and the scale factors are defined recursively as 
 
(C16) 
 1

2
 nnn xt  , 4n  

 1
2

 nnn yt   
 1

2
 nnn zt  . 

 
Some additional points: 
 
(C17). The residual matrix method is the preferred method in URMT to evaluate eigenvectors 
since it automatically fixes the eigenvector scaling. Normally, eigenvectors are arbitrary to 
within a scale factor, but the residual method forces a fixed scale factor on a vector and its 
dual conjugate ([1],#5), e.g. nX  and nX . By imposing a primality (gcd) condition, e.g. 
(3.4c) for URM5, on the standard form of vector nX  then the reciprocal vector nX  is forced 
to take on whatever factor is needed to make 

 
n

nn XXE . This can make nX  non-
primitive, but this is of no detrimental consequence - it is purely a scale factor and, as 
mentioned, perfectly legitimate for eigenvectors, which are arbitrary to within a scale factor. 
 
(C18). There is a caveat to point (C17), which is that URM3 uses the standard T  operator 
relation  T30

330 XTX   (A9c) that gives a sign for 30X , opposite to that which would 
normally be obtained using a residual matrix 30E , defined as 30

3030 XXE  . This is 
intentional, to make the inner product 2

30
30 CXX , and not 2C , as this inner product 

represents the DCE (F3). Furthermore, using the standard form of the T  operator relation 
 T30

330 XTX  , to obtain 30X  from 30X , makes its derivation consistent with all other 
eigenvectors derived using T  operator relations, Appendix (E). 
 
(C19). The E  residual matrix is not required here since nX  and nX  are obtained from the 
T  operator relations (E2) and (E4). Given nX  is pre-defined (13.2a), nX  is obtained 
without any recourse to the residual method, using the T  operator relation (E2). On the other 

                                                
50 The first blanked '-' element in nX  is given by the summation term in (13.2b) involving matrix )]2([  jnkM , 

for 31  nj  . 
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hand, nX  is obtained from the T  operator relation (E4), using nX  (C7), itself obtained 
from residual matrix nE  (C4). 
 
(C21). The quadratic, polynomial form,  (C1) and  (C2), for the residual matrices, nE  and 

0nE  respectively, is the same for all URM n , 3n , and determined by carefully selecting the 
conditions such that the eigenvalues are always the same two, non-zero values C , with all 
the other eigenvalues zero. 
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Appendix (D) 
 
22 Appendix (D) URM5 Example 
 
This numeric example illustrates the compactification behaviour of the fifth dimension of 
URM5 as its evolution progresses. 
 
In this example the evolutionary time 5t  of the fifth dimension in URM5 is varied from zero 
upward, whilst leaving all other times, 3t  and 4t , at their initial, zero value, in accordance 
with (10.4), and done primarily for simplicity, i.e. ease of understanding. In other words, there 
is no evolution in the first four dimensions, only the fifth. 
 
(D1) 03 t , 04 t . 
 
The example uses (embeds) the standard URM3 Pythagorean (4,3,5) solution, for unity 
eigenvalue, as given in the first row of table (A7) in Appendix (A). The solution is reproduced 
below. 
 
(D2) 1C , unity eigenvalue. 
(C2) 4x , 3y , 5z . 
(C11a) 1P , 2Q , 2R  
(C11b) 0 , 1 , 1 . 
 
Using these values, the URM3 eigenvector solution is, by (A8), thus 
 

(D3)  

















5
3
4

3X , 






















2
2
1

30X , 



















1
1

0

3X . 

 
These three URM3 eigenvectors are all static by virtue of evolutionary time 3t  constrained to 
zero (D1). Hence they all remain at their initial value and are superscripted with a prime to 
denote this, excepting 3X , which is always static and the prime omitted by assumption. 
 
The URM5 eigenvector 5X  (11.1a) is also static, and remains at its initial, 3X  value, i.e. 
 

(11.1a)  





















3

5 0
0

X
X . 
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Because 03 t  (D1) then 3030 XX   as a consequence and the URM5 eigenvector A50X  
(11.1c) is also therefore static, remaining at its initial 30X  value, i.e. 
 

(D4)  



















30

50 0
0

X
X A . 

 
Lastly, on the subject of time-independent, static vectors, because B50X  is a function only of 
evolutionary time 4t , and since 04 t  (D1), then B50X  reduces to the following static vector 

(D5)  

















3

50

0

0
X CB , 04 t . 

 
Note that this vector B50X  has a constant component, eigenvalue C , in its fourth dimension; 
the eigenvalue being unity (D2) in this example. Ordinarily, C  can be made as large as 
desired, see the comment (8.2b). 
 
Using initial values 3X  and 30X  (D3), and 1C  (D2), the static URM5 eigenvectors 5X , 

A50X  and B50X  are thus 
 

(D6)  

























5
3
4
0
0

5X , 



























2
2
1

0
0

50 AX , 

























0
0
0
1
0

50BX , 03 t , 04 t . 

