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Abstract 
 
This paper gives an integer-based, number-theoretic representation of the quark flavour 
model. The six known quarks, as per a standard representation, are given by eigenvectors to a 
matrix operator but, unlike a standard representation, satisfy Pythagorean or hyperbolic 
Diophantine equations, and are eigenvectors to an all-integer unity root matrix. Comparison of 
the commutation relations with those of quantum mechanical angular momentum provide an 
expansion of the single-axis representation to a three-axis, three-fold solution, linked to the 
red, green and blue quark colours, with the additional three-fold degeneracy in quark 
generations given by a full 6x6 matrix representation. Parametric evolution of the eigenvector 
solution is shown to preserve all inner products and thus maintain unitarity as per the special 
unitary groups SU(n), and also shows that the six-quark solution can geometrically 
compactify to look like a single quark. Comparison of the time-domain eigenvector evolution 
with the time-evolution of the wavefunction leads to an interpretation of the parametric 
variation in the unity root matrix as a form of action principle. The paper ends with a numeric 
example that can be used to verify the quark algebra. 
 
Keywords: Quarks, Flavour Symmetry, Unitary Groups, SU(2), SU(3), SU(6), Pythagoras, 
Diophantine Equations, 
 
MSC 2010 Mathematical Subject Classification: 11C20, 15A18, 15B36, 35Q41, 81Q99, 
81R99 
 
PACS 2010 References: 03.65.Fd, 14.65.-q, 11.30.-j, 11.30.Hv 
 
Acronyms and Abbreviations 
 
DCE : Dynamical Conservation Equation 
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1 Background 
 
This paper is essentially a summary of the key points in Reference [1] and therefore 
concentrates on those areas where Unity Root Matrix Theory (URMT) has something unique 
to say, leaving more general concepts such as particle multiplets, unitary transforms and spin 
for the reader to explore at length in standard particle and quantum physics texts such as [2], 
[3], [4] and [5] or, indeed, [1]. Nevertheless, it has been attempted to keep the work self-
contained so that dipping in and out of references is hopefully minimal –there is plenty of 
free, background material on URMT at the web site [6], e.g. see the Overview [7]. 
 
The readership level has been kept at undergraduate, with explicit usage of Lie algebra and 
associated symmetry groups SU(n) avoided as unnecessary to illustrate the main points. As a 
consequence, the work should be amenable to under-graduates having taken a first course in 
quantum mechanics and/or particle physics (quarks, spin, isospin), [3] and [4], plus some 
basic linear algebra (matrices, eigenvalues and eigenvectors). Whilst there are many good 
texts on QM, [2] and [5] are recommended for most if not all of the QM topics covered. Texts 
[8] and [9] on Quantum Field Theory (QFT) are generally post-graduate level but cover SU(n) 
and quarks, and provide a more informative background for the advanced student. 
 
Knowledge of number theory is kept to an absolute minimum, with only a very basic 
knowledge of congruences required and, failing that, just an appreciation that the work is 
entirely in integers should be sufficient – see [9] for a basic undergraduate text on the subject. 
On the other hand, the pure number theorist could actually gloss over the physics because, 
once again, URMT has much to add on the subject of Pythagorean n-tuples and hyperbolic 
Diophantine equations with regard to parametric variation. In particular, there is much new 
URMT material including, most importantly, a three-fold expansion of URMTs three-
dimensional solution, additionally extended to six-dimensions. As a consequence, this paper 
could well have been entitled ‘Pythagorean Sextuplets as Quarks and Related Invariants’ 
since it is an advancement of one of the very earliest URMT papers on ‘Pythagorean Triples 
as Eigenvectors and Related Invariants’ [10], which is also a freely available PDF. 
 



A Quark Flavour Model in Integers 
(Pythagorean Sextuplets as Quarks and Related Invariants) 

Page 4 of 40 
Issue 1.0: 28/04/2017 

2 URM3, Angular Momentum and Quark Isospin 

This first section gives an overview of the original 3x3 matrix incarnation of URMT, followed 
by a comparison of its operator matrices to the angular momentum matrices of quantum 
mechanics (QM), using their commutation relations and raising and lowering properties. This 
then prepares the ground for a look at the three quarks, up, down and strange, together with 
their isospin properties. The comparison with a three-state angular momentum scheme leads, 
in the next section, to an expansion of URMT’s fundamental three operator matrices, 0A , A  
and A  to nine matrices, thereby achieving a full, three-axis, URMT representation of 
angular momentum, spin and hence also isospin. The founding unity root matrix 0A  is 
associated with the generator of rotations about a chosen axis, whilst A  and A  act as the 
raising and lowering operators for that axis. 

