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Abstract

This paper shows how a discrete, n-dimensional eigenvector space can appear of lower
dimension over long evolutionary timescales, ultimately compactifying to appear as a two-
dimensional subspace within three dimensions.

Each excess dimension, i.e. any dimension higher than the third, has a unique, temporal
coordinate, not necessarily associated with the familiar laboratory time, which controls the
evolution of the dimension. Over a long evolutionary period, in a particular excess dimension,
the dimension expands relative to all other excess dimensions, but appears to contract relative
to the first three dimensions. Specifically, the entire n-dimensional space appears to align
along a particular direction in the three-dimensional space, the direction given by one of the
eigenvectors, which is physically associated with an acceleration vector, and specified by two,
non-temporal, arbitrary parameters. The third parameter in the three-dimensional space is a
temporal coordinate, which also controls the evolution of the three dimensions, and shows the
same alignment behaviour as for the excess dimensions. The initial state of the entire space is
specified by the initial values for the acceleration vector and, most importantly, a single
energy-related constant controls the initial size of all excess dimensions.

The paper mathematically details the compactification process by way of a four and five-
dimensional case, expressed in terms of the three-dimensional solution, with a full 5D
numeric example provided in the Appendices. A complete n-dimensional solution is given
and the compactification arguments generalised for an arbitrary number of dimensions.
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1 Introduction

A discrete’, n-dimensional, vector space” can be generated from the eigenvectors of a unity
root matrix, as first described in [1] for the three-dimensional case; see also [2], [3] for an
extensive, freely available, PDF overview. Recent work [4] extends the three-dimensional
case to four dimensions and beyond, driven primarily by physical requirements to obtain a
proper, four-dimensional space-time and non-zero, relativistic intervals. From [4], it is evident
that URMT actually generalises to any number of dimensions 'n’, for square, nxn matrices,
whilst retaining all the physical features present in URM3, including conservation equations,
related scalar invariants and a ternary nature, not least, its three-dimensional eigenvectors.

The three-dimensional form of URMT, known as URM3 and summarised in Appendix (A), is
a completely solved problem under special 'Pythagoras conditions' (19), with the unity root
matrix A,, (A2b) producing three eigenvectors, X,,, X,, and X, (A8), for eigenvalues

A =+C (footnote®), 1 =0 and A =—C respectively, where the two eigenvectors, X,, and
X,_, are Pythagorean triples, and the third, X, , satisfies a hyperbolic 'Dynamical

Conservation Equation' (DCE), (5.7). Appendix (A) provides a complete analytic solution to
URMS with an example, X,, =(4,3,5), also included.

The relevance of the DCE* here is that the formulation of URMT can be expressed starting
with this as an assumed conservation equation in the dynamical variables, for conserved
quantity C?. By applying a form of transformation invariance, both its dynamical equations
and solutions can be obtained, [1],#1°. This invariance® generates a single, global variational

! URMT is currently formulated entirely in integers (14.2) and, hence, if it is a physical description of nature, it
is a discrete description, which probably operates at the Planck scale upward, see [1] or [3]. However, this is
speculative and a definitive scale is yet to be decided.

2 An infinite set (space) of n linearly independent eigenvectors might be a preferable description for the purists,
rather than 'vector space'. The space is not generally closed and neither is there a zero vector - although this
could be added. See [5] for a strict definition of a vector space. The URM3 set of eigenvectors (space) is defined
by the 'lattice' in [1] and [3]. The key point is that every vector in the lattice is an eigenvector of the unity root
matrix and arbitrary, linear combinations of eigenvectors do not generally give another eigenvector in the lattice,
as is true for any general set of eigenvectors for distinct eigenvalues. That is not to say the n URMT eigenvectors
cannot form the basis of an n-dimensional vector space; indeed they can by their linear independence, which is
why the term 'vector space' is used loosely. Currently, however, URMT focuses solely on the eigenvectors
themselves, but not arbitrary functions of them, such as linear combinations.

® This is big 'C', a fundamental constant in URMT and not to be confused with little c, the speed of light. Albeit,

big C also has a physical interpretation as a velocity constant and, more so, C % has an interpretation as that of
energy (per unit mass), see (2.1). Big C was originally chosen as the first letter of the word 'Constant’. That it
appears to be remarkably similar to little ¢ in physical nature is purely coincidental but, admittedly, this will take
some faith.

* The DCE (5.7) is also the singularity condition for the eigenvector matrix equation, i.e. det(A,, —Cl,) =0,

where |, is the usual 3x 3 identity matrix.
> Notation '[1],#N' denotes paper number N, N=1..6, in [1].
® The term 'invariance' manifests itself in the static nature of the URM3 eigenvector X, , which is not a

function of any evolutionary parameter, whereas the other two URM3 eigenvectors, X, and X,_, are explicit

functions of the URM3 evolutionary time, i.e. temporal parameter ;.
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parameter that can be physically associated with time 't,"' " (symbol m or § in[1] to [3]) and,
by varying this time, the evolution of the 3D eigenvector space can also be studied.

Using a similar form of transformation invariance to URM3 (above), each excess (14), jth
dimension, j=4...n, (URMn), is also attributed a unique temporal parameter t;. This

parameter appears in the n-dimensional eigenvector solution and, therefore, the evolution of
any specific, jth dimension can be independently varied by varying t;. In particular, by

studying the behaviour of one or more dimensions for large evolutionary periods, the apparent
relative contraction of all excess dimensions can be observed, i.e. compactification.

As regards the first three dimensions, i.e. those of URMS3, their evolution with respect to t,

(Appendix (B)), is well characterised in URMT and, for long evolutionary periods, i.e. large
t,, the three-dimensional eigenvector space of URM3 is seen to 'flatten’ (or align®). The

concept of ‘flattening’ (15) is described in [1],#3 and [3], and refers to the fact that the two
eigenvectors X, and X,, align anti-parallel’ to X,, as URM3 evolves, i.e. as t, increases.

In fact, exactly the same behaviour is seen to occur for all excess dimensions, i.e. the entire
vector space aligns with the URM3 eigenvector X, , as will be shown in this paper. This

vector is parameterised by two arbitrary integers k and | (see footnote 7), and forms a
discrete cone'® surface in three dimensions. Hence compactification can be thought of as
stopping at the 2D conical surface residing in the three-dimensional eigenvector space of
URMS.

Because URMS3 is a fully solved and documented mathematical problem (see any of [1] to
[3]), only the compactification behaviour of the excess dimensions, with respect to the 3D
world of URM3, is studied.

" Whilst the URM3 analytic solution is parameterised by a temporal parameter t,, it is completely specified by

two additional, arbitrary, integer parameters K and | . However, only t, is of a true, temporal nature, and k

i H\2 i i i
and | have units of (LT ) , i.e. the square root of acceleration (eigenvector X, ), and only ever appear in

expressions of the second degree, e.g. X = 2Kl , see Appendix (A3). Suffice to note, the three eigenvectors
X, X4 and X,  are parameterised by all three parameters Kk, | and t,.

8 It is an alignment in that the vectors converge to align in the direction of the single vector X, , which is static

and invariant to arbitrary variations in any evolutionary parameter. However, X,, is actually a two-parameter

family of integer vectors (footnote 7), hence a 2D discrete subspace of 3D and, in this sense, the 3D flattens (15)
to 2D, see also footnote (10).
° That they align anti-parallel, and not parallel, is largely a choice of sign convention.
10 See [1],#3 and [3] regarding URM3 geometry, cones, hyperboloids and a lattice.
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2 A Standard Physical Interpretation

Since the mathematics of URMT is thought to have strong links to the subject of 'Physics in
Integers', a standard physical interpretation'’ (or association) is ascribed to all variables, see
[1],#3, and [3]. A brief summary of the physical associations follows:

(2.1) X,., x,Y,z, acceleration or force per unit mass, LT
A, X5, P,Q,R, C, velocity' or momentum per unit mass, LT
X, , position, L
t,, m, o,time, T
C?, velocity squared or total energy E (E =C?) per unit mass, L°T 2.

The same interpretation generalises to all higher, n-dimensional quantities: vectors X, , X, ,
X0 (Xioar Xpogs ---) and their elements; matrix A, and its elements (the dynamical

variables); and evolutionary parameter t_, using the following notational equivalents'

(2.2) X, ~ X,,,acceleration
Ay~ A Xy~ Xoar Xnogr Xpoe s -+ Velocity
X, ~ X,_, position
t, ~ t, time
C?, as above.

The paper now proceeds to the mathematical formulation with which the compactification
behaviour can be demonstrated.

" This is not the only physical interpretation but it currently seems the best as regards Physics.
12 The elements of all unity root matrices, e.g. A, with elements P,Q, R, are termed 'dynamical variables' as
they can be physically associated with velocity, or momentum per unit mass.
¥ The URM3 notation has been embellished in this paper to differentiate its vectors and matrices from those of
URM4 and beyond. All URM3-specific variables are now subscripted with a '3', as are all URM N variables
subscripted with an n.
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3 The General URMS5 Formulation

The most general form of URMT, i.e. the n-dimensional 'URM N, is defined for a single,
square nxn matrix A and vector X, which is an eigenvector to matrix A for eigenvalue C,
i.e. AX =CX . Specifically, for URMS5, the unity root** matrix A*° is defined as follows:

0O M H N J
M 0 S T U
(31) A=|H S 0 R Q| (footnote ')
N T R 0 P
J U QP o0

comprising ten dynamical variables

(32) M,H,N,JeZ
ST,UeZ
P,Q,ReZ, (P,Q,R) #(0,0,0), URM3 (Alb)

and their conjugates

(3.3)

, (P,Q,R) = (0,0,0). (footnote *'), URM3 (Alc)

4 Only the URM3 dynamical variables P,Q, R and 5,6, R are true integer, 'unity roots' (A13) and, only
then, when eigenvalue C =1 (3.5). Otherwise, they are generally known as power-residues [6]. Both forms are
isomorphic to the complex roots of unity, e.g. P ~Z, P~Z" for unity eigenvalue. The unity root aspect is not
required in this paper but Appendix (A) provides some background detail at the end (A13).

' The A matrix naturally embeds the URM3, 3x3 matrix A, (A2b)

18 The usage of four, non-consecutive capitals, M, H, N, J in the top row and left column of A is
unfortunate, but primarily due to the inability to find four such consecutive capitals that are not already reserved
in URMT. The peculiar alphabetic ordering, i.e. M,H, N, J , is also legacy and due to some other unpublished
simplifications to the matrix. A similar issue arises with the commonly used Pythagorean triple (3,4,5), which in
URMT is ordered (4,3,5). Mathematically they are, of course, quite distinct, although URMT covers this, see [2].
7 Conjugates, such as P, (j, R , are linked to their standard forms P, Q, R by conjugate relations [2], which

are equivalent to the Pythagoras conditions (4.2c).
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A single eigenvector X is defined comprising five coordinates v,w, X, Y,
(3.4)

v

w
(3.4a) X=|X

y

z
(3.4b) v,W,X,y,z€Z, (v,w,X,Y,z)#(0,0,0,0,0)
(3.4c) ged(v,w, x, y, z) =1 (footnote %)

which, as stated, is an eigenvector of matrix A, eigenvalue C*°

(3.5) AX =CX, CeZ, C>1 (see also footnotes ° and %)

'8 The ged condition (3.4c) is primarily imposed to uniquely specify the elements (URM3 scale factors

05, 3,75 (AB)) for another eigenvector X _ of A, eigenvalue — C . See also Appendix (C15), (C16).

¥ The eigenvalue C is of physical importance to URMT since it can be associated with a velocity and it appears
of second degree (quadratic) in scalar invariants, i.e. equivalent to the kinetic energy per unit mass. Most
notably, C? is the conserved guantity in the Dynamical Conservation Equation (5.7), also appearing in
numerous other scalar invariants.

20 Once a non-zero eigenvalue C is imposed, the URM3 dynamical variables P, Q, R cannot all be trivially

zero, i.e. (P,Q,R) % (0,0,0) (3.2). By conjugate relations (footnote 17), neither are P,Q, R all zero (3.3).
One or two of the three P, Q, R can possibly be zero, but not all three simultaneously. This also constrains the
elements V, W, X, Y, Z of vector X in the same way, (3.4b). That no vector in URMT can comprise all zeros,
and therefore have zero magnitude, is an algebraic consequence of mandating C > 1. Effectively, it means
URMT has no singularities and, naturally, this is a highly desirable physical attribute.
21 URMS3 is generally solved for a unity eigenvalue, C =1, and the solution can then be used to obtain the
solution for arbitrary eigenvalue, C > 1, see [1],#6. The unity value is considered to be the normalised form of
URMT, it also makes for a true definition of the dynamical variables as unity roots; see Appendix (A13).
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4 Simplifications and Pythagoras Conditions

As for all forms of URMT, i.e. URMn, n >3, the general case requires simplifying
conditions to produce analytic solutions that are considered to be of physical relevance. There
is a common set of conditions, termed 'Pythagoras conditions' (19), that are present in every
incarnation of URM n ??, and where the elements of every eigenvector X , for a non-zero
eigenvalue (£ C ), obey the Pythagoras equation, i.e.

(4.1) O0=v>+wW* +x>+y>-17°

Because of the complexity and goals of URMS, it is currently only studied under Pythagoras
conditions, noting that there are also a few additional conditions imposed to obtain some
specific, highly desirable physical properties, e.g. an ‘invariant, zero Potential’, also present in
URMS3 and URMA4.

All work hereafter will assume to be formulated under Pythagoras conditions.

URMS5 Pythagoras Conditions

The URMS5 Pythagoras conditions on the conjugate dynamical variables (3.3) are

(4.2)

(420) M=—M,H=-H,N=-N, J=1J
(42b) S=-S, T=-T,U =U

(4.2c) P = _= , R=-R

When under these conditions, matrix A is relabelled A, (footnote **) where the '5' in the

subscript denotes URMDS, and the '0" represents the standard form of the unity root matrix
under Pythagoras conditions®*. From here onward, all matrices and eigenvectors are

22 All Pythagoras conditions for URM N include URM (N —1) as a subset.

2 In URMS, under a general, unified scheme [1],#5, there are actually three such matrices, A, A, and A_,
albeitonly A, (~Ag, here,and A, in general) is used explicitly in this paper.

2% Regardless of the actual values of the elements of A, (4.3), any eigenvector X, for non-zero eigenvalue,
actually satisfies the Pythagoras equation (4.1), e.g. for URM5 the eigenvector X, is a trivial Pythagorean

quintuple (0,0,X,Y,2) asin 0= 02 +0%+x* + y2 — 2% . The other non-zero eigenvalue of note herein is

— C, the others all being zero, see (5.9). The associated eigenvector for the non-zero eigenvalue —C is X._
(11.1b), and is a non-trivial Pythagorean quintuple. It is no coincidence that the elements of the eigenvectors
X., and X, _ satisfy the Pythagoras equation (admittedly X, is really just a 3D embedding, see (5.17)). It
was a goal of URMT to pursue such eigenvectors as they have a Minkowski form. It is actually eigenvector
X,_ (8.1b), (URM4), with a physical interpretation (2.1) as a position vector, that is considered to have its

fourth-element 'y, ' as the more familiar Ct in the STR four-vector position (X y Ct). Furthermore,
and most importantly, the biggest reason to extend URMT to four and five dimensions was to specifically
incorporate three spatial dimensions, one time dimension, and also allow for non-zero intervals C7 , i.e. proper
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subscripted with an 'n " according to which n-dimensional incarnation of URMn they
represent.

Using conditions (4.2), matrix A (3.1) becomes A, :

0 M H N J
-M 0 S T U

43) Ag,=/-H -S 0 R Q.
N -T -R 0 P
J U Q PO

A kinetic term K and Potential term V are defined as follows, whereby these forms are
intentionally chosen to simplify the characteristic equation for A,

(44) K=J°+P?*+Q*+U’~(H*+M?+N?+R*+S?+T?)

V =[QT —(PS + RU)J +[NQ - (JR+ HP)J’ +
HU — (JS + MQ)J +[NU - (JT + MP)[* =, footnote *

4.5) [
[HT — (MR + NS)[?

Using these two terms, K and V , the characteristic equation, for matrix A.,, eigenvalue A,
IS

(4.6) 0=A(-A"+ KA +V).

time 7 asin —(Cr)? = x>+ y? + 2> — (ct). Keep in mind that the URMA4, four-vector X,_ (8.1b) is the
positional equivalent of the STR four-vector (X y Ct) since the four-vector X,, = (W Xy X) is

physically associated with an acceleration vector (2.2). Albeit, X, and X,, are'dual' to each other in URMT
and the entire theory can be formulated in one or the other. This 'duality’ is discussed, for URM3, in [1],#3,#5
and [3].