 
This leaves just two, time-dependent URM5 eigenvectors 5X  (11.1b) and C50X  (11.1e), 
which, for 03 t  and 04 t  (D1), become 
 

(D7) 

























































33

5

3

2
55 0

0
020

0

X0X
X

C
tt . 

 

(D8) 


































 33

550 00
0

0X
X

C
tC . 
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Using initial values 3X  and 3X  (D3), and 1C  (D2), then the initial values for the time-
dependent vectors, all evolutionary times zero, are 
 

(D9) 




























1
1

0
0
0

5X , 

























0
0
0
0
1

50CX , 0,, 543 ttt . 

 
Calculations 
 
The magnitude of the sum of two or more vectors is calculated from the sum of the individual 
magnitudes, which gives a maximum estimate of their size, i.e. 
 

(D10) if 
i

iXX  then 
i

iXX , 2i . 

 
This does not apply to any individual eigenvector, whose magnitude is calculated as the 
positive, root sum of squares of its elements. 
 
All magnitudes, except 

5
X  (the magnitude of the fifth dimension), are calculated from the 

three-element vector of the first three dimensions, which correspond to the last three elements 
of the five-element, URM5 vectors, i.e. the URM3 subspace. 
 
The magnitudes of the static URM3 vectors are 
 
(D11) 
(D11a)  253 X , (D3) 

(D11b)  330 X , (D3) 

(D11c)  23 X , (D3). 
 
The magnitudes of the static, URM5 vectors are as follows, first three dimensions only  
 
(D12) 
(D12a)  255 X , (D6) 

(D12b)  350 AX , (D6) 

(D12c)  050 BX , (D6). 
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The two magnitudes, 5X  and C50X , first three dimensions only, are time-dependent, as 
follows 
 
(D13) 
(D13a)    33

2
55 XXX t , exact 

(D13b)   21650 2
5

4
55  ttX , exact, from (D7) using (D3) 

(D13c)    3
2
55 XX t , 05 t , large 5t  approximation from (D13a) 

(D13d)  2
55 25 tX , 05 t , using (D11a) 

 
(D13e)   3550 XX tC , exact, from (D8) 

(D13f)  25550 tC X , using (D11a). 
 
The magnitude of the fifth dimension 

5
X  (6.1a) 

 
(D14) 
(D14a)  22

55
)2( CCt X , exact, URM4 equivalent (9.1) 

(D14b)  14 2
55
 tX , 1C  (D2) 

(D14c)  55
2tX , URM4 equivalent (9.3)  

 
The magnitude of the first three dimensions of URM5 

3
X  (6.1b), 

 
(D15) 
(D15a)    550505053

XXXXXX CBA , definition, (6.1b) 
 
Defining constants a  and b  
 
(D15b)  071068.725 a  to 6dps. 
(D15c)  071068.103  ab  to 6dps. 
 
using (D12) and (D13) for the individual, URM5 vector magnitudes gives 
 
(D15d)   553

XX atb , exact, use (D13b) for 5X  
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Compactification Ratio 
 
The true compactification ratio 5  (6.3) 
 

(D16a)  
3

5
5 X

X
 , definition (6.3) 

 

(D16d)   





55

2
5

5

14
Xatb

t
 , exact, using (D14b) and (D15d). 

 
The approximated compactification ratio 5  (6.7) 
 

(D17a)  



35

5
2
Xt
C , (6.7), 05 t  : use (D16a) for 05 t . 

 

(D17b)  
5

5 5
2
t

 , using (D11a), 05 t  - see (D17a). 

 
It is confirmed in both (D16d) and (D17b) that the compactification ratio limits to zero as 5t  
grows to infinity since, for large 5t , both expressions are inversely proportional to 5t . Thus, 
the fifth dimension shrinks to zero relative to the first three dimensions, i.e. 
 
(D18)  0lim 5

5





t
 (6.4). 

 
Error analysis 
 
The absolute error   (10.6) 
 
(D19a)    3

2
55 XX t , definition, (10.6) 

 
(D19b)  2

55 25 t  X , exact, using (D11a) 
 
Expanding (D13b)  21650 2

5
4
55  ttX  binomially, to first order in 51 t , gives 

 
(D19c)  )1(52425 2

5
2
55 tOt X  (footnote 51). 

                                                
51 This approximation was not made in the main body of the paper, Section (10). 
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Substituting in this expansion (D19c) into (D19b) approximates the absolute error   to the 
following constant, to first order in 51 t , 
 

(D19d)  131371.1
5

24
  to 6dps. 

 
Since the absolute error   (D19d) is constant, it will shrink rapidly into insignificance 
compared with the quadratic term 2

525 t . 
 
The relative error estimate   (10.2) 
 

(D20a)  
3

3
2
53

X

XX 


t
 , (10.2) 

 
Using (D15d) for 

3
X  and definition (D19a) for the absolute error  , the relative error 

estimate   (D20a) becomes 
 

(D20b)   2
55

5

atatb
atb




  . 

 
From the approximation (D19d) for  , the numerator is, to the highest order, linear in 
evolutionary time 5t . Hence, with a quadratic term 2

5at  in the denominator, it is confirmed 
from (D20b) that the error estimate   limits to zero as 5t  grows to infinity, i.e. 
 