The URM3 Eigenvector Solution 

The complete URM3, integer, eigenvector solution, under simplifying Pythagoras conditions 
[7], comprises three A  matrices, A , 0A  and A , and three associated eigenvectors X , 0X  
and X . These matrices and eigenvectors are defined in terms of three sets of integer 
variables, zyx ,,  , RQP ,,  and  ,,  as follows: 

(2.1) 
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The zyx ,,  are known in URMT as ‘coordinates’, the RQP ,,  as ‘dynamical variables’, and 
the  ,,  as ‘scale’ or ‘divisibility factors’ [7].  The coordinates and scale factors satisfy 
Pythagoras, i.e. 

(2.3) 2220 zyx  , 2220   , 
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and the dynamical variables RQP ,,  satisfy the following hyperbolic, ‘Dynamical 
Conservation Equation’ (DCE), for integer eigenvalue C: 

(2.4) 2222 CRQP  , C ℤ, 1C , the DCE. 

This hyperbolic equation is a very special equation in URMT physics as its four-dimensional 
variant can be directly equated with the relativistic energy momentum equation [11], i.e. 
eigenvalue C  is equated to the speed of light 'little c'. In fact, the eigenvalue will also later be 

related to Planck’s constant h . 

The dynamical variables RQP ,,  satisfy the following congruences: 

(2.5) )mod(22 xCP  , )mod(22 yCQ  , )mod(22 zCR  , 

and expand as follows, which also forms the definition of the ‘divisibility factors’  ,,  in 
terms of the coordinates zyx ,, : 

(2.6) xPC  22 , yQC  22 , zRC  22 . 

When the eigenvalue magnitude is unity, i.e. 1C , the dynamical variables are unity or 
‘primitive’ roots [9], otherwise known as quadratic power residues for non-unity, integer C. 
Because of this unity root property of the dynamical variables, the matrix 0A  (2.1) is known 
as the ‘unity root matrix’, and is thus the founding matrix of the subject. The three vectors 

X , 0X  and X  are eigenvectors of this unity root matrix for the three, distinct eigenvalues 
CC ,0,  respectively, i.e. 

(2.7)   XXA C0 , 000 XA ,   XXA C0 , CC  ,0, . 

These equations are known as the ‘dynamical equations’ in URMT [1], and are the first 
evidential link to a three-state, quark scheme of up ( X ), strange ( 0X ) and down ( X ), when 
matching their eigenvalues CC ,0,  with isospins of 1/2,0,-1/2 respectively. 

The other two matrices A  and A  each have only a single, zero eigenvalue, multiplicity 

three, with the single eigenvectors X  and X  respectively, i.e. 

(2.9) 0XA , 03 A , 0XA , 03 A . 

Nevertheless, they also have a raising, lowering effect as given by the following equations in 
the eigenvectors 

(2.10) 

02 XXA C ,   XXA C0   

02 XXA C ,   XXA C0 . 
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It is seen from these equations that A  raises eigenvector X  (eigenvalue C  to 0A ) to 0X  

(eigenvalue 0 to 0A ), and then to X  (eigenvalue C  to 0A ), and finally to zero (2.9). 

Similarly the lowering operator matrix A  lowers eigenvector X  to 0X , and then to X , 
and finally to zero (2.9). For any arbitrary value of C , the raising and lowering of the 
eigenvalue is also of unit C . 

This raising and lowering behaviour thus steps the two eigenvectors, X  and X , through 
three states, i.e. 

(2.11) 0: 0   XXXA , 0: 0   XXXA . 

Commutators and Angular Momentum 

The aforementioned raising and lowering behaviour is identical, barring a scale factor of two 

in (2.10), to a three-state, angular momentum system in QM [5], with eigenvalues hh ,0, , c.f. 
URMT’s eigenvalues CC ,0,  (2.7), where the raising operator raises the eigenvalue states 

from h  through 0 to h , and vice-versa for the lowering operators. In fact, if the eigenvalue 

C is equated with Planck’s constant, i.e. hC  , then the commutation relations between 
},,{ 0  AAA  are found to be identical to those of the angular momentum matrices xJ , J  

and J   in QM [5] (or xL  in [2]), i.e. 