% The form of the Potential (4.5) is specific to each incarnation of URM N . Under URM3 Pythagoras conditions

it is always zero. In URM4 it is given by just the first term in (4.5), i.e. V = [QT —(PS + RU)]2 , and is not
generally zero under URM4 Pythagoras conditions without further simplifications, see [4].
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5 Invariant Zero Potential Conditions

With the specific goal of obtaining two symmetric, non-zero eigenvalues, with all others zero,
i.e. 1 =2C,0,0,0 for URMS5 (5.9), it is desirable to make the Potential V zero (4.5). Not only

that, but keep it zero for arbitrary evolutionary times t;, j =3...n, which is termed an
invariant, zero Potential in URMT.

An invariant Potential (not specifically zero) is also very important in URMT physics
because, as in any energy conservation equation, it means the kinetic energy is a constant. In
this case, the DCE (5.7) has a constant kinetic term K equal to the total energy E,

i.e.E=C? =K. It also means there is no kinetic/Potential energy interchange and, hence, no
force, or at least no forces that do any work. In brief, it makes a good simple case to study.

With these factors in mind, and with the benefit of a lot of hindsight, explained in [4], the
additional conditions for such a zero, invariant Potential, V =0, are as follows, with some
explanation given shortly after:

The first two coordinates of X., are zeroed, i.e.

(5.1)
(5.1a) v=0, w=0,

and the URM4 and URMS5 dynamical variables, S,T,U and M,H, N, J respectively, are
assigned as scalar multiples of the eigenvector X., (3.4a), now with two zero coordinates
v,w (above), where the scalars are the evolutionary parameters t, and t.,

(5.10) M =0, H=-t.x, N=-t.y, J =+t.z
(5.1c) S=-t,x, T=-t,y, U =+t,z
(5.1d) t,.t, eZ.

With these conditions (5.1), the matrix A, and eigenvector X (now relabelled X, ) become

0 0 —tx -ty +tz
0 0 -tx -ty +t,sz
(5.2) A, =|+tx +t,x O R Q |, X, =
+t.y +t,y -R 0 P
+t.z +t,z Q P 0

, (footnote %),

N < X O O

with eigenvector equation

%6 The eigenvector X, , whilst five-dimensional, evidently only occupies the subspace of URM3 vector X, .

This is, of course, intentional. Non-trivial (17) 4D and 5D vectors, i.e. those with four and five, non-zero
elements respectively, will emerge as the work progresses; they are the eigenvectors to the other eigenvalues
(5.9).
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(5.3) Ay X, =CX,,.

A justification for the form of A, and X, , for the general, n-dimensional version, is given
in Appendix (C).

An explanation of conditions (5.1) follows shortly after a quick summary of their effect on the
energy terms and eigenvalues.

Every bracketed term in the Potential V (4.5) is now zero and so too, therefore, the overall
sum

(5.4) V =0.

Substituting for the dynamical variables M,H,N,J,S,T,U from (5.1) into the kinetic term
K (4.4), and using the Pythagoras equation (4.1), gives

(55 K=P?+Q?-R?,
By associating K with the positive constant C?, i.e.
(5.6) K=C?,

then, for a zero Potential (5.4), the kinetic expression (5.5) becomes the familiar URM3
Dynamical Conservation Equation (DCE), as per URM3 Pythagoras conditions

(5.7) C?=P?+Q?-R?, the DCE.
With a zero Potential (5.4), and a kinetic term (5.6), the characteristic equation (4.6) becomes
(5.8) 0=2%C*-27).

This characteristic equation factors with the following five eigenvalues as roots, three of
which are zero

(5.9) 2 =+C,00,0, (footnote ).

An explanation on the choice of conditions (5.1), and the rather abstract form of A, (5.2), is
now given.

By writing A, (5.2) in the following block matrix form in terms of URM3 vectors X, , X*
and unity root matrix A, (t,), all reproduced below from Appendix (A),

2 Each dimensional extension of URMT, i.e. URM N to URM (n + 1), adds another zero eigenvalue, starting
with one zero eigenvalue for URM3, i.e. A =+£C,0, two for URM4, A =+C,0,0, and three for URMS5,

A =1C,0,0,0 etc.
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0 0 -t X¥
(5.10) A, =| 0 0 —tX¥
t5><3+ t4><3+ ASO (ts)

X
(Ale) X, =|y|,(Al0c) X* =(x y -z), (footnote %°)
Z
0 R Q
(A2b) A, (t,)=|-R 0 P |, (footnote %),
Q P O

then A, can be seen to be decomposed into three, time-dependent matrix components A, ,
Ag, and A, i.e.

(5.11) A, = A, (t,) —t,A, —t.A, . (footnote *°),

where A;, A, and A are defined as follows, and 0,, is defined as a 3x3 matrix of zeros,

00 O
(512) Ay,=0 0 0 |,
0 0 Aylts)

2 The vector X is the reciprocal’ of X, and related via the URM3 matrix operator T° (~T,) (H14), as in

X* = (T3X3+ )T and, conversely, X,, = (T3X3_ )T . See Appendix (E) for more information on reciprocal
eigenvectors and the T operator.

2% Matrix Ay (t3) is also a function of URM3 evolutionary parameter t, since the dynamical variables
P,Q,R are functions of t,, see (A4) and (A5). Itis defined in [1]#1 as A, (t,) = AL, —t, AL, where the
primed superscript denotes an initial value as in A%, = A, (t, =0),and A} is definedas A" (or A, )in

[1], [3]. Matrix A (~A") is an annihilator, like A,; and A, (5.14), because it has the property

A:X3+ = 0. This decomposition of A, (t,) into A, and Ag is not required in this paper and provided as
background information - it does give some insight into URM3's variational nature and the origin of parameter
t;.

% The subscript '54' in A, denotes the 5x 5 matrix for coefficient t, . Likewise, the subscript '55' in A

denotes the 5x 5 matrix for coefficient .
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0 0 0 0 0 X*¥
(513) A, =|0 0 X* |, A,=| 0O 0 0 [,(footnote )
0 —X, 0, ~X,, 0 0

-+

The matrices A, and A, are known as variational 'delta’ matrices in URMT and they have
the following annihilator property

(5.14) A, X,, =0 and A,X,, =0 (footnote *)

The annihilation property works because the X* vector (A10c), embedded in the first and
second rows of A, and A, respectively, is orthogonal to the X,, vector (Ale), embedded in
the X, vector (5.2), i.e.

(5.15) X* X, =x*+y?—-1z%=0 Appendix (F1), Pythagoras, orthogonality
3+

The first and second row of matrix product A, X., (5.3) is simply equivalent to the inner
product X* - X,, (5.15), which is just the Pythagoras equation, and therefore zero.

Using this annihilator property, the eigenvector equation A, X, (5.3) becomes
(5.16) A Xs. =Ag Xy,
Writing X, (5.2) in block matrix form in terms of X,,

0
(5.17) X.. =| 0 |,
X3

-+

%! Since X, and X* are defined purely in terms of coordinates X, VY, Z, and are completely invariant to
variations in t,, (or t, and t; for that matter), then the matrices A, and A, , which comprise X,, and

X3_, are also static, i.e. not a function of time.

%2 The X, vector embedded in the first column of A, and the second column of A, , is seemingly useless
since it only multiplies the first two, zero elements of X, . Whilst it is intentional to have no effect, i.e. remain
invariant, it raises the question as to why not use any three arbitrary elements and not, specifically, the X,
vector? The answer is simple: the — X, in the column is the negative conjugate of X* in the row and,
ultimately, it means dynamical variables H, N, J and their conjugates ﬁ, N, J satisfy the Pythagoras

conditions (4.2a). This is a must and, since X>" cannot be chosen arbitrarily (it must satisfy orthogonality
(5.15)), it forces the two columns in A and A, toembed — X, , and not any just any arbitrary vector.
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then, from the definition of A, (5.12) in terms of A, (t;) (A2b), the product A, X, inthe
eigenvector equation (5.16) is effectively the same as A, X,, (disregarding dimensionality).
Furthermore, since A, X,, =CX,, by its URM3 eigenvector definition (A1f), the original
URMS eigenvector equation (5.3) is restored, i.e. A, X, =CX,, .

The important point here is that the eigenvector equation (5.3) is invariant to arbitrary
variations —t.A.. and —t,A,, (5.11). The eigenvector equation holds in URMS5 just as it does
in URM3 (and also URM4 or URMn in general), invariant to any arbitrary variations —t.A
and —t,A,, in matrix A, (5.10). This might well seem pointless since nothing has been
achieved. Which, in a sense, is the whole point of invariance transformations - to do nothing.
But, and it’s a big but, the transformations do not leave the other four eigenvectors X, _,
Xeonr Xeggs Xeoe (for eigenvalues, 2 =-C,0,0,0) invariant, on the contrary, they will
change according to the values of t, and t.. Consequently, it is these latter four vectors that
generate an evolving eigenvector space in URMDb.

If anything, a fair criticism would be that X, (5.17) is nothing more than X,, with a couple
of zeros added to the front to extend it from three to five dimensions. However, not all
eigenvectors are quite so simple - two of the eigenvectors, X.,; (11.1d) and X, (11.1e),
have four non-zero elements, and X, (11.1b) has a full five, non-zero elements, making it a

non-trivial (17), five-dimensional vector. Although it may seem that such vectors are,
therefore, only parameterised in terms of the two variational parameters t, and t., the

solutions themselves are expressed in terms of the URM3 eigenvectors, which are fully
parameterised by three parameters, t,, k and |. Hence they are 5D vectors with a 5D
parameterisation (t,,t,,t;, k and I). This has the caveat that not all eigenvectors utilise the
full parameterisation. For example, X, (11.1c) will be seen to be simply an embedding of
the URMS vector X, so it is actually only parameterised by the three URM3 parameters, t,,

k and I. Nevertheless, in general, all five parameters are used in the complete solution for
URMS (9.6).

This completes the justification for the form of A, .

Before proceeding to obtain all five eigenvectors from A.,, and thereafter analysing the

compactification behaviour of URMS, a formal definition of what is meant by
compactification, in the context of URMT, has to be given.
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6 The Compactification Ratio

Since the aim of the paper is to show compactification occurs over long evolutionary
timescales, in one or more excess dimensions, a quantitative measurement of the relative size
of a dimension j, with respect to the first three dimensions of URMS, is required. Such a

measurement is termed a compactification ratio y ;, defined further below, in terms of the
'magnitude’ of a dimension, which is defined next.

(6.1a) Definition: The magnitude (or size), symbol |X|j , of a particular, excess jth dimension,
] >4, is a measure (usually an approximation) of the dominant jth coordinate in that
dimension. For advance information, this measure is invariably approximated as the time-
scaled multiple of the eigenvalue, i.e. ‘thc‘ =2t;C, where t; > 0 by convention (7.2) and

C >1 by definition (3.5).

(6.1b) The magnitude of the first three dimensions, symbol |X| ,» Is @ measure of the size of
the URM3, 3D subspace of the full n-dimensional, eigenvector space. This measure is
invariably approximated from just the dominant X, vector, and then only using the quadratic

term ‘th3+ , J=>4.That j=3 here is intentional, see footnote 33.

(6.2) Definition: The compactification ratio of dimension j, denoted by y;, is the ratio of
the magnitude |X|j (6.1a) of the jth dimension to the magnitude |X|, (6.1b) of the first three
dimensions (URM3), i.e.

X,

63) 7z, =t
X,

With a compactification ratio y; defined, then showing compactification occurs over
evolutionary timescales translates to showing the ratio y; decreases to zero as the jth
dimension’s evolutionary time t; increases without bound, i.e.

(6.4) lim , =0.

Since the above definitions for magnitudes |X|j and |X|, allude to the fact that they are
approximated as follows:

65 X, ~2t,C

(6.6) |X], ~ [t} X,
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then the compactification ratio y; (6.3), of dimension j, is approximated by

6.7) %=~ , t; #0, use (6.3) when t; =0.

From this approximation it is seen that y; is inversely proportional to time t;, hence the limit

(6.4) is satisfied. Moving on to specifics, the calculation of the compactification ratio, and its
behaviour for the URMT eigenvector solutions, is now the main focus of the paper with
regard to demonstrating compactification in URMT.
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7  Eigenvector Solutions

Equipped with a URMS unity root matrix A, (5.10), and a definition for eigenvector X,
(5.17), the other four eigenvectors X, , X, Xgg: Xgoe o (11.1b) to (11.1e), are determined

using what is termed the 'Residual Matrix Method' in URMT. Because this method is outlined
in Appendix (C), and fully explained in [1],#2 and [2], the eigenvector solution is quoted
further below, without explanation.

Before proceeding to examine the URMDS solution (11.1), it is preferable to study the URM4
solution (8.1) first, which is given in terms of the URMS3 eigenvector solution, detailed in
Appendices (A) and (B). The reasoning behind this is that URM4 is, of course, the first
dimensional extension to URM3 and the arguments on compactification, for URM5 and
beyond, are easily established with URMA4. It is actually very easy to obtain the URM4
solution (8.1) from the URMS5 solution (11.1) by setting the URMS5 evolutionary parameter t,
to zero. It could also be obtained algebraically using A., (5.10) with t; =0, and obtaining
the URM4 eigenvectors X, (8.1b), X,,, (8.1c) and X,,; (8.1d) from scratch, using the
residual method with this cut-down, 4x4 variant ‘A ;' of A, (t; =0). The X,, eigenvector
is trivially obtained from X, (5.17) by eliminating its first, zero element and retaining the

remaining four, i.e. (0,x,y,2)" ~ (0 X, ) .

Three sets of eigenvector solution are given as follows:

(7.2)
1. URMA4 in terms of URM3
2. URMS5 in terms of URM3
3. URMn interms of URM3, n>4

The URMS3 eigenvector solution®® is given in Appendices (A) and (B).

All solutions are given in block matrix form. Keep in mind all standard (lower subscript)
URMBS vectors, e.g. X,, , are 3x1 column vectors, and their reciprocal forms®* (raised
subscript), e.g. X*, are 1x 3 row vectors. Likewise, for URM4, standard forms of
eigenvectors such as X,, are 4x1 column vectors, and their reciprocal forms, e.g. X*", are

%% The evolutionary forms of the URM3 eigenvectors, for the solution sets (7.1), have not been expanded in full
as functions of parameter t;, since this isn't particularly necessary for the analysis of compactification of the

excess dimensions, and only the behaviour for large evolutionary times, t, >> 0 and/or t, >> 0, is required.
See Appendix (B) for the URM3 eigenvector equations. The evolutionary behaviour in URM3 is also fully
documented in [1],#3, with an overview in [3].

% The reciprocal vectors are also often referred to as dual vectors in the literature since they form the basis set,
dual to the standard eigenvector basis. However, URMT has a 'dual’ formulation, which is not quite the same
thing, i.e. it doesn't mean the formulation of URMT in terms of a dual basis. On the contrary, in [1],#5, the dual

of X,, is X, and vice-versa, with X, defined as self-dual, none of which reference the reciprocal vectors.

In fact, URMT can be formulated in standard form using X, , or dual form using X, _, but not both
simultaneously - this is URMT's form of duality.
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1x 4 row vectors. Generally, however, discussion will only refer to the standard vector forms,
and not their reciprocals, since every reciprocal vector can be obtained from its standard form
using the T operator relations; see Appendix (E). Identical comments are assumed to apply to
the reciprocal forms, as for the standard forms, except where specifically highlighted
otherwise.

In all discussion, the first element of the vector is always the nth dimension in URMn, and
the remaining (n —1) elements represent the (n—1) dimensions in URM (n—1). The last three
elements are always dimensions one to three, i.e. URM3, and referred to as 'the first three
dimensions'.

To keep things simple, it will be assumed that all evolution proceeds in the forward, positive
direction, i.e.

(72) t,>0, j=3..n

However, this is convention only, none of the work specifically requires such an assumption,
and t; can be positive or negative. Remember, t; is a variational parameter and it certainly

could be positive, negative, proceeding forward or backward. Nevertheless, using the standard
physical interpretation, Section (2), it always has physical units of time.
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8 URMA4 Eigenvector Evolution Equations

The eigenvector evolution equations for the URM4 eigenvectors, in terms of the URM3
eigenvectors, are as follows:

(8.1)
0
(8.1a) X‘”:(X ]

3+

B10) X, :_t;( 0 ]+2t4(0]+( 0 ]
X3 0, Xy

0
(8.1¢) Xya :(Xso]

0 C
010 %eae 0 [0

Before proceeding with a more detailed analysis in Section (9), the following observations of
this solution are made:

(8.2a) Regardless of the size, relative or absolute, of the fourth dimension’s evolutionary time
t,, the only vectors that contribute anything to the size of the fourth dimension are X, and

X0 Since they have a non-zero component, eigenvalue C, as their first element.