(D20c)  0lim

5





t
, (10.16) 
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(D21) Tabulated Data 
 
The following four sets of data are provided on the next few pages: 
 
 (D22) Time-dependent Vector 5X  
 (D23) Time-dependent Vector C50X  
 (D24) Time-dependent Magnitudes 5X , C50X , 

5
X , 

3
X  

 (D25) Compactification Ratios and Errors 5 ,  ,  . 
 
The column headings are defined as follows: 
 
t5 : evolutionary time 5t  
X-(1) to X-(5) : five elements of time-dependent vector 5X  (D7) 
|X-| : time-dependent magnitude 5X  (D13b), first three dimensions only 
X0C(1) to X0C(5) : five elements of time-dependent vector C50X  (D8) 
|X0C| : time-dependent magnitude C50X  (D13f), first three dimensions only 

|X|5 : The magnitude of the fifth dimension 
5

X  (6.1a) 

|X|3 : The magnitude of the first three dimensions 
3

X  (6.1b), 
chi5 : true compactification ratio 5  (D16a) 
chi5 app : approximated compactification ratio 5  (D17b) 
chi5%err : percentage error in 5  approximation, i.e. 100*(true-approx)/true 
eps : relative error estimate   (D20b) 
eps- : absolute error   (D19b) 
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(D22) Time-dependent Vector 5X  
 
 t5, X-(1), X-(2), X-(3), X-(4), X-(5),    |X-|, 
  0,     0,     0,     0,    -1,    -1,     1.4, 
  1,     2,     0,    -4,    -4,    -6,     8.2, 
  2,     4,     0,   -16,   -13,   -21,    29.4, 
  3,     6,     0,   -36,   -28,   -46,    64.8, 
  4,     8,     0,   -64,   -49,   -81,   114.3, 
  5,    10,     0,  -100,   -76,  -126,   177.9, 
  6,    12,     0,  -144,  -109,  -181,   255.7, 
  7,    14,     0,  -196,  -148,  -246,   347.6, 
  8,    16,     0,  -256,  -193,  -321,   453.7, 
  9,    18,     0,  -324,  -244,  -406,   573.9, 
 10,    20,     0,  -400,  -301,  -501,   708.2, 
 11,    22,     0,  -484,  -364,  -606,   856.7, 
 12,    24,     0,  -576,  -433,  -721,  1019.4, 
 13,    26,     0,  -676,  -508,  -846,  1196.1, 
 14,    28,     0,  -784,  -589,  -981,  1387.1, 
 15,    30,     0,  -900,  -676, -1126,  1592.1, 
 16,    32,     0, -1024,  -769, -1281,  1811.3, 
 24,    48,     0, -2304, -1729, -2881,  4074.1, 
 32,    64,     0, -4096, -3073, -5121,  7241.9, 
 48,    96,     0, -9216, -6913,-11521, 16292.9, 
 64,   128,     0,-16384,-12289,-20481, 28964.2, 
 
(D23) Time-dependent Vector C50X  
 
 t5,X0C(1),X0C(2),X0C(3),X0C(4),X0C(5),   |X0C|, 
  0,     1,     0,     0,     0,     0,     0.0, 
  1,     1,     0,    -4,    -3,    -5,     7.1, 
  2,     1,     0,    -8,    -6,   -10,    14.1, 
  3,     1,     0,   -12,    -9,   -15,    21.2, 
  4,     1,     0,   -16,   -12,   -20,    28.3, 
  5,     1,     0,   -20,   -15,   -25,    35.4, 
  6,     1,     0,   -24,   -18,   -30,    42.4, 
  7,     1,     0,   -28,   -21,   -35,    49.5, 
  8,     1,     0,   -32,   -24,   -40,    56.6, 
  9,     1,     0,   -36,   -27,   -45,    63.6, 
 10,     1,     0,   -40,   -30,   -50,    70.7, 
 11,     1,     0,   -44,   -33,   -55,    77.8, 
 12,     1,     0,   -48,   -36,   -60,    84.9, 
 13,     1,     0,   -52,   -39,   -65,    91.9, 
 14,     1,     0,   -56,   -42,   -70,    99.0, 
 15,     1,     0,   -60,   -45,   -75,   106.1, 
 16,     1,     0,   -64,   -48,   -80,   113.1, 
 24,     1,     0,   -96,   -72,  -120,   169.7, 
 32,     1,     0,  -128,   -96,  -160,   226.3, 
 48,     1,     0,  -192,  -144,  -240,   339.4, 
 64,     1,     0,  -256,  -192,  -320,   452.5, 
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(D24) Time-dependent Magnitudes 5X , C50X , 