(2.12) 

    JJJ hx , ~     AAA C,0  

    JJJ hx , ~     AAA C,0  

  xhJJJ 2,  ~   02, AAA C . 

Thus, the three URMT A matrices correspond to the following angular momentum matrices: 

(2.13) 

xJA ~0  a generator of rotations about the x-axis 

 JA ~  raising operator 

 JA ~  lowering operator 

hC ~  eigenvalue 

Given that QM angular momentum and spin are mathematically the same concepts and that, 
equally, the same as the more abstract notion of nucleon isospin [3], [4], then the link from 
URMT eigenvectors to quark state vectors is easily made. 

Quarks and Isospin 

Using the following symbolic definitions: 

u  up quark state vector  

d  down quark state vector 
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s  strange quark state vector 

3I  operator for the component of isospin along a chosen axis 

3I  eigenvalue for the component of isospin along a chosen axis 

then the isospin eigenvector equations [3] are 

(2.14) 

uuI
2

1
3  , 

2

1
3 I  

03 sI , 03 I  

ddI
2

1
3  , 

2

1
3 I . 

Thus, the up quark has a component of isospin of ½, the down quark -½, and the strange 
quark zero. 

Note that using a subscript ‘3’ on 3I  and 3I  implies the ‘chosen’ axis is the third, z-axis. 

However, in this paper, but not [1], it is actually the x-axis due to the attribution of 0A  with 

the x-axis (2.13), and consistent with spin in [1]. As a consequence, 3I  and 3I  might be better 

subscripted with a ‘1’ as in 1I  and 1I . The discrepancy is syntactic only, and fully resolved in 
[1].  

By defining these three quarks in terms of the URMT eigenvectors as follows: 

(2.15) 
C2


X
u , 

C
0X

s  , 
C2


X
d , 

and the operator 3I  in terms of the URM3 equivalent operator 0A , i.e. 

(2.16) 
C2

0
3

A
I  , 

then the URM3 eigenvector equations (2.7), reproduced below, are identical to the isospin 
equations above, i.e. 

(2.17) 

uuI
2

1
3       XXA C0  

03 sI    000 XA  

ddI
2

1
3       XXA C0 . 

Note that the 2  factor on the quark eigenvectors is a normalisation constant, but the actual 
eigenvector elements remain integer only. For a numeric example, see Section (7). 
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As an example of (2.17), using the above definitions of 3I  and u, the product uI3  is  

(2.18) 
CC 22

0
3


XA

uI , 

and using the above eigenvector equation   XXA C0  (2.7), and definition of X  in terms 

of u (2.15), then the standard isospin eigenvector equation 2/3 uuI   (2.14) is obtained. 

As regards the two additional raising and lowering isospin operators I  and I , these operate 
on the quarks as follows: 

(2.19) 

0uI , 0sI , udI   

duI  , 0sI , 0dI . 

It is seen from these relations that I  raises a down quark to an up quark, and annihilates the 

up quark, whereas I  lowers an up quark to a down quark and annihilates the down quark; 
any other quark, such as the strange quark here, is always annihilated. Therefore, these 
standard QM isospin operators are effectively two-state, i.e. 

(2.20) 0:  udI , 0:  duI , 02 I , 02 I , 

and, as a consequence, there is not a direct correspondence between I  and I , and URMT’s 
three-state operators A  and A  (2.11). In fact, the direct correspondence comes when 
studying the lesser URMT theory that is URM2, i.e. 2x2 matrices (~ Pauli spin matrices [2]), 
and is fully detailed in [1] – note SU(2) ~ URM2 and SU(3) ~ URM3. 

Nevertheless, URM3-equivalent operators of I  and I  can, and are, (see (2.34) further 
below) easily formed from the URMT eigenvectors, but first require the introduction of anti-
particles into URMT. 

Anti-particles and URMT Conjugate (row) Eigenvectors 

Antiparticles are easily accommodated in URMT using the conjugate/reciprocal row-
eigenvector equivalents of the standard, column vector forms X , 0X  and X . 