(8.2b) In fact, looking ahead to the general, n-dimensional solution, Section (13), C is the
only quantity, other than evolutionary time, that is present in each excess dimension, and then
it only appears in the linear product term t;C, j=4...n, or the constant term, as itself, C .

Note too that C does not explicitly appear in any of the three URM3 eigenvectors; see (A8).
The contribution of the jth dimension at the initial stage of evolution, i.e. t; =0, is thus

governed by the magnitude of C compared to the magnitude of the URM3 eigenvectors.
Given C is related to the total energy, E = C? (2.1), it means that at t ; =0 a comparatively

large value for C would make for a sizeable excess dimension with a lot of energy in it, C
being suitably chosen as an initial condition.

(8.3) For any sufficiently large® evolutionary time t,, the URM3 vector X, dominates the
entire solution. See, for example, X,_ (8.1b) with a quadratic 't ' term. Since X,, and X,_

* The caveat 'sufficiently large evolutionary time' appears repeatedly throughout. In general it means any time t
large enough such that the approximation under discussion is valid. In actuality it means the magnitude of the
quadratic term in tf, inthe X, _ eigenvector, for excess dimension j, j=4...n, dominates all other terms

in all eigenvectors. It is discussed again in Section (10).
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are functions of the evolutionary time t,, Appendix (B), they also grow with t,. However, for
a large URM3 evolutionary time t,, regardless of time t,, URM3 itself converges (flattens) to
also align with X,, and, ultimately, all evolution tends to align with X, . Nevertheless, that

any excess dimension is dominated by one or more of the URM3 vectors, X,,, X,, and X, ,

only serves to bolster arguments that the compactification reduces from the higher, excess
dimensions to those of URMS3. Suffice to note, it is not the relative size of URMS3 vectors that
matters with regard to compactification of excess dimensions, but the size of the excess
dimensions relative to those spanned by the URM3 vectors.
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9  Analysis of URM4 Compactification

Looking at the URM4 eigenvector solution (8.1) in more detail, the only two vectors in
URMA4 that contribute to the fourth dimension are X, and X,,, i.e. they have a non-zero

first element. In vector X, , the size of the fourth dimension (first element) is controlled by
the linear term 2t,C, and in vector X, , the size of the fourth dimension is controlled by the

constant term C . There are a few sensible ways to combine these two sizes, e.g. root sum
squares or summation of the magnitude of the individual components, i.e.

9.1) |X|, =4(2t,C)*+C* or |X]|, =[2t,C|+|C],

but, given the analysis is primarily interested in large evolutionary times, i.e. t, >>0, it is
clear that only the 2t,C term from X, will dominate, i.e.

9.2) 2t,C>>C fort, >>0.

Therefore, the magnitude of the fourth dimension is simply approximated as the magnitude of
the time-dependent component, i.e.

9.3 |X,~2t,C,t,>>0.

From here onward, to avoid repetition, the following two points are assumed throughout this
section, and stated here

(9.4a) All calculations of |X| , are restricted to their URM3 components only (last three
elements).

(9.4b) Al approximations for |X|, are assumed valid for sufficiently large t, (footnote *),

with some justification given in Section (10).

% Note that there is a subtle distinction here between a large time t,, as in much greater than zero (t, >>0),
and a 'sufficiently large' t,, such that any approximation is actually valid. In the first case (9.3), of sizing the
fourth dimensional component, the t, >> O criterion is sufficient given (9.2). In the second case, of sizing the

other three dimensions, having t, >> 0 might not, by itself, be sufficient to justify the approximation, with a
more exact definition required. This topic is considered again in Section (10).
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The magnitude of the first three dimensions, denoted by |X| ,» Might seem a much messier

affair because there are now three URM3 vectors X,,, X,, and X, embedded within the

URM3 dimensions (last three elements) of URM4. Looking at the URM4 eigenvectors (8.1),
the URM3 components for each vector are

(9.5)
(9.58) X,, =X, , URM3 components only

(9.5b) X, =-t2X,, +X, ,ditto

(9.5C) X, oa = Xy, ditto

(9.5d) X, =-t,X,,, ditto

A measure of |X| , can be obtained by combining the magnitudes of these above components

and, again, a root sum squares or sum of individual vector magnitudes are the two common
methods of combination®":

(9.6)

i + |><40A|2 + |><4OB|2 + |><4—|2

960) [X|, =/|X,.

, root sum of squares.

(9.6b) |X[, =|X,,

+[X40n| +|X 08|+ [X4_| , sum of magnitudes

Of the four vectors (9.5) in these expressions, only X, (9.5b) is dominant because it is the
only vector with a quadratic term in t,. Therefore, |X|, can be approximated by |X,_| for
some sufficiently large time t,, i.e.

9.7) X, =[X,|.

Furthermore, (9.5b) shows that X, is dominated by the term —tZ X, when assuming the
following, which is basically the criteria of a 'sufficiently large time t,,

9.8) [tiX,.

>> |X3_| .

%7 1t should be noted that all URMn vector spaces are, generally, highly oblique, i.e. the eigenvectors, as a basis,
are far from orthogonal to each other, and neither are they are of unit magnitude. Therefore, any such measures
(root sum squares, etc.) are relatively basic estimates, but considered acceptable if consistently applied.
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Under this assumption, X, is approximated by —t:X,, , formalised as

(9.9) |X4—| ~ ‘tjstr

(9.10)
However, although not shown, X, also evolves with URM3's evolutionary time t,, and it

too can be approximated, for some sufficiently large t,, by ‘t§X3+ e [Xg |~ ‘t§X3+ . Thus,

it is easily possible a time t, can be found such that the magnitudes |X, | and ‘th3+
~ |X3—| ~ ‘t§X3+

are
comparable, i.e. ‘th3+ . It might then be better to use a combined estimate
such as ‘(tj +17 )X3+

ignoring t, completely, by virtue of the explanation given next.

will be used,

for [X,_|. In fact, the first, simpler approximation ‘th3+

(9.11)
Fortunately, these aforementioned concerns about t,, and the comparative size of its evolving

vectors, are all irrelevant for the following reason: given the definition of y; has the URM3
magnitude |X|3 in its denominator, a smaller estimate for |X|3 will give a larger ratio y;, i.e.
a more pessimistic measure of compactification. If a pessimistic measure of y; can be shown

to converge to zero, for large evolutionary times, then it will also converge to zero quicker,
i.e. for smaller evolutionary times, when the true magnitude of |X| , Is greater than that used in

the calculation.

Since |X|, is dominated by |X,_| due to the domination of the term —t{ X, , and disregarding
any URMS3 contribution due to t, for reasons given above (an increasing t, only grows the
relative size of URM3, and betters the compactification), then the approximation ‘— tZX,,

will be used as measure |X|, of the magnitude of the last three dimensions of URMA4, i.e.

(9.12) [X|, = t§|Xs,].

Having established approximations for [X|, (9.3) and |X|, (9.12), the URM4 compactification
ratio y, can now be calculated.
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The URM4 Compactification Ratio y,

Substituting the approximation for |X|, (9.3), and |X|, (9.12) into (6.3), for j =4, the
compactification ratio y, of the fourth dimension in URM4, is approximated as follows; see
also Section (10) which shows this approximation improves as t, increases.

(9.13) y, = , for sufficiently large t,,

t4|><3+

Note that y, >0 since C >0 by definition (3.5), and t, >0 by convention®® (7.2). This
convention is strictly t, >0, but the ratio is only calculated for t, >0 for the obvious reason
to avoid a zero divisor in (9.13). A different compactification ratio for t,, at time zero, could
be calculated but it is rather pointless since the focus is on large evolutionary times.

The vector magnitude |X3+ (footnote®®) is constant with respect to time because the vector

X,, Isstatic (111), i.e. it has no dependence on any evolutionary parameter, notably t, ; see
also footnote 7. So too is eigenvalue C also a constant and, additionally, an initial condition.
The ratio y, is therefore just inversely proportional to the time t,, and so tends to zero as t,
tends to infinity, i.e.

(914) lim 7, =0.

To conclude then, in the four-dimensional vector space of URM4, the excess, fourth
dimension is seen to contract as the evolutionary time t,, for that dimension, grows ever
larger, eventually appearing to have zero size as t, grows infinite. Hence, under assumption
(9.4b), the four-dimensional vector space compactifies to that of the eigenvector space of
URMS, as evolution progresses. Specifically, all 4D eigenvectors align with the single, static
URMS eigenvector X,, , which occupies a 2D subspace (footnote 7) of URM3; hence URM4

compactifies to appear two-dimensional.

%8 The convention is actually t, >0 but the ratio is only calculated for t, > O for obvious reasons in (9.13). A

different compactification ratio for t, at time zero could be calculated but, since the focus is on large
evolutionary times, it is rather pointless.

% By the definition (Ale) of X, in terms of acceleration coordinates X, Y, Z , the magnitude |X3+

is actually

|X3+| = \/§|Z| By the Pythagorean relation (F1) between X, VY, Z, |Z| is always greater than zero, see (A3c)

and (A3d), and increases with increasing values for parameters k and |, hence only increasing compactification
by decreasing the compactification ratio.
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As regards URMA4, it remains to define what is meant by a 'sufficiently large evolutionary

time', and justify the assumption (9.4b) made. This follows next, and is applicable to any
excess dimension j, j=4...n.

Following this, the same compactification analysis is performed on the 5D solution, which is
seen to have evolutionary terms in both t, and t,.
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10 A Sufficiently Large Evolutionary Time

Until now, the term 'sufficiently large evolutionary time' has been considered as any
evolutionary time t, large enough such that the approximation under discussion is valid. Now

that a specific approximation for the size |X| , 0f the URM3 dimensions, embedded within
URM4, has been given, i.e. ‘th3+
be made more definitive.

(9.12), the term 'sufficiently large evolutionary time' can

Although only URMA4 has been analysed, this section will generalise to the jth dimension,
j=4...n, for URM n, which basically just means replacing every subscript of '4' by 'J', as
regards results obtained in the previous section.

Firstly, the same approximations used in URM4 are now generalised for an arbitrary
dimension j, j=4...n, as follows:

(10.1)
(10.1a) [X|, ~[X; |, see (9.7) for URM4

(10.10)[X, | = [t} X5, see (9.9) for URMA,

The two above approximations are combined to give

(10.1¢) [X], = [t} X5,

, see (9.12) for URMA4.

Readers are also referred to the general solution in Section (13) to see these approximations.

A measure of the relative error & in the approximation (10.1c) of |X|, by‘tfx3+ , at any time
t;, is given by
2
“X|3 _‘ti X3+H . . . N .
(10.2) = T estimate of relative error in approximation at time t;.
3
(10.3)

It is at this stage that a potential problem appears. Whilst the approximation (10.1c) ‘th3+ is

acceptable when calculating the compactification ratio x; (x,) (9.13), using just time t; (t,)

(for reasons outlined in (9.10) and (9.11)), it is not so good when calculating the relative error
£ In (10.2). The idea behind the calculation of ¢, as seen further below in this section, is that

it removes the quadratic term t; from the numerator in (10.2), leaving only linear terms in t; .
However, by ignoring all other evolutionary times t., where i = j, i, j =3...n, from
approximation (10.1c), and using just t;, leaves quadratic terms in t; which can be as large as
t;, if not larger. In other words, the error ¢ is not small in these circumstances, i.e. when
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ignoring t;, and it will not always converge to zero as t; grows, even though the
compactification ratio will converge, as per (9.14).

There are three methods to overcome this:

(10.3a) Replace the crude approximation ‘th3+ by a better approximation [T.>X,, |, where
T2 =) ti. Thisis alluded to in point (9.10) where it is suggested that ‘(tj +12 )X3+ be used
k=3

instead of ‘th3+

(10.3b) Assert t; >>t;, i # j, i.e. make the jth evolutionary time much greater than all others
t,.

(10.3c) Setall t, =0, where i j, i,j=3...n

The first (10.3a) seems a good, obvious choice since the original approximation is very crude
and, in reality, this better approximation, using T, should always be used for both an

accurate calculation of the compactification ratio and in any error analysis. Nevertheless, it
will not be used here solely because it makes the analysis clumsy and, most importantly, it
isn't really necessary because the third option, (10.3c) below, circumvents the problem.

The second choice (10.3b) will do the job, i.e. make the approximation (10.1c) reasonable, but
is disliked because it means the evolution times can never be comparable, i.e. it becomes a
condition that the jth evolutionary time t; is always much greater than every other, ith time

t. . Since the evolutionary times may well all be identical, this solution is not acceptable
except when all other times t. are zero. This then is the third solution (10.3c), discussed next.

The third choice (10.3c) is the preferred option because it makes the analysis simple and will
make the approximation (10.1c) valid, even if it is an artificial condition. Although artificial
in that all evolutionary times are zero, other than t;, the computation of x; remains

unchanged and valid. As noted for URM4, points (9.10) and (9.11), ignoring non-zero t, will
give a worst-case estimation of y;, and any non-zero times t; will only make y; better
(smaller), i.e. faster compactification.

Lastly on this issue, if true accuracy is required, it is a simple matter to revert to method
(10.3a), i.e. replace time tf with the combined, quadratic time T2 in the approximation of

X, (10.1c), which can then be used to calculate ;.
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To conclude the above, for the purposes of this section only, the calculations will assume all
times t;, other than t;, are zero; t; being both non-zero and likely 'large’

(10.4) t;#0,t =0,where i=j,ij=3...n,

Returning then to the calculation of the relative error ¢ (10.2), under the assumption (10.4),
this calculation requires a true (accurate) expression for |X| .+ This was left undecided in the

previous section, with one of two options, (9.6a) and (9.6b), available. Given ‘X j_‘ is the

dominant term in |X|, then, whichever one of the two is chosen, they both approximate to

(10.1b), (10.1c). The best form for analysis is the sum of magnitudes, e.g. (9.6b), and is thus
chosen as a measure of |X|,, now formally defined by

(10.5) [X|, = > |X;|, for all eigenvectors X; in the n-dimensional basis.
i=1

To see how the relative error ¢ behaves with respect to time t;, it is also useful to define an
absolute error ¢_ for the approximation (10.1b), calculated as follows,

(106) & =[X; |-[t}X,.

Using this, and the sum form (10.5) for |X| ,» then the numerator of & (10.2) is re-written as

={|xn+

For example, using the URM4 eigenvectors (9.5), and assuming ¢_ is small, this becomes

(20.7) [X], - [t} s,

n-3
+|xn0|+z|xn0i|j+g_.
i=1

(20.8) [X], ~[t:Xs, | = (X, |+ [X son] +[X s ]), URMA.

Looking at (10.7), and ahead to (13.2b) for ‘Xj_‘, then because the quadratic term in t; has

been removed by the subtraction of ‘th3+

on the left of (10.7), ¢_ is only of linear order in
time t; (t,), for large t;, and ignoring t; (t,) by assumption (10.4), then

(10.9) O(z ) =t,.
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Likewise, from the general solution (13.2), or using the URM4 vectors (9.5) as an example,
all vectors in the bracketed term on the right of (10.7) and (10.8) are also only of linear order,
since X,;_ (X,_) is the only vector with a quadratic factor in t; (t,), i.e.

n-3
(1010) o{|xn+ +|xn0|+z|xn0i|] 1,
i=1
Therefore, the entire order of the numerator term (10.7) is linear in t; .

(20.12) OX|, - [t} X, =t;

Conversely, the denominator |X| , still contains ‘X j_‘ and remains a quadratic function of t;,
Le.

(10.12) O|X|, =t}
Therefore, inserting numerator (10.7) and denominator (10.5) into (10.2) shows that the error

& is now inversely proportional to time t;, i.e.

(10.13) e tl under assumption (10.3c), footnote®
i

In other words, choosing |X| , as the form (10.5), and using the quadratic approximation

(10.1c), gives an estimate for the approximation error &, which is inversely proportional to
time and, thus, decreases to zero as time increases.