5
X , 

3
X  

 
 t5,   |X-|,  |X0C|,   |X|5,    |X|3, 
  0,    1.4,    0.0,    1.0,    11.5, 
  1,    8.2,    7.1,    2.2,    25.4, 
  2,   29.4,   14.1,    4.1,    53.6, 
  3,   64.8,   21.2,    6.1,    96.1, 
  4,  114.3,   28.3,    8.1,   152.6, 
  5,  177.9,   35.4,   10.0,   223.3, 
  6,  255.7,   42.4,   12.0,   308.2, 
  7,  347.6,   49.5,   14.0,   407.2, 
  8,  453.7,   56.6,   16.0,   520.3, 
  9,  573.9,   63.6,   18.0,   647.6, 
 10,  708.2,   70.7,   20.0,   789.0, 
 11,  856.7,   77.8,   22.0,   944.6, 
 12, 1019.4,   84.9,   24.0,  1114.3, 
 13, 1196.1,   91.9,   26.0,  1298.1, 
 14, 1387.1,   99.0,   28.0,  1496.1, 
 15, 1592.1,  106.1,   30.0,  1708.3, 
 16, 1811.3,  113.1,   32.0,  1934.5, 
 24, 4074.1,  169.7,   48.0,  4253.8, 
 32, 7241.9,  226.3,   64.0,  7478.3, 
 48,16292.9,  339.4,   96.0, 16642.4, 
 64,28964.2,  452.5,  128.0, 29426.8, 
 
(D25) Compactification Ratios and Errors 5 ,  ,   
 
 t5,    chi5,chi5 app,chi5%err,     eps,    eps-, 
  0,   0.087,   0.000, 100.000,   0.000,   -----, 
  1,   0.088,   0.283,-221.140,   0.721,   1.175, 
  2,   0.077,   0.141, -83.987,   0.473,   1.144, 
  3,   0.063,   0.094, -48.891,   0.338,   1.137, 
  4,   0.053,   0.071, -33.863,   0.259,   1.135, 
  5,   0.045,   0.057, -25.711,   0.208,   1.133, 
  6,   0.039,   0.047, -20.650,   0.174,   1.133, 
  7,   0.034,   0.040, -17.221,   0.149,   1.132, 
  8,   0.031,   0.035, -14.752,   0.130,   1.132, 
  9,   0.028,   0.031, -12.893,   0.116,   1.132, 
 10,   0.025,   0.028, -11.445,   0.104,   1.132, 
 11,   0.023,   0.026, -10.286,   0.094,   1.132, 
 12,   0.022,   0.024,  -9.339,   0.086,   1.132, 
 13,   0.020,   0.022,  -8.550,   0.079,   1.132, 
 14,   0.019,   0.020,  -7.882,   0.074,   1.132, 
 15,   0.018,   0.019,  -7.311,   0.069,   1.132, 
 16,   0.017,   0.018,  -6.817,   0.064,   1.132, 
 24,   0.011,   0.012,  -4.419,   0.043,   1.131, 
 32,   0.009,   0.009,  -3.267,   0.032,   1.131, 
 48,   0.006,   0.006,  -2.147,   0.021,   1.131, 
 64,   0.004,   0.004,  -1.598,   0.016,   1.131, 
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23 Appendix (E) Reciprocal Eigenvectors 
 
The reciprocal (row-vector) forms of the standard, column eigenvectors are obtained using the 
appropriate dimensional T  operator nT  (~ nT ), 2n  (this includes URM2) 
 

(E1) 









 

10
01nn

n

I
TT , 1nI  = )1()1(  nn  identity matrix  

 
The T operator is of the same form as the familiar Minkowski metric of STR ij , 
disregarding sign convention. Within URMT the reciprocal eigenvectors52, i.e. those with 
raised indices, e.g. 5X , are, indeed, related to the lowered index eigenvectors, 5X  in this 

example, via the relation  T
  5

55 XTX  and, conversely,  T5
5

5 TXX 
  . 

 
Reciprocal eigenvectors for an n-dimensional vector space are only valid under Pythagoras 
conditions for that specific n-dimensional case, e.g. conditions (4.2) in the 5D case of URM5. 
 
The reciprocal forms of the eigenvectors are not explicitly required in the paper for its central 
purpose, since all working can be done with the standard forms of eigenvectors. Nevertheless, 
most URMT conservation equations and scalar invariants arise from the inner products 
between the reciprocal and standard forms, as follows, see the general solution, Section (13) 
for the standard forms of the URM n  vectors, from which the following reciprocal forms are 
obtained. 
 
(E2)  Tn

nn


  XTX ,  Tn
n

n TXX 
   

 
(E3)  Tjn

njn
0

0 XTX  , 10  nj  , 
 where 00nX  ~ An0X ~ 0nX ,  
 and 01nX  ~ Bn0X , etc 
 
(E4)  Tn

nn


  XTX ,  Tn
n

n TXX 
   

 
Examples 
 
For URM5, the 55  matrix operator 5T  ( 5T ) is defined in block matrix form, using the 

44  identity matrix 4I  
 

(E5) 










10

045
5

I
TT . 

                                                
52 Reciprocal eigenvectors are also known as conjugate vectors in [1] to [3]. Strictly speaking, they are the 
transpose conjugate, row-vector forms of the standard, column-vector forms, and vice versa. The concept of 
conjugacy within URMT covers all variables, matrices and vectors under a more unified approach given in 
[1],#5. Not least, it adds Hermitian-like properties to URMT, also desirable from a physical perspective. 
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Under Pythagoras conditions, there is a reciprocal vector 5X  defined in terms of 5X  by 
 
(E6)   T

  5
55 XTX . 