This last result (10.13) is pivotal in defining the term 'sufficiently large..." because, basically,
it means that, for any time greater than t;, the relative error ¢ will always be less than its

value at time t;, which is formalised next.
Finally then, by choosing a value of the maximum, permissible error ¢; as a pre-condition:
(10.14) &; = the maximum, permissible error for &£ (10.2), e.g. 0.01 for 1% error,

then a definition for 'sufficiently large evolutionary time' is given as follows:

(10.15) Definition: a sufficiently large evolutionary time is considered to be a time t;, for a
specific dimension j, j=4...n, if, for all times t greater than t;, the relative error ¢ (10.2)

“% | the assumption (10.3c) is unpalatable, then follow the suggestion in (10.3a), i.e. replace tf with a better,

more accurate time Tn2 in both the calculation of y and & . Doing so will then give the same, inverse-time

result (10.13) for ¢ .
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in the estimate for the size |X| , of the first three dimensions, i.e. the size of URM3 embedded
in URMnN, is less than £, i.e.

if ¢ <g; forall t >t;then t; is 'sufficiently large'

Furthermore, the error decreases with increasing time such that it converges to zero, i.e.
(10.16) !im e=0

Admittedly, this does not give any actual sufficiency time, but merely shows that by
approximating the magnitude |X| , by selecting the dominant, quadratic, evolutionary terms in

t;, under certain assumptions (10.4b) (which can be rectified - footnote 40), the error in this

approximation converges to zero as evolutionary time progresses. The numerical example in
Appendix (D) provides some values of & versus t;.
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11 URMS5 Eigenvector Evolution Equations

The eigenvector evolution equations for the URMS5 eigenvectors, in terms of the URM3

eigenvectors, are as follows:

(11.1)
0
(11.1a) X, =| 0
><3+
0 C 0 0
(11.1b) X, =—(2+t2) 0 |+2t| 0 |+2t,| C |+| O
><3+ 03 03 X3—
0
(11.1c) Xeon=| O
X30
0 0
(11.1d) Xeps =-t,] 0 |+ C
><3+ 03
0 C
(11.1e) Xee =—ts| 0 |+ 0
><3+ 03

Looking at this solution, there are no mixed t,,t, terms, and it splits nicely into independent
terms in t, and t;. The vector X, , that contains terms in t, and t., is split into its 5D and

4D components, denoted by X, (t,) and X, (t;), as follows:
(11.2)

0 0) (0
(11.2a) X (t) =t 0 |+2t,C|+7| 0
Xs, 0, X3
0 cy [0
(11.2b) X (ts)=~t5| 0 |+2] 0 |+| 0
X3, 05 X3
(11.2¢) X =X (t,)+X, ()
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The zero eigenvectors (112) X, and X,,. are also, rather conveniently, already separated

into a 4D and 5D, time-dependent form*, with each uniquely associated to its dimension, i.e.
X s With the fourth, and X, with the fifth, trivially expressed as

(112d) X50|3 (t4) = ><E;OB
(11.2e) Xeoe (ts) = Xogoe

Not only does the URMS5 solution separate into a unique 4D and 5D term, but these terms are
identical, disregarding the particular excess dimension. They are 'identical’ in so far as the
URM4 component contributes a linear term 2t,C in X, (t,) and C in X, (t,), and the
URMS component contributes a term 2t.C in X, (t;) and C in X, (t;), which are
identical upon interchange of times t, and t; . Since it is only the magnitude of the
contribution in the excess dimension that matters in the analysis of the ratio y , each

dimension can be treated separately and, furthermore, identical findings for one dimension,
apply to the other.

Concluding from the previous paragraph, the separability of the URMS5 solution into 4D and
5D unique components, and the interchange symmetry of t, and t, between the two

components (as regards calculating the ratio y ), means that each dimension acts
independently, with identical behaviour with respect to their individual evolutionary times.

The compactification behaviour of the fifth dimension, isolated from the 4D behaviour, can
easily be analysed by equating time t, to zero, and thereby nullifying the 4D component,

leaving only the 5D solution in terms of t,. However, as stated, barring the fact that the 5D

component affects the fifth dimension, and not the fourth, it is effectively the same solution as
that for URM4 (8.1), by virtue of the interchange symmetry between t, and t,. Thus, the

same arguments used for URM4 can be applied to URMS5 and, most importantly, the
expression for y., i.e. the URMS equivalent of URM4's ratio y, (9.13), is simply written

down by interchange of t, with t., i.e.

2C
t5 |X3+

(11.3) . = , for sufficiently large t.,

As regards URMS5, it only remains to examine when both t, and t. are comparably large, i.e.
(11.4) t, ~t,

Unsurprisingly, given the above discussion, if either one of t, or t is sufficiently large, then
compactification will still occur since the dimensions act independently. If both t, and t. are

*! Time-dependent for excess dimensions only, and not X4 (11.1c), which is simply an embedding of the

URMS3 vector X, and a function of URM3's time t ,.
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large, it will only serve to increase this compactification process further. However, this
process is nicely illustrated with regard to what is really, physically happening, and that is that
URMS3, from the perspective of the fourth or fifth dimension, appears to expand with a
constant acceleration.
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12 An Expanding URM3 Vector Space

Whilst the analysis and discussion is focussed on the concept of compactification, i.e. relative
shrinkage of dimensions, it is not that any dimension actually shrinks, but rather that the
URMS3 dimensions appear to expand, and then with a constant acceleration (constant with
respect to evolutionary time), that of the URM3 static vector X,, “2_ Simultaneously, the

excess dimensions expand linearly with a constant velocity (eigenvalue C ). Because the 3D
expansion is a static acceleration, URM3 spatially expands along X,, (within X )

quadratically with respect to the evolutionary times t, and t,, as witnessed by the solution for
vector X, (11.1b); there is also the linear expansion (due to velocity C) in the excess
dimensions of both X, and the zero vectors X, (11.1d) and X,,. (11.1e). But, of course,

these linear terms becomes less important relative to the quadratic term, as the evolution
progresses, hence the apparent contraction of the excess dimensions relative to URMS3.

Looking at the URMS5 eigenvector solution (11.1), it is clear, for sufficiently large t, and/or
t., the solution is dominated by the quadratic term in X, scaling the vector X, . This vector
X, is really just the URM3 vector X,, embedded in URMS with a zero fourth and fifth
dimensional contribution. As noted earlier, (9.10) and (9.11), ignoring the vector X, givesa
worst-case ('pessimistic’) compactification ratio. Therefore, just concentrating on X, _, it is
approximated as follows, for sufficiently large t, and/or t.,

(12.1) X, ~—(t2 +t2)X,, .

Given X, is really just a 5D embedding of X, , the URMS3 vector space grows quadratically
with respect to either t, or t., along X,, , and it matters not if t, is small relative to t,

(t; >>t,), providing t. is sufficiently large. Likewise, in the converse case, t, >> t., there is
still quadratic growth in URMS3 along X,, . Thus, either the fourth or fifth dimension can act

in isolation to increase the size of the URM3 space, by growth in its evolutionary parameter,
t, or t, respectively; both evolutionary times acting together can only increase this growth

further. Given all excess dimensions only grow linearly with evolutionary time, the quadratic
growth in X,, will have the desired effect of making all the excess dimensions appear to

shrink (compactify) and align along X, , as also happens in URM3 for large evolutionary
periods t,.

*2 This is the reason why all the other eigenvectors align with X, over times t;, since they are related to X,

by calculus relations, e.g. the velocity X .. is the integral of acceleration X, (~Xj, ), and the position X _

noj
is the corresponding integral of the velocity (both to within a constant factor), see Appendix (G) for more details.
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To summarise, when both evolution times are comparable, and at least one of themis
sufficiently large, then the compactification process still occurs. Thus, for any large, fourth or
fifth-dimension evolutionary time, the five-dimensional vector space compactifies to that of
the eigenvector space of URM3 as evolution progresses, for 'sufficiently large evolutionary
times' t, or t.. Specifically, all 5D eigenvectors align with the single, static URM3

eigenvector X,, , which occupies the discrete, 2D, conical subspace of URM3, hence URMS,
like URMA4, also compactifies to appear two-dimensional within the 3D space of URM3..

The final stage then is to show that this same compactification behaviour arises for any
arbitrary, n-dimensional space, which is demonstrated using the general, n-dimensional
solution.
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13 The General n-dimensional Solution

The general solution for URMn, n > 4, is actually obtained recursively by calculating the
residual matrix for A , using an embedded matrix A , ,,,; Appendix (C) gives an outline.

However, the recursive solution is best given in a much simpler, unravelled form in terms of
the URMS3 vectors. Barring a single, linear Diophantine equation in URM3, see (A4), URMn
is a completely solved problem with an analytic solution for the eigenvectors parameterised
by all n parameters, i.e. n—2 temporal parameters t;, j=3...n, and two non-temporal

parameters k and | (A3d).

With 0,, defined as a 3x3 matrix of zeros, and I, ; as the (n—3) x(n—3) identity matrix,
then a constant, nxn matrix M, is constructed as follows:

I 0
(13.1) M, :C( " ]
0
The subscript n on M will be dropped from here onward and M assumed a square nxn
matrix.
The matrix M has a lead diagonal with all elements equal to eigenvalue C except for the last
three diagonal elements, which are zero. These last three zeros are, of course, so that the

matrix M has no URM3, 3D contribution. Equally importantly, M is a constant matrix and
has no time dependence; the ith column®® of M is the equivalent of the initial value, zero

eigenvector at t; ; = 0, denoted by primed vector X{,;, see further below.

The general solution for the vector X, is nothing more than the embedding of the static,
URMBS vector X,, inits last three elements, padded with n—3 leading zeros.

(13.2)
(13.2a) X, = (0”'3]

Denoting the kth element of X _ by X ., k =1...n, then the general solution for vector
X, isgiven by

0 n-3 0
(132b) Xn—k :( n—3] + _t]?+3( n—3] +2tj+3Mki y
' Xy ) ‘= X )y

k=1...n,n>4,i=n-(j+2), footnote 43

“Theindex i,asin i=n—(]+2), (13.2b), goes from n—3 to 1 as j goes from 1 to n —3, and works

across the first N —3 columns of M, which are non-zero, unlike the last three columns.
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The first zero vector X, (~X,o;, J =0) is just an embedding of the URM3 zero vector X,

0
(132C) XnOA :( n_3]1 XnOA ~Xn0jl J :0'

For all other zero vectors, denoting the kth element of X ,; by X,,;,, k =1...n, then the kth

noj,
element of the jth, zero eigenvector X ,;, j=1...n-3, is given by

0
(13.2d) X9, =t .5 7+ My,
><3+ Kk

ji=1..n=-3, k=1...n,n>4,i=n-(j+2).

XnOB - XnOl (J zl), XnOC - XnOZ (J :2) etc.

By setting the evolutionary time t.,, to zero, it is seen that the ith column of M, where

j+3
I=n-(j+2),isthe initial, zero vector X{,;, for the jth dimension, j=1...n-3
(i=n-3...1), i.e.

(13.3) Xl =My att, =0, j=1..n=3, k=1..n,n=4,i=n—(j+2).

noj,

eg. forURM4, n=4, j=1,i=1, k=1...4, Xy, =My

C 0 . (cC
(13.4) M= My =Xy =] ] t,=0
3 033 03

e.g. for URM5, n=5

C 0 0
(135)M=| 0 C 0 |, j=1,i=2, k=1.5, X, =M,
03 03 033
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0
(13.5h) Xg01,k = C |, M, = X;m - Xsos (t4 =0)
0, y

j:2, izl, kzl...5, Xgozvk :Mkl

C
(13.5€) Xy =| 0 | , Mg = X0y, ~ Xgoc (t5 =0).
0,),

Some points on this general solution are made following:

(12.10) The two vectors X,, (13.2a) and X ,, (13.2c) remain, effectively, the URM3 vectors
X,, (B2a) and X,, (B2b), embedded as the last three elements within their n-dimensional
counterparts, and padded with n—3 leading zeros.

(13.6) All expressions for arbitrary dimension n (including n = 3) are quadratic only in the
evolutionary time; there are no higher order terms. Furthermore, it is only the X, vector

(13.2b), physically equated with a position (2.1), which contains this quadratic term.

(13.7) Each additional dimension adds a new zero eigenvalue and associated eigenvector, e.g.
X g (8.1d) for URM4, and X,,. (11.1e) for URMS.

(13.8) Eigenvector X, generally always comprises n non-zero elements. Because such
vectors are Pythagorean n-tuples, the Pythagoras equation acts as a constraint, and so the n
elements occupy an n—1, discrete hypersurface of the n-dimensional space. Hence the
geometric interpretation of X, and X,, as 2D, discrete cones in URM3's 3D space (lattice),
see [1],#3 and [3]. Note too that X, ,, (13.2c) is equivalent to X,,, and X,, forms the
discrete hyperboloid in URM3.

(13.9) The zero vectors X, .z, X, €tc., always comprise four or less (usually always exactly

four), non-zero elements, but never more than four in any arbitrary dimension n, i.e. they
contain at least n—4 zero elements and generally occupy a 4D subspace of URMn . The
missing zero vector, X ,, (13.2c), in this point, is mentioned above in point (13.8).

(13.10) The zero vectors X ,,, X, 05, X,0c €tC., With their reciprocals X"*, X"°® and X"
etc., Appendix (E), satisfy the same, hyperbolic DCE (5.7) as per URMS3, which is given by
the scalar product X" - X, see Appendix (F10).

(13.11) Each zero vector X ., X, 05, X,oc €tc., is implicitly parameterised in terms of the
URMS, three-parameter solution k, | (A3d) and t, (A4c), by virtue that they all embed the
URMS vector X,, (A8b). However, eigenvalue C is also present in all these vectors, except
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X,0a (13.2C), and acts as an initialisation parameter, dictating the total conserved energy (per
unit mass) of the space, as in E =C? (2.1).

Continuing with the analysis of the nth dimension solution, for large evolutionary times t_,

identical remarks made for the URM4 and URMDS solutions also apply to the general case
URMn . Therefore, generalising these remarks to URMn:

The only time-dependent (t,, i =4...n) vectors with a non-zero contribution to the excess
dimensions are X _ and the zero eigenvectors X o;, j=1...n=3, X o ~X 05, X0~ Xp0c
etc, i.e. all but X . and X o, (~X,,;,J=0). The zero eigenvectors X ,
separated into one vector for each dimension.

; are also naturally

There are no mixed terms comprising products of two or more evolutionary times, e.g. t,t.,
and X, can be decomposed into independent terms in each evolutionary time t; , hence the
summation form of X (13.2b).

Not only does the URMn solution separate into a vector term for each unique, excess
dimension, but also the terms are identical, when disregarding the particular, excess
dimension. They are identical in so far as the rth dimensional component (r=4...n)
contributes a linear term 2t C in X _(t,), and C in X . 4(t;), and the s dimensional

component (s=4...n, r=s) contributes a term 2t.C in X _(t;) and C in X ;5 (L),

which are identical upon interchange of times t, and t_. Since it is only the magnitude of the

contribution in the excess dimension that matters in the analysis of the compactification ratio
x , Section (6), each dimension can be treated separately and, furthermore, identical findings

for one specific dimension apply to all the others. The separability of the URMn solution into
unique dimensional components, and the interchange symmetry between any two components
(as regards ratio y), means that each dimension acts independently of the other, with

identical behaviour for equal evolutionary times; the same general expression for y being
used in each case.

The solution for a single, excess rth dimension can be isolated from all the other n—4
dimensions s, where s=4...n, s # r, by setting all other evolutionary times to zero, i.e.
t,>0,t, =0.

With these points in mind, then generalising to a specific rth dimension, r =4...n,
evolutionary time t,, for sufficiently large times t, (10.15), the rth dimension's
compactification ratio y, is given in an exact and approximated form as follows, which are
simply relabelled versions of (6.3) and (6.7) respectively,

X
(13.12) y, :| |r , exact form, (6.3)

X,
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2C
t |x3+

r

x = , (6.7), t, #0, use (6.3) when t, =0.

Since y, is inversely proportional to time t,, it will converge to zero for all times t >t, and,
by preceding arguments in Section (9) onwards, the entire solution compactifies to URM3.

To summarise, when any one or more evolutionary times in any excess dimension, is
sufficiently large, the n-dimensional vector space compactifies to that of the eigenvector space
of URMa3. Specifically, all n-dimensional eigenvectors align with the single, static URM3
eigenvector X, , which occupies a 2D conical subspace of URM3, hence URMn

compactifies to appear two-dimensional. The conical subspace is actually a 2-parameter,
discrete surface termed the 'cone’ in URMT (footnote 10).

This completes the general analysis of compactification for an n-dimensional space in URMT.
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14 Answers to Anticipated Questions
Before summarising and concluding the paper, a few anticipated questions are answered.
(14.1) Why not set all evolutionary times equal?

As currently formulated, n-dimensional URMT has n— 2 temporal parameters controlling the
evolution, of which n—3 parameters control the evolution of each of the n—3 excess
dimensions, one for each dimension; the last three dimensions, that of URMS3, share the single
evolution parameter t,. As concluded, if any one or more of these n—2 parameters is

sufficiently large (Section (10)), then the entire n-dimensional eigenvector space compactifies
to a two dimensional, conical subspace of URMS3, that of eigenvector X, . Because of this,
there is no compelling reason to make them all the same parameter, as doing so would only
hasten the compactification, but not change the final result - with one small exception: if only
the jth parameter of an excess dimension were made large, and all others, say, relatively small
or zero, i.e. t; >>t;,i=4...n-3,i# j, then the jth dimension would appear relatively larger

than all other excess dimensions, by a factor of t; /ti , because the jth dimension is of size t;C

and the ith dimension of size t,C . Of course, relative to URM3 and X, , and under the

sufficiency condition (14.82), the jth dimension would still appear small. Thus, this exception
might be justification to set all evolutionary parameters equal so that all excess dimensions
appear of the same relative size; this issue remains open.

(14.2) Does it have to be in integers?

Integers are used throughout URMT but, as regards compactification, it is not currently
known whether this is strictly necessary. Certainly URMT in [1],#1 can go quite a long way
before integers are required, and then they only enter when gcd conditions are imposed, which
is after transformation invariance is imposed. Provided some form of quantisation is
mandated, it may well be feasible to broaden the compactification aspects to the real and
complex domains. Nevertheless, URMT is currently formulated entirely in integers, and
therefore the mathematics of URMT compactification is also formulated in integers. It is
anticipated that complex integers may well enter in further development of the theory, but this
matter is still in its infancy.

(14.3) Why stop at URM3, why not URM?2 or lower?
Firstly, there is no meaningful URML1, but URMZ2 is perfectly plausible, see Appendix (H).

The compactification has been shown to terminate at the 2D conical subspace, represented by
X,,, of URM3's three-dimensional eigenvector space. However, can the compactification

continue within URM3 down to URM2?

The answer is yes, if a trivial (17) initial solution for X, is acceptable, and no, if
unacceptable - which is the eventual answer, i.e. it isn't acceptable on the grounds of being too
simplistic. However, assuming yes for a while, such a trivial solution would be a vector
X, = (0,L)", where the x coordinate in X,, Iszeroand y =1, z =1, giving the trivial
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Pythagorean twin (1,1) where 1% =1 ! This twin pair (1) is the realm of URM2, and the
solution X,, =(0,1,1)" is basically a URM2 'lifted’ (16) solution X,, = (11)" (the only such
non-primitive (18) solution) embedded within URM3. Whilst this pair (11) is considered

rather simple, it can actually be used as the starting point to generate 3D and higher solutions.
In other words, URMT can start at URM2 and work upward, just like URM3 works upward to

URM4 etc. However, because X,, = (11)" is the only primitive, non-trivial solution, it is not
even 2D or even 1D, but just a point in space. A non-primitive solution such as X,, = (y,y)",
parameter y, is mathematically acceptable, giving a 1D, straight line solution, but then the
gcd criterion (3.4c) on X, is not satisfied since y is a common factor of both elements.

More importantly, even this solution is limited, and 'lifting' it to 3D (16) only gives a subset of
the full URM3 formulation.

As a consequence of the above, URM2 is considered too limited to be of physical use, at least
at present, i.e. it has not been rejected, and its place in URMT is left undecided - it does have
a beauty in its simplicity, but perhaps just a bit too simple. A good reason not to dismiss it
lightly is that does not (cannot) have its own evolutionary parameter t,, and cannot therefore
compactify from two to one dimension, at least not by the growth of an evolutionary
parameter. Secondly, its only free parameter is the eigenvalue C, which, as noted (2.1),
relates to the total conserved energy E = C?. Eigenvalue C is an initial condition since it is
conserved, i.e. invariant to arbitrary variations in all n free parameters of URMn (when
under Pythagoras conditions - there are many more when not under these conditions).

Knowing there is the capability to reduce to URM2, the next question is, why doesn't this
appear in the URM3 evolution equations, Appendix (B)?

Basically, the triad of URM3 eigenvectors flattens (or aligns), in the large evolutionary limit,
t, — oo, to align with X,, , see (I5), but none of the elements of the vector X, shrink
relative to each other because t, scales every element of the vector X,, equally, and every
element x,y,z of X,, is trivially non-zero. The vector X,, , as for all higher dimensional
forms X, is static, i.e. not a function of any evolutionary time t;, but it is still a function of

two free parameters, k and I. Whilst a subset of solutions for X,, could have one of k or |
zero, but not both (A3d), generally neither are zero and X,, , therefore, comprises three non-

zero elements, i.e. it is classed as non-trivial. Alternatively stated, none of the two elements x
or y of X,, isalways zero, and z is never zero by Pythagoras (F1).

The non-triviality of X,, is the absolute key as to why the example 5D formulation, vector
X., (5.2) embeds X,, as x,y,z, but is zero in its fourth and fifth dimensional elements (the

first two elements of the vector). In effect, it is an embedding of a non-trivial 3D formulation,
i.e. that of URM3. Conversely, a non-trivial 4D embedding, i.e. four non-zero elements
w, X, Y, Z, would compactify to URM4 but not compactify further to URMS.

Concluding the above, the compactification can be made to stop with URM2 according to the
initial conditions, i.e. by arranging the number of non-zero elements in the lowest dimension
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of X, but with the simplest and only primitive, 2D solution, X,, = (1,1)", it would
compactify to the point (1,1) - perhaps this really is telling us something! In the work
presented herein, it stops at three by virtue of three non-zero elements x,y,z in X,, .

Therefore, the biggest reason not to stop at URM2 is one of too much simplicity and not
enough complexity. Mathematically this is fine, but physically it is rather simplistic.
However, this raises the next question.

(14.4) Why not stop at URM4 or higher?

From the arguments at the end of the previous question, it would seem that setting all four
elements w, x,y,z of X (3.4a) non-zero, and the first element v to zero, is sufficient to stop

the compactification process at URM4 instead of URMS3.

First and foremost, there is a strong case against this given the following physical constraints
placed upon the solutions.

(14.4.1) The solution for X, must be invariant to all arbitrary variations in all evolutionary

parameters - this is a URMT imposed, general constraint arising from the ‘Invariance
Principle’ in [1],#1, which is essentially a postulate of URMT, see [3].

(14.4.2) The Potential V. must be zero and invariant for all arbitrary variations in all
parameters. In URM4 and URMS, at least, this condition makes for only two, non-zero
eigenvalues + C, with all others zero; see [4]. In essence, an invariant, zero Potential solution
is desirable from a physical viewpoint as it represents a constant energy, force-free trajectory
through the eigenvector 'lattice’, see [1],#3 and 3. To satisfy this invariant, zero Potential
constraint, there are the two further constraints, (14.4.2a) and (14.4.2b) below.

(14.4.2a) The matrix A, must satisfy Pythagoras conditions - primarily for Minkowski,

metrical reasons and, physically, URMT must accommodate STR somewhere; see also
footnote 24.

(14.4.2b) The matrix A, must have a certain form whereby all the rows and columns,

barring the last three (URM3) or four (URM4), are multiples of the eigenvectors X "™~
(rows) and X, . (columns) see Appendix (C). This latter point is subtle and discussed more
fully in [4]. It is very important though for the purposes of obtaining a quadratic expression
for the eigenvectors. This then leads to the highest order terms in any expression being a
quadratic function of the evolutionary parameters t;, j =3...n, and making all scalar

invariants quadratic in the eigenvalue, i.e. C?, which is very important to physically associate
the general DCE (F10) with an energy conservation equation, irrespective of dimension n.
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To satisfy the above conditions for URMS3 is relatively easy and leads to an infinite set of
solutions for eigenvectors X, and X,,, parameterised by t, (m or & in [1]-[3]), for every

static eigenvector X,, . As noted, X, , itself, is a full, two-parameter family, parameters k
and |, see footnote 7.

All these above points are very important because it seems to be all change in URM4. Taken
together, the above conditions, (14.4.1) and (14.4.2), are severe and, to meet them in URM4,
it seems there is only one solution for X,, . It is actually considered remarkable that there is
exactly one solution** and not two or more, or even no solutions - just one single solution?
Even more curious, this solution is the simplest it could possibly be, namely the Pythagorean
quadruple (2,1,2,-3), with strict adherence to the sign of its elements. It also only arises by
adding in a lot of simplifications. Whilst this particular solution can be shown to be the only
solution, under its 'PS+RU' parameterisation scheme, no general proof that URM4 cannot
satisfy the above conditions, without more simplifications, exists. The most notable
simplification is to change X,, from four non-zero elements to three, and thereby reduce the
theory to that of URM3, under the above conditions. Whilst no proof is offered, the author has
not found any general solution, of any worth, without having to add too many simplifications,
or reducing URM4 back to URMS.

With four-dimensional STR in mind, it might seem nicer to stop at URMA4. This would mean
all four eigenvectors of URM4 would, generally, be non-trivial (four non-zero elements).
However, non-trivial 4D vectors, specifically X, , can already be generated from the URM3
formulation, as can higher, n-dimensional vectors X, , by embedding URMS3 within URMn .
Given X, can be physically associated with a position vector, it would seem URM3 will
suffice, at least spatially speaking, to give a four-vector position. Of course, that's just

position, and not the only four-vector, so it is nicer to have a bit more flexibility, which is why
URMT was originally extended from its 3D origins in [1].

From another physical perspective though, nature is generally ternary, everything (almost)
appears to come in threes, from spatial dimensions to families of particles. It is also of note
that URMS5 (a favourite of the author and a reason behind its usage in this paper), has three
evolutionary time parameters, t,, t, and t;, which makes a nice symmetric triplet to go with
the spatial dimensions of URM3. Admittedly this is aesthetics; after all, this does not include
the laboratory time t, which is considered to be an interval (in URMT anyhow), not an
absolute evolutionary time. The laboratory time is conjectured to hide in the last element of
X,_; see footnote 24.

* This solution is cryptically known as the 'PS+RU' solution in [4] because of its condition PS+RU=0 on the
dynamical variables, P, R, S and U.
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However, the original URMT formulation in [1] seems at its best for URMS3, at least in terms
of results, physical interpretation and tractability. It has three sets of standard variables, plus
their conjugate and dual forms, see [1],#5. Additionally, the dynamical variables P,Q,R, and

their conjugates P,Q, R, are isomorphic with the complex roots of unity, whereas in the most
general, n-dimensional formulation of URMT, the dynamical variables, e.g. those (3.2) in the
URMS A, matrix (3.1), lose this complex nature. This may seem a whim, but it is a nod to

the fact that mathematical physics uses complex numbers as a given, and it is felt URMT
requires an equivalent algebra in its discrete formulation. So, whatever n-dimensional URMT
formulation is used, it is desirable it to encompass URMS3 as a subset, and this is one reason
why the matrix A, (Ala) is embedded in A, (3.1).

To conclude these questions, starting the general, n-dimensional URMT formulation at URM3
seems to offer the best combination of being able to extend to any number of dimensions,
whilst retaining all physical properties of URM3. Although stopping the formulation at

URMS3 means that compactification also stops at two spatial dimensions, it also ensures that it
doesn't descend into triviality, i.e. too much physical simplicity.

(14.5) One last question

If a velocity eigenvector, e.g. X.,; , grows linearly with time, by virtue of a constant
acceleration X,, , asin X,,; =-t,X,, (11.1d), will it not at some stage exceed the speed of
light, little c?

Strictly yes, but this is a 'space’ and it is not physically clear what the expansion limit of the
space is or, indeed, whether it has a physical presence (for want of a better term). It could
simply be that the acceleration is so tiny that the evolutionary time has to be enormous to
compensate, and no such evolutionary stage has yet been reached. Going back to URMT's
roots in URM3 [1], the space is basically a discrete, infinite set of points, i.e. the eigenvector
space, also known as a lattice, and it is the underlying space upon which it is thought that
physics plays-out as functions on this lattice.
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15 Summary

In brief, the entire compactification process shows that the first three dimensions expand
relative to the excess dimensions, making the excess dimensions appear to shrink over time
with respect to the first three. However, the expansion in the first three dimensions is in a
particular vector direction, characterised by two, free parameters. Hence the compactification
is said to converge to a two-dimensional subspace of the first three dimensions.

Note, all quantities are in integers; all spaces are discrete sets of points.

Before commencing, the URMS, five-dimensional eigenvector solution is reproduced below,
and recommended for a quick visualisation of the points made.

The URMS eigenvector solution, reproduced from Section (11),

(11.1)
0
(11.18) X, =| 0 |static, acceleration vector
><3+
0 C 0 0
(11.1b) X, =—(tZ+t}) 0 |+2t;] O |+2t,/C |+| O
X3, 05 05 Xy
evolving, position vector
0
(11.1c) Xea =| 0 | ~ X, evolving velocity vector X,
X30
0 0
(11.1d) Xegs =—1,| 0 |+]| C |~ X,,, evolving velocity vector
><3+ 03
0 C
(11.1e) Xege =—ts| 0 |+]| O | ~ X,y,, evolving velocity vector
><3+ 03

It is important to note that the entire paper focuses on the evolution of the eigenvectors
relative to those of URM3. Keep in mind that the URMS3 eigenvectors also evolve in an

identical fashion, all converging on the single X,, vector, see Appendix (B). It is chiefly this

reason that it is not necessary to delve into URM3's eigenvector evolution herein; the
compactification conclusions are the same. URM3's geometric evolution, in terms of
‘flattening’, cones and hyperboloids, is fully covered in [1],#3 and summarised in [3].
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Eigenvectors and Eigenvalues

The general, n-dimensional unity root matrix theory, URMn, n> 3, for a square nxn matrix
A, has n linearly independent eigenvectors, each with n elements. The first element is the

nth dimensional coordinate, and the last three elements are the first three dimensions, and
functions of the three URMS eigenvectors X,, (acceleration), X, (velocity) and X,

(position).

The eigenvectors split into three types, as per URMS3, a single acceleration vector X,
(eigenvalue C), a single position vector X, (eigenvalue —C), and n—2 velocity vectors
Xo0j» 1=0...n=3 (for n—2 zero eigenvalues).

The entire vector space is characterised by n—2 temporal parameters t;, j=3...n, and two
non-temporal, k and |, i.e. n parameters in total.

The first three dimensions (last three elements) have a single evolutionary time parameter t,,
the remaining n—3 excess dimensions each have their own temporal parameter.

Each temporal parameter emerges from an invariance transformation on the elements of the
unity root matrix A ,, which leaves the eigenvector equation A X, =CX,, invariant to
any arbitrary variation in these parameters.

The other two, non-temporal parameters k and |, control the URM3 vector solution, most
notably, the acceleration X,, and, hence, also X,, .

Other than these n parameters (k I, t;, j=3...n,), there is a single, fundamental constant,

the eigenvalue C (big C ), which is the only contributor to all excess dimensions, excepting
their respective evolutionary, temporal parameters, which also affect the first three
dimensions.

The constant eigenvalue C is equated with a scalar velocity (speed), and controls the size of
all excess dimensions. It is related to the total conserved energy E = C?, and is the single
tuning constant, dictating the initial, time-zero, expansion velocity X ,; of the excess

dimensions, j=1...n—3.
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Eigenvector evolution

The first three dimensions (last three elements) of the acceleration vector X, (13.2a) are just
the URMS acceleration vector X, , which is a non-trivial (three non-zero elements), static (no
evolutionary time-dependence) acceleration vector.

The first three dimensions of the jth velocity vector X ;, j=1...n-3 (13.2d), are a linear
function in time t; , of the URM3 acceleration vector X,_, i.e. the integral of acceleration to

give velocity, X ,; =-t;,;X,, . This is also true for the URM3 velocity vector X, scaled by

j+3

t,,ie. j=0.

The first three dimensions of the position vector X, (13.2b) are a quadratic function in time
of the URMS acceleration vector X,, , with a contribution for each excess temporal
coordinate t;, j=1...n—3, i.e.thesum X _ =X -t{,X;, . The magnitude of this growth is
approximated by [tf,; X, |, e.0. ‘t§X3+
summation more appropriate for evolution in two or more dimensions - see (9.10) pr (10.3a).
This is also true for the URM3 velocity vector X, scaled by tZ,i.e. j=0.

(11.1b), for one specific evolutionary time t;, a

All excess dimensions (the first n—3 elements) of the acceleration vector X, (13.2a), are all
zero, i.e. there is no acceleration (dimensional growth) in the excess dimensions.

The jth excess dimension (element n—(j +2)) of each velocity vector X ;, j=1...n—3

(13.2d), comprises the constant eigenvalue C only, with no time-dependence, i.e. static in all
excess dimensions. Therefore, the excess dimensions of the velocity vector remain a constant
'size’, i.e. constant velocity (or speed) C.

The jth excess dimension of the position vector X, (13.2b) is a linear function in
evolutionary time t; of the velocity constant C, i.e. the integral 2t,C , e.g. |2t,C| in (11.1b).