 
Using the 5T  operator (E5) and 5X  (5.2), then 5X  is thus, 
 
(E7)  zyx  005X . 
 
The Pythagoras equation (4.1) is now expressed as the following inner product of 5X  and 

5X , which is a conservation equation, in URMT, with scalar invariant zero, see (F7), 
 
(E8) 0222

5
5  
 zyxXX . 

 
The reciprocal form of the URM4 eigenvector solution (8.1) is given below in terms of the 
URM3 reciprocal vectors 
 
(E9) 
(E9a)    34 0 XX  
 
(E9b)        33

4
32

4
4 020 X0XX Ctt  

 
(E9c)  3040 0 XX A  
 
(E9d)    33

4
40 0 0XX CtB    

 
The reciprocal form of the URM5 eigenvector solution (11.1) is given below in terms of the 
URM3 reciprocal vectors 
 
(E10) 

(E10a) 

 
 
 

 









3

3
4

3
5

32
4

2
5

5

00

02
02

00)(

X
0
0

XX

Ct
Ct

tt

 

 
(E10b)    35 00 XX  
 
(E10c)  3050 00 XX A  
 
(E10d)    33

4
50 000 0XX CtB    

 
(E10e)    33

5
50 000 0XX CtC    
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24 Appendix (F) Conservation Equations and Scalar Invariants 
 
Following on from Appendix (E), the six key conservation equations of URMT, as obtained 
from the inner product relations between the eigenvectors, are given in this Appendix for both 
URM3 and the general, n-dimensional case. 
 
The URM3 conservation equations are: 
 
(F1) 0222

3
3 
 zyxXX  Pythagoras 

(F2) 02
3

2
3

2
33

3 
 XX  Pythagoras 

(F3) 2222
30

30 CRQP XX  the DCE 
(F4) 2

3333
3

3
3 2Czyx  




 XXXX  the Potential Equation ( 0V ) 
(F5) 030

3
3

30  
 zRyQxPXXXX  the Delta equation 

(F6) 033330
3

3
30  

 RQP XXXX  the Dual Delta equation 
 
The n-dimensional forms of these equations, for URM n , 4n  give exactly the same 
invariants. They are stated below, with an example given following of how they are proved by 
induction. Note that the scale factors n , n  and n  are defined recursively in (C16). 
 
(F7) 0


n

n XX , Pythagoras 

(F8) 0)2( 222

4

2 





nnn

n

j
jn

n Ct XX , Pythagoras 

(F9) 22Czyx nnnn
n

n
n  




 XXXX  the Potential Equation ( 0V ) 
 

Using a zero vector 0nX  given by the sum 





1

0
00

n

j
jnn XX , where Ann 000 ~ XX , Bnn 001 ~ XX  , 

Cnn 002 ~ XX  etc., and related reciprocal vector  Tn
nn

0
0 XTX  , then  

 
(F10) 2222

0
0 )2( CnRQPn

n XX , the DCE 

Note that the following orthogonality relation holds between different, zero eigenvectors: 

(F10b) 2
0

0 Cin
jn XX  if ji  , and 00

0 in
jn XX  if ji  . 

 
(F11) 00

0  
 n

n
n

n XXXX  the Delta equation 
(F12) 00

0  
 RQP nnnn

n
n

n XXXX  the Dual Delta equation 
 
These relations can be proved inductively using a recursive form of the general solutions 
provided in Appendix (C), to give the eigenvector solutions for the n-dimensional case in 
terms of the 1n  dimensional eigenvectors. 
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An example of this is given following using the n-dimensional eigenvectors nX  (13.2a) and 
nX  (C7). Although this is not particularly pertinent to the paper's theme, it is considered 

useful as a good illustration in standard URMT algebra. 
 
To prove the inner product relation (F9) inductively then, starting with their general solutions 

nX  (13.2a) and nX  (C7), reproduced below, 
 

(F13) 












)1(

0

n
n X

X  (13.2a), 

  


  )1()1(2
12 nn

nn
n tCt XXX  (C7), 

 
the inner product 


n

n XX  of the two is given by 
 
(F14) 







  )1(
)1(

)1(
)1(2

n
n

n
n

nn
n t XXXXXX . 

 
The right of this product is given purely in terms of the 1n  dimensional eigenvectors, albeit 
there are now two terms. 
 
If it can be shown that the first term 


)1(

)1(
n

n XX  is zero53, then the product will reduce to 





  )1(

)1(
n

n
n

n XXXX , i.e. the desired reduction of 


n
n XX  to 


)1(

)1(
n

n XX  will have been 
achieved. Really, of course, the inductive argument shows that, if it is true for the 1n  case 
then it is true for the n case - this argument is given at the end. 
 
It is relatively trivial to prove 


)1(

)1(
n

n XX  is zero because the vector  )1(nX  is static, as seen 
by the recursive formula for nX  
 

(F15) 














3

3
)2()1( X

0
XXX n

nnn  . 