All the above eigenvector integrals are really just Newton Il, to within a sign and scale factor.
But note that the excess dimensions are a first integral of the constant velocity C , whereas the
first three dimensions are first and second integrals of a constant acceleration X, .

Of all these eigenvector growth rates, only the first three dimensions of the position vector
X._ have a quadratic dependence on time. There is no quadratic time contribution in any

excess dimensions, only linear. All quadratic growth is therefore in the X vector, which
aligns, over time, in the direction of the X,, acceleration vector, embedded in the first three
dimensions, i.e. the home of URMS.

Although URMS3's own explicit evolution has not been detailed, see further above, the URM3
eigenvector evolution equations in Appendix (B) show identical evolutionary behaviour for
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all URM3 eigenvectors; in particular, quadratic growth with respect to time t, in the X,
vector and in the direction of the acceleration X, .

Summarising the above: for any single, sufficiently large (Section (10)), evolutionary time t;,
where t; is any one of the n—2 evolutionary time parameters, the entire n-dimensional
vector space converges on the X, position vector, which, itself, aligns and grows along

URMS's X,, acceleration vector. Simultaneously, the excess dimensions continue to grow,
albeit as a linear function of time with a constant velocity C in each excess dimension.

Comparing the linear growth of the jth excess dimension Z‘t jC‘ , for a specific evolutionary

time t;, with the simultaneous, quadratic growth

2
tj+3X3+

a measure of the relative size of the jth excess dimension with respect to the first three
dimensions. This measure is termed the compactification ratio of the jth dimension, denoted
by x; and approximated as follows; see Section (6), (6.3) for the exact form for y;.

of the first three dimensions, gives

2C
t'|><3+

]

6.7 x;=~ , the compactification ratio of the jth dimension.

Note that y; is dimensionless, and the ratio is inversely proportional to the evolutionary time
t; such that it limits to zero, i.e.

(6.4) Jim ,=0.

The relative error ¢ (10.2) in the approximation also limits to zero, i.e. the approximation
gets better with increasing time t;.

As a consequence of y; limiting to zero then, over a sufficiently large evolutionary time t;,

the size of the excess, jth dimension appears to shrink into insignificance with respect to the
first three dimensions; concurrent growth in any other excess dimension only hastening the
compactification.

Lastly though, the 'first three dimensions' are really just the single direction of the acceleration
vector X,, . Whilst this might seem to be a compactification to one dimension, the vector X,
is arbitrarily specified by two other, non-temporal parameters k and I. In fact, X, is
actually a Pythagorean triple, where the two parameters form the standard Pythagorean
parameterisation. Thus, X,, is really a 2D, discrete, conical surface, described as two cones,
‘upper' and 'lower’, in URMT [1],#3, [2], [3].
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16 Conclusion

The n-dimensional, discrete eigenvector space of Unity Root Matrix Theory appears to reduce
its dimensionality, i.e. compactify, as its temporal evolution progresses, to a two-dimensional,
discrete, conical surface embedded within a three-dimensional, discrete, eigenvector space.
The conical surface is formed from the elements of a two-parameter, static acceleration
eigenvector, to which all eigenvectors align in the limit as the evolutionary time, in one or
more dimensions, tends to infinity.
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19 Appendix (A) URMS3 Background Information

This Appendix provides some basic background information on URM3. For a full account,
see [1], [2] and [3].

The general, unity root matrix A,, comprising 'dynamical variables' P,Q,R and their
conjugates P,Q, R, is defined as

(A1)

0
(Ala)A, =| R

T o
o T O

Q
(Alb)P,Q,ReZ, (P,Q,R) = (0,0,0)
(Alc)P,Q,R €7, (P,Q,R) % (0,0,0)
(Ald) Notation
A,~ A in[1] for general URM3
A,~ A, ~ A, in[1],#2 under URM3 Pythagoras conditions, below.
An eigenvector X,, to matrix A,,, for eigenvalue C, is defined as

X
(Ale) ><3+ = y
4

X,¥,2€Z, (X,¥,2) #(0,0,0)

(Alf) A30X3+ = CX3+, C EZ, C 21

(Alg) Notation
X,, ~ X in general URM3

X,, ~ X, when under URM3 Pythagoras conditions, below.
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The Pythagoras conditions on the dynamical variables are
(A2a) P=P,Q=Q, R=-R,

and the matrix A, becomes

0 R Q
(A2b) A, =|-R 0 P |, see (Ald) notation
Q P O

There are now three distinct eigenvalues
(A2c) A=+C, 1=0, 1=-C,

and, consequently, two additional eigenvectors X,, and X, , defined by their eigenvector
equations as

(A2) A, X, =0, 1=0
(A2f) A, X, =—CX, , A=-C.

URMS3, under Pythagoras conditions (A2a), is a completely solved problem with an analytic
solution for all variables. The x,y,z coordinates forming X,, (Ale) are parameterised by

two, arbitrary integers k and 1.

(A3)

(A3a) x =2k

(A3b) y=(12-k?)

(A3c) z=(1?+k?)

(A3d) k,1eZ, (k1) (0,0), ged(k,1) =1

The scale factors a,, 5,7, (A6), (12), and dynamical variables P,Q,R (A5) are obtained by

solving the following linear Diophantine equation using Euclid's algorithm [6], for unknown
integers s and t*°, given k and |

(A4 +C=ks—lt, siteZ

Solving this very simple equation introduces some indeterminacy into URM3 in an otherwise,
completely deterministic, analytic solution. It has to be solved algorithmically, with no
analytic solution. Physically, this indeterminacy is very likely a good thing; without it, the

*® The usage of symbol t here is slightly unfortunate in that it is not a time parameter. It is retained for
compatibility with all existing URMT literature. In fact, it is shown in [1] that t has units of \/I but since it

always multiplies K or |, with units of \/IT < or appears in squared form, then potentially irrational
quantities do not appear in the solution, in keeping with one of the URMT postulates, 'all observables are
integers', see [3].
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entire n-dimensional URMT solution would be completely deterministic once initial
conditions are imposed.

To obtain a particular solution s" and t’, this equation has to be solved algorithmically. Once
a particular solution is obtained, then an infinite family of solutions is obtained, denoted by
integers s and t, and parameterised by another arbitrary integer t,. This parameter t,, is

none other than the URM3 evolutionary time.

(Ada) s=s"+tl
(Adb) t=t'+tk

(Adc) t, eZ, notation t; ~ m,5 in [1]
(A4d) s'.t'ez, (s',t',t;) = (0,0,0)

The dynamical variables P,Q,R are parameterised in terms of k, | and t,, implicitly via the

general solutions for s (Ada) and t (A4b), as follows, and likewise for the URM3 scale
factors®® (110)

(AS)

(A53) P =—(ks+It)
(A5h) Q= (Is—kt)
(A5c) R =—(Is+kt)

(AB6)

(A6a) o, =-2st, a; ~ a in[1]
(A6b) B, =(t*-s?), B, ~ B in[1]
(ABC) ¥, =(t*+s%), y,~ 7 in[1]
(A7)

The following table gives the solutions in, all variables, for eigenvalue C =1 and t, =0, for a
few small values of the parameters k and I.

Il Kk x y z s t P -Q R o, By -7,
21 4 3 510 -1 -2 =2 o -1 -1
3 212 5 13 2 1 -7 -4 -8 -4 -3 -5
4 1 8 15 17 1 0 -1 -4 -4 o -1 -1
4 3 24 7 2 3 2 -1t -6 -18 -12 -5 -13
5 2 20 212 29 3 1 -11 -13 -17 -6 -8 ~-10
5 4 40 9 41 4 3 -31 -8 -32 -24 -7 -25
6 1 12 3% 37 1 0 -1 -6 -6 o -1 -1
6 5 60 11 61 5 4 -49 -10 -50 -40 -9 -41
7 2 28 45 53 4 1 -15 -26 -30 -8 -15 -17
7 4 56 33 65 2 1 -15 -10 -18 -4 -3 -5

“® Note too that the scale factors 05, 3,7, form a Pythagorean triple.
Page 53 of 82
Unity Root Matrix Theory Compactification
Issue 2.0 06/05/2012
© Micro SciTech Ltd. 2012



7 6 84 13 8 6 5 -71 -12 -72 -60 -11 -61
8 1 16 63 65 1 O -1 -8 -8 0 -1 -1
8 3 48 55 73 3 1 -17 -21 -27 -6 -8 -10
8 5 80 39 89 5 3 -49 -25 -55 -30 -16 -34
8 7112 15113 7 6 -97 -14 -98 -84 -13 -85
9 2 36 77 8 5 1 -19 -43 -47 -10 -24 -26
9 4 72 65 97 7 3 -55 -51 -75 -42 -40 -58
9 8 144 17 145 8 7 -127 -16 -128 -112 -15 -113

The standard eigenvectors X,,, X,, and X, are defined in terms of the coordinates X, Y, z,
dynamical variables P,Q, R, and scale factors o, B,,7, respectively as

(A8)
X P o,
(A8a) X5, =1y |, (A8D) Xy = -Q |, (A8C) X, =| S
Z R —7s

The reciprocal eigenvectors X*, X* and X*, (A10) further below, are obtained from the
standard forms (A8) using the URM3 T, operator relations:

(A9)
+1 0 O
(A9) T,=T°=|0 +1 0
0O 0 -1

(A%b) X* =(T°X, )\, (A9c) X =(T°X,, )\, (A%) X* =(T°X,. |

(AN X,, = (X3—T3 )T , (A9g) X, = (X30T3 )T (A9h)X, = (X3+T3 )T

(A10)

(Al09) X = (053 Bs 7/3)
(AL0b) X¥* =(P -Q -R)
(A10c) X* =(x y -1z).

All three sets of variables x,y,z, P,Q,R, «;, B,,7, and eigenvalue C are related via the
divisibility relations, see [1],#1,

(Al1)
(Alla) C2 - P? = a,X

(Al1b) C? —Q? = B,y
(Allc) C2 +R? =,z
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It is from these that a clue to the name 'unity roots' arises since they satisfy the following
congruences:

(A12)

(A12a) C* = P? (mod x)
(A12b) C* = Q? (mod y)
(Al12c) C* =—R?*(mod z).

If the eigenvalue is unity, i.e. C =1, then P,Q,R are the square roots of unity in modulo
arithmetic.

(A13)

(A13a) P* = +1(mod X)
(A13b) Q% = +1(mod y)
(A13c) R* =-1(mod 2)
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20 Appendix (B) URM3 Eigenvector Evolution

The URM3 eigenvector evolution equations are given below, reproduced from [1],#2 where
the initial values at URMS time zero (t, =0), are superscripted with a prime. Note that

symbol t, is denoted by m in [1].

(B1)
(B1a) X;, =X, (t, = 0)
(B1b) X = Xty = 0)
(Blc) X’S_ =X, (t;=0).

The evolution equations in standard vector form are:

(B2)

(B2a) X,, =X}, , static, no t, dependence
(B2b) Xy (ty) = -t X,, + X5,

(B2c) X, (t,) =—t2X,, +2t, X5 + X,

and their reciprocal forms

(B2d) X% = X'*", static, no t, dependence
(B2e) X¥(t,) = -1, X% + X'®
(B2f) X3 (t) = —t2X* + 2t X'® + X'+,

Notice that X, has exactly the same quadratic degree in the evolutionary parameter t, as the
general, n-dimensional vector X (13.2b).

Given that X, (t,) (B2c), with its quadratic term in t,, will dominate all three eigenvectors,
for sufficiently large t, (further below), the eigenvector X, will align with X, as will X, ,
Le.

(B3) X3— (ts) ~ _t§X3+ '

where the term 'sufficiently large' here, really means any time t, such that
t3?|><3+
the vectors X3, and X/ .

>>[2t, X}, + Xj_| in (B2c). This then depends on the initial conditions for the size of
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21 Appendix (C) The Residual Matrix Method

The residual matrix method* is used to determine eigenvectors in URMT, giving both the
standard eigenvector and its reciprocal, e.g. X, and X" (footnote *®). It is the same method

as used in URMS [1],#2 and [2] to evaluate the URMS eigenvectors. The reader is referred to
these references for full details since the matrix polynomials, used below, are identical in the

determination of the URMn eigenvectors X™ (from X, usingA ), and X" (from X,

n+ !

using A ,); see note (C19) about obtaining X, and X" .

The residual matrices E,,, and E,, are defined as the following polynomials in the
eigenvectors, for eigenvalues 2 =C and A =0. The outer products (or 'dyadic’ (13)), X, X"

and X, X" on the right of these definitions, are nxn matrices, identical to the residual
matrices (footnote ).

(Cl) E, =(A%+CA )=X X" 1=C
(C2) E,, =(A%-C%,)=-X,X", 1=0, see note (C18)

t, X A

n‘™(n-1)+ (n-1)0

0 -t X"
S |

Using A, the residual matrix E_, is calculated as

0
(C4) En+ = ( 2 (n—l)— ] .
2tnCX(n—1)+ _tn X(n—1)+X + E(n—1)+
Given that E, ,,, and X, are defined as

(C5) E(n—1)+ = X(n-1)+x(n_1)+ .

0 0
(o) A :(Xm—m]’ :...(X3+],

then, from E__ = X X" (C1), the vector X" is deduced to be

*" The name 'residual’ is unique to URMT and coined only for want of a name given none can be found in the
literature, see [2] for some background.
“® The reciprocal is also known as the dual conjugate in URMT. Note that the dual conjugate is not the same as
the transpose conjugate in URMT, see [1],#5.
* The general residual matrix, as defined by an outer-product of vectors, e.g. E,, =X, X" is actually a
form of projection operator. Such operators are usually discussed under the subject of 'Spectral Decomposition’
or 'Spectral Resolution', in linear algebra texts, see [5].
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€7 X™=-t2(0 X"V )+2t,(C 0)+(0 X"),
Using A, the residual matrix E , (C2) is calculated as

~C? t X"
(C8) E,= :

2 (n-1)-
tnCX(n—1)+ _tn X(n—1)+X + E(n—l)O
The matrix E,, is now split into two components, E ,(n) and E ,(n-1),

2 (n-1)—
(c9) Eno(n)z{ ¢ LCX ]

2 (n-1)-
tnc><(n—1)+ _tnx(n—1)+x

0 0
(C10) Eno(n—l):(o - ]
(n-1)0

The second component E ,(n—-1) is recursively defined in terms of E , ,,,, which can be
calculated using E, ;o = (A7 1o —C1,1) = =X 10X "™ etc.

Armed with the knowledge that X" = (T”Xno)T (E3), and E,, =X, , X" (C2), then X,
and X" are

e %=ty o {x,)
no = " tn + +
’ ><(n—1)+ On—l X(n—l)o

(C12) X™ =t (0 X" )+(C 0" )+(0 x°).

Using X" (C7), X,_ is then obtained from the T operator relation (E4)

(C13) X tz(ojzt(cj(oj
n- = "tn + 21, + :
X(n—1)+ On—l ><(n—l)—

Using X,, (C6), X" is then obtained from the T operator relation (E2)

C14) X" =0 x"¥) =0 x*)
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For future reference, the two vectors X, (C13) and X" (C7) are usefully written in terms of
the scale factors «,, g, and y, as

(C15) X, = ; X" =(- a, B, 7,). nz4

- 7/n
footnote™

and the scale factors are defined recursively as

(C16)
a,=-t’x+a,,,n>4

n

ﬂn :_t§y+ﬂn—1
7/n :trfz-i_}/n—l'

Some additional points:

(C17). The residual matrix method is the preferred method in URMT to evaluate eigenvectors
since it automatically fixes the eigenvector scaling. Normally, eigenvectors are arbitrary to
within a scale factor, but the residual method forces a fixed scale factor on a vector and its

dual conjugate ([1],#5), e.g. X,, and X"". By imposing a primality (gcd) condition, e.g.
(3.4c) for URMS, on the standard form of vector X, . then the reciprocal vector X" is forced

to take on whatever factor is needed to make E, = X, , X" . This can make X" non-

primitive, but this is of no detrimental consequence - it is purely a scale factor and, as
mentioned, perfectly legitimate for eigenvectors, which are arbitrary to within a scale factor.

(C18). There is a caveat to point (C17), which is that URM3 uses the standard T operator
relation X* = (T3X30 )T (A9c) that gives a sign for X* , opposite to that which would
normally be obtained using a residual matrix E,,, defined as E,, = X;,X*. This is
intentional, to make the inner product X*X,, =+C?, and not —C?, as this inner product
represents the DCE (F3). Furthermore, using the standard form of the T operator relation
X* = (T°X,, ), to obtain X* from X, , makes its derivation consistent with all other
eigenvectors derived using T operator relations, Appendix (E).

(C19). The E_ residual matrix is not required here since X, and X" are obtained from the

T operator relations (E2) and (E4). Given X, is pre-defined (13.2a), X" is obtained
without any recourse to the residual method, using the T operator relation (E2). On the other

%0 The first blanked '-' element in X, _ is given by the summation term in (13.2b) involving matrix M K[n-(j+2)]"

for j=1...n-3.
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hand, X, _ is obtained from the T operator relation (E4), using X" (C7), itself obtained
from residual matrix E, (C4).

(C21). The quadratic, polynomial form, (C1) and (C2), for the residual matrices, E , and
E,, respectively, is the same for all URMn, n >3, and determined by carefully selecting the

conditions such that the eigenvalues are always the same two, non-zero values + C, with all
the other eigenvalues zero.
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Appendix (D)
22 Appendix (D) URM5 Example

This numeric example illustrates the compactification behaviour of the fifth dimension of
URMS as its evolution progresses.

In this example the evolutionary time t. of the fifth dimension in URMS is varied from zero
upward, whilst leaving all other times, t, and t,, at their initial, zero value, in accordance

with (10.4), and done primarily for simplicity, i.e. ease of understanding. In other words, there
is no evolution in the first four dimensions, only the fifth.

(D1) t,=0,t,=0.

The example uses (embeds) the standard URM3 Pythagorean (4,3,5) solution, for unity
eigenvalue, as given in the first row of table (A7) in Appendix (A). The solution is reproduced
below.

(D2) C =1, unity eigenvalue.
(C2) x=4,y=3,z=5.
(Clla) P=-1,Q=+2, R=-2
(C11b) ¢ =0, p=-1, y =1.

Using these values, the URM3 eigenvector solution is, by (A8), thus

4 -1 0
(D3) X, =3, X4y =|-2], X{_ =|-1].
5 ~2 -1

These three URM3 eigenvectors are all static by virtue of evolutionary time t, constrained to

zero (D1). Hence they all remain at their initial value and are superscripted with a prime to
denote this, excepting X, , which is always static and the prime omitted by assumption.

The URMS eigenvector X, (11.1a) is also static, and remains at its initial, X,, value, i.e.

(11.1a) Xs, =| 0

+
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Because t, =0 (D1) then X,, = X}, as a consequence and the URM5 eigenvector X, ,
(11.1c) is also therefore static, remaining at its initial X}, value, i.e.

0
(D4) XSOA = 0
X%

Lastly, on the subject of time-independent, static vectors, because X, is a function only of
evolutionary time t,, and since t, =0 (D1), then X,,, reduces to the following static vector

0
(D5) Xgs =| C |, t,=0.
0

3

Note that this vector X, has a constant component, eigenvalue C, in its fourth dimension;

the eigenvalue being unity (D2) in this example. Ordinarily, C can be made as large as
desired, see the comment (8.2b).

Using initial values X,, and X}, (D3), and C =1 (D2), the static URMS5 eigenvectors X, ,
Xgoa and X, are thus

0 0 0
0 0 1
(D6) X5+ =141, XSOA =1 -1}, XSOB =101, t, =0, t, =0
3 -2 0
5 -2 0

This leaves just two, time-dependent URMS eigenvectors X, (11.1b) and X, (11.1e),
which, for t, =0 and t, =0 (D1), become

0 C 0
(D7) X, =-tZ| 0 [+2t,| 0 [+] O
X3, 0, X’3—
0 C
(D8) Xego=-t;| 0 |+| 0
X3, 05
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Using initial values X,, and X, (D3), and C =1 (D2), then the initial values for the time-
dependent vectors, all evolutionary times zero, are

(D9) XL =| 0|, X =

50C ’t3’t4’t5:0-

O O O O B+

Calculations

The magnitude of the sum of two or more vectors is calculated from the sum of the individual
magnitudes, which gives a maximum estimate of their size, i.e.

(D10) if X =D X, then [X|=>|X||, i=2.

This does not apply to any individual eigenvector, whose magnitude is calculated as the
positive, root sum of squares of its elements.

All magnitudes, except |X|5 (the magnitude of the fifth dimension), are calculated from the

three-element vector of the first three dimensions, which correspond to the last three elements
of the five-element, URMS5 vectors, i.e. the URM3 subspace.

The magnitudes of the static URM3 vectors are

(D11)

(D11a) X,.|=5v2, (D3)
(D11b) X4| =3, (D3)
(D11c) X |=+2, (D3).

The magnitudes of the static, URMS5 vectors are as follows, first three dimensions only

(D12)

(D12a) X,.| =5v2, (D6)
(D12b) X504 =3, (D6)
(D12c) Xso8| =0, (DB).
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The two magnitudes, |X,_| and [Xg|, first three dimensions only, are time-dependent, as

follows

(D13)

(D13a) X5 | = \—t§x3+ + X’S_‘ , exact

(D13b) X5 | = \/(50tg‘ +16t2 +2), exact, from (D7) using (D3)
(D13c) X5 | #t2|X,, |, t; >> 0, large t, approximation from (D13a)
(D13d) X, |~ 5v2tZ, t; >> 0, using (D11a)

(D13e) Xsoc | = ts| X, | , exact, from (D8)

(D13f) Xsoc| = t:5v2, using (D11a).

The magnitude of the fifth dimension |X|_ (6.1a)

(D14)
(D14a) X|, =4/(2t,C)* +C? , exact, URM4 equivalent (9.1)

(D14b) X|, =4t +1, C =1 (D2)
(D14c) X|, ~ 2t;, URM4 equivalent (9.3)

The magnitude of the first three dimensions of URM5 |X|, (6.1b),

(D15)

(D15a) X], =[Xs,

+ [ Xgoa] +[Xsos| + [Xsoc | +|Xs.| , definition, (6.1b)

3

Defining constants a and b

(D15b) a =52 =7.071068 to 6dps.
(D15c) b=a+3=10.071068 to 6dps.

using (D12) and (D13) for the individual, URMS5 vector magnitudes gives

(D15d) X|, =b+at, +|X,_|, exact, use (D13b) for X, |
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Compactification Ratio

The true compactification ratio y. (6.3)

X
(D16a) Xs = & definition (6.3)

X,

42 +1

D1 =X >
(D16d) s =t <X, |

exact, using (D14b) and (D15d).

The approximated compactification ratio y. (6.7)

(D17a) Xs © 2C , (6.7), t; =0 :use (D16a) for t, =0.
t5|><3+
(D17b) Xs zg using (D11a), t, # 0 - see (D17a).

5

It is confirmed in both (D16d) and (D17b) that the compactification ratio limits to zero as t,
grows to infinity since, for large t., both expressions are inversely proportional to t.. Thus,
the fifth dimension shrinks to zero relative to the first three dimensions, i.e.

(D18) lim 7, =0 (6.4).

Error analysis

The absolute error ¢_ (10.6)

(D19a) £ =X |-|t2X,,

, definition, (10.6)

(D19b) e_ =Xy |-5v2tZ, exact, using (D11a)

Expanding (D13b) |X, |= \/(50tg‘ +16t7 + 2) binomially, to first order in 1/t, , gives

(D19c) X, | =5v2t2 +442/5+0@/t2) (footnote **).

> This approximation was not made in the main body of the paper, Section (10).
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Substituting in this expansion (D19c) into (D19b) approximates the absolute error ¢_ to the
following constant, to first order in 1/t, ,

42

(D19d) &~ TZ ~1.131371 to 6dps.

Since the absolute error ¢_ (D19d) is constant, it will shrink rapidly into insignificance
compared with the quadratic term 5\/Et§ :

The relative error estimate & (10.2)

X|, —tzX
(D20a) e :M, (10.2)

X

Using (D15d) for |X|3 and definition (D19a) for the absolute error ¢_, the relative error
estimate & (D20a) becomes

_ b+at; +&.

5

(D20b) =— =
b +at, +at;

From the approximation (D19d) for ¢_, the numerator is, to the highest order, linear in
evolutionary time t, . Hence, with a quadratic term at? in the denominator, it is confirmed
from (D20b) that the error estimate & limits to zero as t, grows to infinity, i.e.

(D20c) lim & =0, (10.16)
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(D21) Tabulated Data

The following four sets of data are provided on the next few pages:

(D22) Time-dependent Vector X,

(D23) Time-dependent Vector X,

(D24) Time-dependent Magnitudes |X;_|, [Xsoc |, X, X
(D25) Compactification Ratios and Errors y., €, €_.

3

The column headings are defined as follows:

t5 : evolutionary time t,

X-(1) to X-(5) : five elements of time-dependent vector X, (D7)

IX-] : time-dependent magnitude |X,_| (D13b), first three dimensions only
X0C(1) to Xoc(5) : five elements of time-dependent vector X.,. (D8)

Ix0C] : time-dependent magnitude [X,c| (D13f), first three dimensions only
IX15 : The magnitude of the fifth dimension |X|_ (6.1a)

IX13 : The magnitude of the first three dimensions |X|, (6.1b),

chi5 : true compactification ratio y, (D16a)

chi5 app : approximated compactification ratio y. (D17b)

chis%err : percentage error in y. approximation, i.e. 100*(true-approx)/true

eps : relative error estimate ¢ (D20b)
eps- : absolute error £ (D19b)
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(D22) Time-dependent Vector X,

t5, X-(1), X-(2), X-(3), X-(4), X-(5), IX-1,
0, 0, 0, 0, -1, -1, 1.4,
1, 2, 0, -4, -4, -6, 8.2,
2, 4, 0, -16, -13, =21, 29.4,
3, 6, 0, -36, -28, -46, 64.8,
4, 8, 0, -64, -49, -81, 114.3,
5, 10, 0, -100, -76, -126, 177.9,
6, 12, 0, -144, -109, -181, 255.7,
7, 14, 0, -196, -148, -246, 347.6,
8, 16, 0, -256, -193, -321, 453.7,
9, 18, 0, -324, -244, -406, 573.9,

10, 20, 0, -400, -301, -501, 708.2,

11, 22, 0, -484, -364, -606, 856.7,

12, 24, 0, -576, -433, -721, 1019.4,

13, 26, 0, -676, -508, -846, 1196.1,

14, 28, 0, -784, -589, -981, 1387.1,

15, 30, 0, -900, -676, -1126, 1592.1,

16, 32, 0, -1024, -769, -1281, 1811.3,

24, 48, 0, -2304, -1729, -2881, 4074.1,

32, 64, 0, -4096, -3073, -5121, 7241.9,

48, 96, 0, -9216, -6913,-11521, 16292.9,

64, 128, 0,-16384,-12289,-20481, 28964.2,

(D23) Time-dependent Vector X,,.

t5,X0C(1),X0C(2),X0C(3),X0C(4),X0C(5), |Xoc],
0, 1, 0, 0, 0, 0, 0.0,
1, 1, 0, -4, -3, -5, 7.1,
2, 1, 0, -8, -6, -10, 14.1,
3, 1, 0, -12, -9, -15, 21.2,
4, 1, o, -16, -12, -20, 28.3,
5, 1, 0, -20, -15, -25, 35.4,
6, 1, 0, -24, -18, -30, 42.4,
7, 1, 0, -28, -21, -35, 49.5,
8, 1, 0, -32, -24, -40, 56.6,
9, 1, 0, -36, -27, -45, 63.6,
10, 1, 0, -40, -30, -50, 70.7,
11, 1, 0, -44, -33, -55, 77.8,
12, 1, 0, -48, -36, -60, 84.9,
13, 1, 0, -52, -39, -65, 91.9,
14, 1, 0, -56, -42, -70, 99.0,
15, 1, 0, -60, -45, -75, 106.1,
16, 1, 0, -64, -48, -80, 113.1,
24, 1, 0, -96, -72, -120, 169.7,
32, 1, 0, -128, -96, -160, 226.3,
48, 1, 0, -192, -144, -240, 339.4,
64, 1, 0, -256, -192, -320, 452.5,
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(D24) Time-dependent Magnitudes |Xq_|, [Xec |, [X],. |X]
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(D25) Compactification Ratios and Errors ., ¢, €_

=+
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NRRRRRRRE
RoonbhwNRO

[0 0 " ON)
HON

chi5,chib

[ejeoNoNoNoNoloeoooojooNoNoNoNoooNeoNal

.087,
.088,
.077,
.063,
.053,
.045,
-039,
.034,
.031,
.028,
.025,
.023,
.022,
.020,
.019,
.018,
.017,
.011,
-009,
-006,
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app,chis

-000, 100.
.283,-221.
-141, -83.
.094, -48.
.071, -33.
.057, -25.
.047, -20.
.040, -17.
.035, -14.
.031, -12.
.028, -11.
.026, -10.
.024, -9.
.022, -8.
.020, -7.
.019, -7.
.018, -6.
012, -4.
.009, -3.
.006, -2.
.004, -1.

Unity Root Matrix Theory Compactification

%err, eps, eps-,
000, 0.000, --—-—-- ,
140, 0.721, 1.175,
987, 0.473, 1.144,
891, 0.338, 1.137,
863, 0.259, 1.135,
711, 0.208, 1.133,
650, 0.174, 1.133,
221, 0.149, 1.132,
752, 0.130, 1.132,
893, 0.11e6, 1.132,
445, 0.104, 1.132,
286, 0.094, 1.132,
339, 0.086, 1.132,
550, 0.079, 1.132,
882, 0.074, 1.132,
311, 0.069, 1.132,
817, 0.064, 1.132,
419, 0.043, 1.131,
267, 0.032, 1.131,
147, 0.021, 1.131,
598, 0.016, 1.131,
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23 Appendix (E) Reciprocal Eigenvectors

The reciprocal (row-vector) forms of the standard, column eigenvectors are obtained using the
appropriate dimensional T operator T, (~T"), n> 2 (this includes URM2)

|
El) T,.=T"=| "' 0 I, = (n-1)x(n-1) identity matrix
n n-1

0 -1)°

The T operator is of the same form as the familiar Minkowski metric of STR 7;;,

disregarding sign convention. Within URMT the reciprocal eigenvectors™, i.e. those with

raised indices, e.g. X°, are, indeed, related to the lowered index eigenvectors, X, in this

example, via the relation X° = (T5X5+ )T and, conversely, X;, = (XE"T5 )T.

Reciprocal eigenvectors for an n-dimensional vector space are only valid under Pythagoras
conditions for that specific n-dimensional case, e.g. conditions (4.2) in the 5D case of URMS5.

The reciprocal forms of the eigenvectors are not explicitly required in the paper for its central
purpose, since all working can be done with the standard forms of eigenvectors. Nevertheless,
most URMT conservation equations and scalar invariants arise from the inner products
between the reciprocal and standard forms, as follows, see the general solution, Section (13)
for the standard forms of the URM n vectors, from which the following reciprocal forms are
obtained.

E2) X" =(Mx,.). X, =(x"T,)

(E3) X™ =(T"X,,), j=0...n-1,
where X" ~ XA~ X"
and X" ~ X"® etc

E4) X" =(T"X, J, X, =(x"T,)

n

Examples

For URMS, the 5x 5 matrix operator T, (=T°) is defined in block matrix form, using the
4 x 4 identity matrix I,

s (1, 0
e (s 0)

52 Reciprocal eigenvectors are also known as conjugate vectors in [1] to [3]. Strictly speaking, they are the
transpose conjugate, row-vector forms of the standard, column-vector forms, and vice versa. The concept of
conjugacy within URMT covers all variables, matrices and vectors under a more unified approach given in
[1],#5. Not least, it adds Hermitian-like properties to URMT, also desirable from a physical perspective.
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Under Pythagoras conditions, there is a reciprocal vector X°~ defined in terms of X,, by
E6) X* =(T°X, ).

Using the T° operator (E5) and X, (5.2), then X° is thus,

(E7) X*=(0 0 x y -2z).

The Pythagoras equation (4.1) is now expressed as the following inner product of X°~ and
X, , which is a conservation equation, in URMT, with scalar invariant zero, see (F7),

(E8) X* X, =x*+y?-2*=0.

The reciprocal form of the URM4 eigenvector solution (8.1) is given below in terms of the
URMS reciprocal vectors

(E9)
(E92) X*“ =(0 Xx*)

(E9b) X* =20 X*)+2t,(C 0%)+(0 x*)
(E9%) X“*=(0 X*)
(Eod) X*®=-t,0 x*)+(c 0°)

The reciprocal form of the URMDS eigenvector solution (11.1) is given below in terms of the
URMS reciprocal vectors

(E10)

X =—®2+t2)0 0 X*)+
(E108) 2.(C 0 0%)+

2,0 Cc 0+
(0 0 x*)

(E100) X* =0 0 X*)
(E10c) X**=(0 0 Xx¥)
(E10d) X** =—t,(0 0 x*)+(0 C 0°)
(E10e) X*° =—t,(0 0 X*)+(C 0 0°)
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24 Appendix (F) Conservation Equations and Scalar Invariants

Following on from Appendix (E), the six key conservation equations of URMT, as obtained
from the inner product relations between the eigenvectors, are given in this Appendix for both
URM3 and the general, n-dimensional case.