 
Likewise, for  )1(nX , since it is simply obtained from the relation  Tn

nn


  )1(
1)1( XTX , i.e. 

 
(F16)   Tnn


  3

33)1( XT0X , 
 
and, using the URM3 relation   

  3
3

3 XXT T
, then  )1(nX  is given in terms of URM3 

vectors as 
                                                
53 Since  )1(nX  is a reciprocal eigenvector for eigenvalue C , and  )1(nX  is a standard eigenvector for 

eigenvalue C  then, by the rules of matrix algebra, these eigenvectors will be orthogonal, i.e. their inner 
product zero. This is usually described in the literature [5] under the subject of 'orthogonality' of eigenvectors to 
different eigenvalues. Note that this orthogonality is between reciprocal (row-vector) and standard (column-
vector) forms, but not between standard-standard or reciprocal-reciprocal vector forms. In these two latter cases, 
as noted in URMT (footnote 37), the standard vectors form a highly oblique basis, non-orthogonal basis and so 
too, therefore, the reciprocal vectors. 
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(F17)    33)1( X0X nn . 
 
Thus, using this and the results for  )1(nX  (F16) and  )1(nX  (F15), the inner product 




)1(
)1(

n
n XX  is given in terms of URM3 vectors as 

 
(F18) 




  3
3

)1(
)1( XXXX n

n . 
 
Since 


3

3 XX  is zero by Pythagoras (F1), then it is proved that the first term on the right of 
(F14) is zero, i.e. 
 
(F19) 0)1(

)1( 


n
n XX , 

 
and the inner product (F14) becomes 
 
(F20) 




  )1(
)1(

n
n

n
n XXXX . 

 
Retracing, if 2

)1(
)1( 2Cn

n 
 XX , then so too 22Cn

n 
XX  by (F20). Since it is true for 

3n , i.e. 2
3

3 2C
XX  (F4), then it is also therefore true for 5,4n  etc, hence (F9) is 

proven for all 3n . 
 
(F21) Commentary 
 
The n-dimensional vector space is characterised by n , independent parameters ( k , l  and jt , 

nj 3 ), all but two ( k  and l , see footnote (7)) are physically interpreted as temporal 
coordinates. Each jth dimension, three and higher, has evolutionary behaviour governed by its 
jth temporal coordinate jt , effectively making the eigenvector space a discrete set of, n-
dimensional points, termed the 'lattice' in [1],#3 and [3]. A point in the lattice is therefore 
uniquely specified by the n-element, coordinate vector  jtlk , nj 3 .  Every lattice 

point is characterised by a set of invariants 22 2,,0 CC  (footnote 54), given by the scalar 
products, (F7) to (F12), between the eigenvectors. For the unity eigenvalue, 1C , this gives 
the set 2,1,0  . Ratios of these (except zero) may also be considered. Regardless of the size 
of the eigenvectors, and their respective elements, which could easily be )10( 1O  to )10( 80O , 
the same three numbers, 0, 1 and 2 appear at every lattice position. What do these integer 
invariants represent? Are their ratios meaningful? 

                                                
54 The minus sign can be selected using a different sign convention for the eigenvectors. 
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25 Appendix (G) Calculus Properties of URMT 
 
Whilst URM3 vectors 3X , 30X , 3X  can be consistently interpreted in terms of their 
physical units, with an acceleration, velocity and position vector respectively, they are also 
related via the following calculus relations, further justifying the standard physical 
interpretation (2.1), see also [1],#3 and [3]. 
 

The standard calculus derivative 
3dt

d (~
dm
d  in [1], [3]) is used as a good, large 3t  

approximation for discrete differences (see also point (G17) below), i.e. 
 

(G1) 
33 tdt

d



 , 03 t , 13 t , 

 

(G2) 30
3

3 2XX


dt
d

, derivative of position = twice velocity 

 

(G3)  XX

3

30

dt
d

, derivative of velocity = negative of acceleration 

 

(G4) 0
3

3 

dt
dX

, derivative of acceleration = zero (constant acceleration) 

 

(G5) 
  3

3
2

3
2

2X
X
td

d
, second derivative of position = - twice acceleration 

 
Higher dimensional, extension work in [4] shows these identical relationships are maintained 
as follows for general, URM n . 
 
Calculus Properties of URMn 
 
With more than one evolutionary parameter for four and higher dimensions, the standard 

calculus partial derivative 
it
  is now used in place of 

3dt
d  for derivatives with respect to 

evolutionary time it . 
 

(G6) 
ii tt 





 , 0it , 1it , 

 
For URM5, the partial derivatives are 
 

(G7) Bt 50
4

5 2XX



  , derivative of position = twice velocity 
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(G8) Ct 50
5

5 2XX



  , ditto 

 

(G9) 



5

3

50 XX
t

A , derivative of velocity = negative of acceleration 

 

(G10) 



5

4

50 XX
t

B , ditto 

 

(G11) 



5

5

50 XX
t

C , ditto 

 

(G12) 0
4

5 

 

t
X

, 0
5

5 

 

t
X

, constant acceleration 

 

(G13) 
 




5
4

2
5

2

2X
X
t

, 
 




5
5

2
5

2

2X
X
t

 second derivative of position = - twice acceleration 

 
For URM n , dimension 3j , 30  nj  , ( 0j  includes URM3 here) the same general 
relations hold true for evolutionary parameter 3jt , e.g. 3t  for 0j , 4t  for 1j , etc. and nt  
for 3 nj . 
 

(G14) jn
j

n

t 0
3

2XX







 , derivative of position = twice velocity 

  

(G15) 






n

j

jn

t
X

X

3

0 , derivative of velocity = negative of acceleration 

 

(G16) 


 



n
j

n

t
XX

2
3

2

2

, second derivative of position = - twice acceleration 

 
Some additional points 
 
(G17) These calculus relations sometimes have the caveat of valid only for large evolutionary 
times. This caveat is unrelated to any compactification issues, and is only required in so far as 
the continuous derivative is used as an approximation for the discrete difference for any large 
time jt , 0jt . 
 
(G18) The n vectors can be physically associated with a single acceleration (the same for all 
dimensions), 2n  velocity vectors, and a single position vector, all related by standard, 
calculus relations. Except there is no calculus in URMT's formulation, only an invariance 
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principle and associated invariance transformations, but absolutely no calculus or difference 
equations used. 
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26 Appendix (H) URM2 
 
The key matrices and eigenvectors in the 22  formulation of URMT (URM2), when under 
URM2 Pythagoras conditions, are as follows, reproduced from [4]. URM2 is also a special 
case of what is termed 'the almost trivial' solution in Appendix C of [1],#3. 
 
 

(H1) 









0
0

20 C
C

A , 'unity' root matrix 

 
(H2) 022 C , C , eigenvalues 
 

(H3) 







 1

1
2X , 










 2

2

2 C
C

X , standard eigenvectors 

 
(H4)  222 CCX ,  112 X , reciprocal eigenvectors 
 

(H5) 












10
012

2 TT , the T  operator 

 
(H6) 2CK  , 0V , kinetic and Potential terms 
 
(H7) VKC 2  (~ 22 C ), the DCE 
 
In URM2, the total energy E  is always the kinetic term K  (H6), and the Potential V  is 
always zero, with no pre-conditions such as the Pythagoras conditions, Section (4). 
 
The only free parameter within URM2 is actually the eigenvalue C  which, by definition, is 
unity or greater. 
 
Generally, this URM2 case is considered too simplistic, primarily because the only non-
trivial, primitive 2X  vector is the )1,1(  pair, which is why URMT generally starts with 
URM3 since it has the first 'non-trivial' solution 3X  - an arbitrary Pythagorean triple with 
three, non-zero elements. 
 
Neither is their any meaningful variational (or evolutionary) parameter 2t , see [4]. But this is 
more of a plus point, because it means URM2 cannot shrink further from two to one 
dimension. 
 
Note that these two aforementioned points might actually be telling us something about 3D? 
 
Despite URM2 being considered too simplistic, it is not entirely dismissed and, if for no other 
reason, it is a good illustration of some basic aspects of URMT. Most importantly amongst 
these is that the above )1,1(  solution can be 'lifted' (I6) to a general, 3D Pythagorean solution, 
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using a matrix 30A  and eigenvector 3X , based on the general n-dimensional matrix 0nA  and 
eigenvector nX , Appendix (C). Using 0nA  with 3n , the 3D matrix 30A  and vector 3X  
are defined as 
 

(H8) 






 






2023

2
3

30
0

AX
X

A
t

t
, 













2
3

0
X

X . 

 
Substituting for matrix 20A  (H1) and eigenvectors 2X  (H3), 2X  (H4), then 30A  and 3X  
are expanded in full as 
 

(H9) 






















0
0

0

3

3

33

30

Ct
Ct
tt

A , 

















1
1
0

3X . 

 
To obtain 3X , the residual matrix method, Appendix (C), is used to calculate the residual 
matrix 3E  
 
(H10) 30

2
303 AAE C , 

 
and then extracting 3X  using the equivalent definition 

 
3

33 XXE , gives 3X  as follows 
 
(H11)  2

3
22

3
2

3
3 2 tCtCCt X . 

 
It can be seen that the three elements of this vector are the standard parameterisation of a 
Pythagorean triple for arbitrary integer parameters 3t , C . 
 
With 3X  defined in the usual way in terms of URM3 scale factors 3 , 3  and 3 , (A10a), 
then, comparing with (H11), they are thus 
 
(H12) Ct33 2 , 2

3
2

3 tC  , 2
3

2
3 tC   

 
and the Pythagoras equation is simply 
 
(H13) 2

3
2
3

2
3   . 

 
With the 3D T  operator, 3T  (~ 3T ), defined as 
 

(H14) 









2

3
3 0

01
T

TT , 

 
then 3X  is obtained in the usual way  T)( 3

33


  XTX  
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(H15) 
 



















2
3

2

2
3

2
3

3

2

tC
tC

Ct
X  

 
Lastly, the zero eigenvector 30X  is 
 

(H16) 



















3

330

t
t

C
X  

 
and its reciprocal 30X  obtained from T)( 30

330 XTX   
  
(H17)  33

30 ttC X . 
 