The URM3 conservation equations are:

(F1) X*¥X,, =x*+y? -z =0 Pythagoras

(F2) X*¥X, =al+pZ-yi=0 Pythagoras

(F3) X¥X,, =P2?+Q2?—R?=+C? the DCE

(F4)  X¥X,, =X¥X, =a,x+ B,y +y,2=+2C? the Potential Equation (V =0)
(F5) X¥X,, =X*X,, =xP-yQ-zR =0 the Delta equation

(F6) X¥X, =X*X,, =a,P-B,Q+y,R=0 the Dual Delta equation

The n-dimensional forms of these equations, for URMn, n > 4 give exactly the same
invariants. They are stated below, with an example given following of how they are proved by
induction. Note that the scale factors «,, S, and y, are defined recursively in (C16).

(F7) X" X,, =0, Pythagoras
(F8) X™X, = Z;‘(thC)z +a’+ B2 —y?2 =0, Pythagoras
=
(F9) X™X,, =X"X,_ =a,x+B,y+y,z=+2C? the Potential Equation (V =0)
n-1

Using a zero vector X, given by the sum X o =>" X ;, where X o ~ X oas Xo1 ~ X0 -
j=0

X ~ Xoc €tc., and related reciprocal vector X™ = (T”XHO)T, then

(F10) X"™X, ,=P?+Q?-R?=(n-2)C?, the DCE

Note that the following orthogonality relation holds between different, zero eigenvectors:
(F10b) X"™IX  =C?ifi=j,and X"'X , =0 ifi=j.

(F11) X"™X,, = X" X,, =0 the Delta equation
(F12) X"™X, =X"X, =a,P-B,Q+y,R=0 the Dual Delta equation

These relations can be proved inductively using a recursive form of the general solutions
provided in Appendix (C), to give the eigenvector solutions for the n-dimensional case in
terms of the n—1 dimensional eigenvectors.
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An example of this is given following using the n-dimensional eigenvectors X, (13.2a) and

X™ (C7). Although this is not particularly pertinent to the paper's theme, it is considered
useful as a good illustration in standard URMT algebra.

To prove the inner product relation (F9) inductively then, starting with their general solutions
X,. (13.2a) and X" (C7), reproduced below,

0
(F13) X, = (X

(n-1)+

] (13.2a),

X™ =(2t,,C —t2X"D £ X)),
the inner product X™ X, . of the two is given by
(F14) X™X,, ==tIX"VX o + XOVX s

The right of this product is given purely in terms of the n —1 dimensional eigenvectors, albeit
there are now two terms.

If it can be shown that the first term XX .. is zero™, then the product will reduce to
X" X, =XYKL, ie. the desired reduction of X™ X, to XX .. will have been

achieved. Really, of course, the inductive argument shows that, if it is true for the n—1 case
then it is true for the n case - this argument is given at the end.

It is relatively trivial to prove X‘”‘”‘X(n_l)+ s zero because the vector X, ;. is static, as seen
by the recursive formula for X,

0,
(F15) X, =Xy: = Xaoys :"'(x 3].
3+

Likewise, for X~ since it is simply obtained from the relation X"~ = (T”‘lx(n_l)+ )T e
(F16) X0 = (0”-3 (T3X3+ )T )

and, using the URM3 relation (T3X3+ )T = X%, then X~ is given in terms of URM3
vectors as

5 gince X" isa reciprocal eigenvector for eigenvalue —C, and X, ., is a standard eigenvector for

eigenvalue + C then, by the rules of matrix algebra, these eigenvectors will be orthogonal, i.e. their inner
product zero. This is usually described in the literature [5] under the subject of ‘orthogonality’ of eigenvectors to
different eigenvalues. Note that this orthogonality is between reciprocal (row-vector) and standard (column-
vector) forms, but not between standard-standard or reciprocal-reciprocal vector forms. In these two latter cases,
as noted in URMT (footnote 37), the standard vectors form a highly oblique basis, non-orthogonal basis and so
too, therefore, the reciprocal vectors.
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(F17) X9 —(0"® x¥).

Thus, using this and the results for X"~ (F16) and X, ,, (F15), the inner product
XX . IS given in terms of URM3 vectors as

(F18) XXy, =X¥X,, .

Since X* X, is zero by Pythagoras (F1), then it is proved that the first term on the right of
(F14) is zero, i.e.

(F19) X(n_l)_x(n-m =0,
and the inner product (F14) becomes

n+ _ (n-1)+
(F20) X™X,, =X"D*X ...

Retracing, if XX, ,, =+2C?, thenso too X" X, =+2C? by (F20). Since it is true for

n=3,ie X*X,, =+2C? (F4), then it is also therefore true for n=45... etc, hence (F9) is
proven forall n>3.

(F21) Commentary

The n-dimensional vector space is characterised by n, independent parameters (k, I and t;,
j=3...n), all but two (k and I, see footnote (7)) are physically interpreted as temporal
coordinates. Each jth dimension, three and higher, has evolutionary behaviour governed by its
jth temporal coordinate t;, effectively making the eigenvector space a discrete set of, n-

dimensional points, termed the 'lattice’ in [1],#3 and [3]. A point in the lattice is therefore
uniquely specified by the n-element, coordinate vector (k It j), j=3...n. Every lattice

point is characterised by a set of invariants 0,+C?,+2C? (footnote %), given by the scalar
products, (F7) to (F12), between the eigenvectors. For the unity eigenvalue, C =1, this gives
the set 0,£1,+2 . Ratios of these (except zero) may also be considered. Regardless of the size
of the eigenvectors, and their respective elements, which could easily be O(10") to O(10%),

the same three numbers, 0, 1 and 2 appear at every lattice position. What do these integer
invariants represent? Are their ratios meaningful?

> The minus sign can be selected using a different sign convention for the eigenvectors.
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25 Appendix (G) Calculus Properties of URMT

Whilst URMS vectors X,,, X,,, X, can be consistently interpreted in terms of their

physical units, with an acceleration, velocity and position vector respectively, they are also
related via the following calculus relations, further justifying the standard physical
interpretation (2.1), see also [1],#3 and [3].

The standard calculus derivative % (~dim in [1], [3]) is used as a good, large t,
3
approximation for discrete differences (see also point (G17) below), i.e.

(G1) izi t, >>0, o, =1,
dt, o,
dX, . . : .
(G2) = 2X,,, derivative of position = twice velocity
t3
dXy, . : . .
(G3) o =-X_, derivative of velocity = negative of acceleration
3
dX, . : :
(G4) T* =0, derivative of acceleration = zero (constant acceleration)
3
d®X,. . . . :
(G5) 1% =-2X,,, second derivative of position = - twice acceleration
3

Higher dimensional, extension work in [4] shows these identical relationships are maintained
as follows for general, URMn .

Calculus Properties of URMn

With more than one evolutionary parameter for four and higher dimensions, the standard

calculus partial derivative ati is now used in place of dT for derivatives with respect to
i 3
evolutionary time t; .

(G6) , 1, >>0, o, =1,

0.9
o &
For URMS5, the partial derivatives are

X .. .. . .
(G7) aats_ = 2X,,;, derivative of position = twice velocity

4
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oX.

(G8) P 2X ¢, ditto
5
OX s . : . .
(G9) —*=-X,_ , derivative of velocity = negative of acceleration
6'[ 5+
3
(G10) 6)(;% =-X,,, ditto
4
(G11) e _ -X,, , ditto
ot
oX oX :
(G12) > =0, —2* =0, constant acceleration
ot, ot
X, X, - » : :
(G13) FEa —2X,,, - —2X,, second derivative of position = - twice acceleration
4 5

For URMn, dimension j+3, j=0...n-3, (j =0 includes URM3 here) the same general
relations hold true for evolutionary parameter t.,,, e.g. t, for j=0, t, for j=1,etc.and t,
for j=n-3.

j+37

X,

(G14) = 2X

w0j » derivative of position = twice velocity

j+3

aXnO'
(G15) X
ot

j+3

derivative of velocity = negative of acceleration

n+?

o*X,

=-2X
0%t

(G16) second derivative of position = - twice acceleration

n+?
j+3

Some additional points

(G17) These calculus relations sometimes have the caveat of valid only for large evolutionary
times. This caveat is unrelated to any compactification issues, and is only required in so far as
the continuous derivative is used as an approximation for the discrete difference for any large
time t;, t; >>0.

(G18) The n vectors can be physically associated with a single acceleration (the same for all
dimensions), n—2 velocity vectors, and a single position vector, all related by standard,
calculus relations. Except there is no calculus in URMT's formulation, only an invariance
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principle and associated invariance transformations, but absolutely no calculus or difference
equations used.
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26 Appendix (H) URM2

The key matrices and eigenvectors in the 2x 2 formulation of URMT (URM2), when under
URM2 Pythagoras conditions, are as follows, reproduced from [4]. URMZ2 is also a special
case of what is termed 'the almost trivial' solution in Appendix C of [1],#3.

0 C . .
(H1) A,= c 0 , 'unity' root matrix

(H2) A*-C?=0, A+C, eigenvalues

1 2
(H3) X,, = {J X, :( Cczj , Standard eigenvectors

(H4) X* :( 2 Cz), X? =(1 -1), reciprocal eigenvectors

1 0
(H5) T,=T? :(+0 J, the T operator

(H6) K =C?,V =0, kinetic and Potential terms
(H7) C?=K+V (= C*=2%),the DCE

In URMZ, the total energy E is always the kinetic term K (H6), and the Potential V is
always zero, with no pre-conditions such as the Pythagoras conditions, Section (4).

The only free parameter within URMZ2 is actually the eigenvalue C which, by definition, is
unity or greater.

Generally, this URM2 case is considered too simplistic, primarily because the only non-
trivial, primitive X,, vector is the (1,1) pair, which is why URMT generally starts with
URMBS since it has the first 'non-trivial' solution X,, - an arbitrary Pythagorean triple with
three, non-zero elements.

Neither is their any meaningful variational (or evolutionary) parameter t,, see [4]. But this is

more of a plus point, because it means URM2 cannot shrink further from two to one
dimension.

Note that these two aforementioned points might actually be telling us something about 3D?

Despite URM2 being considered too simplistic, it is not entirely dismissed and, if for no other
reason, it is a good illustration of some basic aspects of URMT. Most importantly amongst
these is that the above (1,1) solution can be 'lifted’ (16) to a general, 3D Pythagorean solution,
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using a matrix A,, and eigenvector X,, , based on the general n-dimensional matrix A, and
eigenvector X, , Appendix (C). Using A, with n=3, the 3D matrix A,, and vector X,,
are defined as

0 -t X 0
(H8) Aso:( ° ]1X3+:( ]
t3X2+ Azo ><2+

Substituting for matrix A,, (H1) and eigenvectors X,, (H3), X* (H4), then A, and X,,
are expanded in full as

n+ !

0 -t +t 0
(H) Agp=|+t; 0 C |, X, =|1].
+t, C 0 1

To obtain X*', the residual matrix method, Appendix (C), is used to calculate the residual
matrix E,,

(H10) E,, = Ajo +CA,,,
and then extracting X** using the equivalent definition E,, = X, X*", gives X** as follows
(H11) X* =(2,c C?—t2 C2+t?).

It can be seen that the three elements of this vector are the standard parameterisation of a
Pythagorean triple for arbitrary integer parameters t,, C .

With X** defined in the usual way in terms of URMS3 scale factors «, S, and y,, (A10a),
then, comparing with (H11), they are thus

(H12) a,=2t,C, B,=C?—tZ, y,=C? +t?
and the Pythagoras equation is simply
(H13) 7; =a5 + ;.

With the 3D T operator, T, (~T*), defined as

10
(H14) T,=T°= y ,
0 T,

then X, is obtained in the usual way X, = (T,X*)’
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2t,C
(H15) X, =| C?-t?
—(C2 +t§)

Lastly, the zero eigenvector X, is

C
(H16) X5 =| -1,
~t,

and its reciprocal X* obtained from X* = (T*X,,)"

(H17) X* =(C -t, +t,).

The DCE in scalar product form, (F3), is then verified to be the conserved quantity C?, i.e.
(H18) X¥.X, =C”.

This completes the overview of URM2.
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27 Appendix (1) Terminology

This is a subset of the full URMT terminology, covering terms used herein, either uniquely
defined within URMT or those in wider use, but with a specific meaning to URMT.

(11) Alignment - see Flattening (15).

(12) Divisibility factors, also known as scale factors, are the last three elements of the
URMn eigenvector X", denoted by «,, B, and y,, n>3, see (Al5) URM3 and (C16)
UMRN.

(13) The Dyadic product is synonymous with the outer product of two vectors. In the context
of URMT, the dyadic product of two vectors X, and X', i, j=1...n, gives a square matrix,

M; = X, X1, of size nxn. The term 'dyadic product' is quite old and is replaced by ‘outer

product’ in modern texts. Nevertheless, the name appears in the earlier URMT literature, e.g.
[1], albeit it has been replaced herein with the term 'outer product'.

(14) An Excess dimension is any dimension higher than the third, i.e. the fourth or higher. In
an n-dimensional space, an excess dimension r is such that 3< r < n; its associated temporal
(evolutionary) parameter is denoted by t, , see Appendix (C).

(15) Flattening is the term used to describe the eigenvector evolution in URM3, whereby the
two eigenvectors X,, and X, align anti-parallel to X,, as evolution progresses, i.e. as

evolutionary time t, increases, see Appendix (B) for the URMS3 eigenvector evolution

equations. Because it is an alignment of vectors, the process is also known as "alignment™
herein, but ‘flattening’ is used exclusively in earlier, URM3 literature; see [1],#3 for full
details of the evolutionary process, and [3] for a summary.

(15) Flattening is the term used to describe the eigenvector evolution in URM3 whereby the
two eigenvectors X,, and X, align anti-parallel to X,, as evolution progresses, i.e. as

evolutionary time m (or t,) increases, see Appendix (B) for the URM3 eigenvector evolution
equations. The vector X,, itself is static and invariant to arbitrary variations in any
evolutionary parameter. However, note that X, is actually a two-parameter family of integer

vectors, parameters k and | (A26), and hence occupies a 2D discrete subspace of 3D; in this
sense, the 3D flattens to 2D. Because it is an alignment of vectors, the process is also known
as "alignment' herein, but 'flattening' is used exclusively in earlier, URM3 literature. That they
align anti-parallel, and not parallel, is largely a choice of sign convention. See [1],#3 for full
details of the evolutionary process, and [3] for a summary.

(16) Lifting, in the context of URMT, is the process of generating eigenvector solutions for an
(n+1)x(n+1) matrix A, using an eigenvector solution to the nxn matrix A, n>2. The

matrix A, is embedded in A, and an eigenvector solution X, to A, is also a solution to
A _ .., with appropriate zero padding.

n+l?
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(17) A 'non-trivial® vector is one with all non-zero elements and, in the context of URMT,
remains non-trivial for arbitrary variations in all evolutionary parameters. Primarily this

applies to the static vector X and its reciprocal X", since X is the only true, invariant
vector.

(18) A primitive Pythagorean n-tuple is that which has no common factor in its elements, as
specified by gcd criterion, e.g. URM5 gcd criterion (3.4c). The vector X, and its reciprocal
X" are usually defined to be primitive, with any common factor being absorbed into X _
and its reciprocal X"*, which are also Pythagorean n-tuples.

(19) The Pythagoras conditions are a set of relations between the standard and conjugate
dynamical variables in URMn, which are such that the eigenvectors of the nxn matrix A,
for non-zero eigenvalues, are Pythagorean n-tuples. The unity root matrix A is formed

exclusively from the dynamical variables, and the conditions make the matrix skew-
symmetric in the first, n—1 rows and columns, and symmetric in the last row and column. All
Pythagoras conditions for URMn include URM (n—1) as a subset.

(110) Scale factors, see divisibility factors.

(111) A Static quantity in URMT is any quantity (invariably an eigenvector) not dependent on
any evolutionary time t;, j=3...n. The eigenvector X, , n>2 (this includes URM?2), is
the classic URMT example. A static eigenvector can be a function of none, one or both of the
other two URMT parameters, k and I, which are not temporal parameters, e.g. X, isa
function of both k and I.

(112) Zero Eigenvectors. The eigenvectors X, X, oa: X,08: Xnoc €tC., are called zero

eigenvectors since they are the eigenvectors for the repeated, zero eigenvalue and not because
they have all elements zero.
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