The DCE in scalar product form, (F3), is then verified to be the conserved quantity 2C , i.e. 
 
(H18) 2

30
30 CXX . 

 
This completes the overview of URM2.
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27 Appendix (I) Terminology 
 
This is a subset of the full URMT terminology, covering terms used herein, either uniquely 
defined within URMT or those in wider use, but with a specific meaning to URMT. 
 
(I1) Alignment - see Flattening (I5). 

(I2) Divisibility factors, also known as scale factors, are the last three elements of the 
URM n  eigenvector nX , denoted by n , n  and n , 3n , see (A15) URM3 and (C16) 
UMR n . 

 (I3) The Dyadic product is synonymous with the outer product of two vectors. In the context 
of URMT, the dyadic product of two vectors iX  and jX , nji 1,  , gives a square matrix, 

j
iij XXM  , of size nn . The term 'dyadic product' is quite old and is replaced by 'outer 

product' in modern texts. Nevertheless, the name appears in the earlier URMT literature, e.g. 
[1], albeit it has been replaced herein with the term 'outer product'. 

(I4) An Excess dimension is any dimension higher than the third, i.e. the fourth or higher. In 
an n-dimensional space, an excess dimension r  is such that nr 3 ; its associated temporal 
(evolutionary) parameter is denoted by rt , see Appendix (C). 

(I5) Flattening is the term used to describe the eigenvector evolution in URM3, whereby the 
two eigenvectors 30X  and 3X  align anti-parallel to 3X  as evolution progresses, i.e. as 
evolutionary time 3t  increases, see Appendix (B) for the URM3 eigenvector evolution 
equations. Because it is an alignment of vectors, the process is also known as "alignment" 
herein, but 'flattening' is used exclusively in earlier, URM3 literature; see [1],#3 for full 
details of the evolutionary process, and [3] for a summary. 
 
(I5) Flattening is the term used to describe the eigenvector evolution in URM3 whereby the 
two eigenvectors 30X  and 3X  align anti-parallel to 3X  as evolution progresses, i.e. as 
evolutionary time m  (or 3t ) increases, see Appendix (B) for the URM3 eigenvector evolution 
equations. The vector 3X  itself is static and invariant to arbitrary variations in any 
evolutionary parameter. However, note that 3X  is actually a two-parameter family of integer 
vectors, parameters k  and l  (A26), and hence occupies a 2D discrete subspace of 3D; in this 
sense, the 3D flattens to 2D. Because it is an alignment of vectors, the process is also known 
as 'alignment' herein, but 'flattening' is used exclusively in earlier, URM3 literature. That they 
align anti-parallel, and not parallel, is largely a choice of sign convention. See [1],#3 for full 
details of the evolutionary process, and [3] for a summary. 
 
(I6) Lifting, in the context of URMT, is the process of generating eigenvector solutions for an 

)1()1(  nn  matrix 1nA  using an eigenvector solution to the nn  matrix nA , 2n . The 
matrix nA  is embedded in 1nA  and an eigenvector solution X , to nA , is also a solution to 

1nA , with appropriate zero padding. 
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(I7) A 'non-trivial' vector is one with all non-zero elements and, in the context of URMT, 
remains non-trivial for arbitrary variations in all evolutionary parameters. Primarily this 
applies to the static vector nX  and its reciprocal nX , since nX  is the only true, invariant 
vector. 
 
(I8) A primitive Pythagorean n-tuple is that which has no common factor in its elements, as 
specified by gcd criterion, e.g. URM5 gcd criterion (3.4c). The vector nX  and its reciprocal 

nX  are usually defined to be primitive, with any common factor being absorbed into nX  
and its reciprocal nX , which are also Pythagorean n-tuples. 
 
(I9) The Pythagoras conditions are a set of relations between the standard and conjugate 
dynamical variables in URM n , which are such that the eigenvectors of the nn  matrix nA , 
for non-zero eigenvalues, are Pythagorean n-tuples. The unity root matrix nA  is formed 
exclusively from the dynamical variables, and the conditions make the matrix skew-
symmetric in the first, 1n  rows and columns, and symmetric in the last row and column. All 
Pythagoras conditions for URM n  include URM )1( n  as a subset. 
 
(I10) Scale factors, see divisibility factors. 
 
(I11) A Static quantity in URMT is any quantity (invariably an eigenvector) not dependent on 
any evolutionary time jt , nj 3 . The eigenvector nX , 2n  (this includes URM2), is 
the classic URMT example. A static eigenvector can be a function of none, one or both of the 
other two URMT parameters, k  and l , which are not temporal parameters, e.g. nX  is a 
function of both k  and l . 
 
(I12) Zero Eigenvectors. The eigenvectors 30X , An0X , Bn0X , Cn0X  etc., are called zero 
eigenvectors since they are the eigenvectors for the repeated, zero eigenvalue and not because 
they have all elements zero. 