By defining a ‘T operator’ matrix in URM3 as: 

(2.21) 



















100

010

001

T , 1 TTT T , IT 2 , 

then the reciprocal, row eigenvectors X , 0X  and X  are defined in terms of the column 
eigenvector forms by: 
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(2.22) T)( 
  TXX , T)( 0

0 TXX  , T)( 
  TXX . 

These row eigenvectors X , 0X  and X  are also known as the conjugates of X , 0X  and 

X  respectively, where the conjugate of the minus eigenvector X  is the plus row 

eigenvector X , and vice versa. 

Note that the T operator is the same as the Minkowski '2+1' metric in Special Relativity, to 
within sign convention, and is responsible for the Pythagorean nature of URMT when under 
Pythagoras conditions [7]. 

Using T, and eigenvector definitions (2.2), the conjugate eigenvectors are thus 

(2.23)  zyx X ,  RQP 0X ,  X . 

These conjugate eigenvectors satisfy the following eigenvector relations, which will come in 
useful later when looking at anti-quarks: 

(2.24) 
02 XAX C

  
  XAX C0  0

AX  
  XAX C0  00

0 AX    XAX C0  

0
AX  

  XAX C0  02 XAX C
  

Inner (or dot) Products 

The inner (or dot) product of two vectors, giving a scalar result, is written throughout this 
paper as the product of a conjugate or reciprocal row-vector and a column vector, without the 
explicit ‘dot’ notation. For example, the inner product of the row vector X  and column 
vector X  is written as 

XX  instead of the more usual 
 XX , i.e. 

(2.25) 
XX 

 XX . 

With this notation in mind, the inner products amongst the eigenvectors   XXX ,, 0  and 

  XXX ,, 0  give the following six conservation equations, which are essential for most 

URMT quark algebra throughout: 

(2.26) 

0222 
 zyxXX , Pythagoras equation 

0222 
 XX , Pythagoras equation 

2222
0

0 CRQP XX , the DCE (2.4) 
22Czyx  




 XXXX , Potential equation for 0V  [7] 

00
0  

 zRyQxPXXXX , Delta equation 

00
0  

 RQP XXXX , Dual delta equation 
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The reasoning behind the naming of these equations is briefly as follows: evidently the first 
two satisfy the Pythagoras equation; the third ‘DCE’ equation is hyperbolic in the dynamical 
variables and derives directly from the Invariance Principle, Section (4); the fourth has a non-
zero potential energy (when not under URM3 Pythagoras conditions); and the last two ‘delta’ 
equations also derive from their invariance to global delta variations in the dynamical 
variables [7]. 

Conjugate A Matrices 

Unlike the URMT eigenvectors, the A matrices are self-conjugate (known as ‘Hermitian-like’ 
in URMT [7]), and so their conjugate forms are the same as their standard forms (2.1). 

Anti-quarks 

Using the following definitions 

u  up anti-quark state vector  

d  down anti-quark state vector 

s  strange anti-quark state vector 

3I  anti-quark operator for the component of isospin along a chosen (x) axis 

then the anti-quark, isospin eigenvector equations are 

(2.27) 

dId
2

1
3  , 

2

1
3 I , 

03 Is , 03 I , 

uIu
2

1
3  , 

2

1
3 I . 

The anti-quark operator for the component of isospin ( 3I ) is given by negating the sign of its 
standard particle form, i.e. 

(2.28) 33 II  . 

The up, down and strange anti-quarks are defined in terms of the URM3 row-eigenvectors as 

(2.29) 
C2




X

u , 
C

0X
s  , 

C2




X

d , 

and using 33 II   (2.28) and definition (2.16), then the anti-quark isospin operator 3I  is 

given in terms of 0A  by 

(2.30) 
C2

0
3

A
I  . 
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Using the above URMT-equivalent definitions, then the URM3 eigenvector equations (2.24), 
reproduced below, are seen to be identical to the isospin equations (2.27), i.e. 

(2.31) 

dId
2

1
3       XAX C0  

03 Is    00
0 AX  

uIu
2

1
3       XAX C0 . 

Inner Products 

The following inner vector products between all quarks are obtained using the particle and 
anti-particle eigenvector forms, (2.15) and (2.29), and inner product forms (2.26). These 
products are used extensively to verify operator algebra herein. 

Reminder. Xu ~ , Xu ~ , 0~ Xs , 0~ Xs , Xd ~ , Xd ~ . 

(2.32)   

1uu , 22C
XX  0su , 00 

XX  0du , 0
XX  

0us , 00 XX  1ss , 2
0

0 CXX  0ds , 00 XX  

0ud , 0
XX  0sd , 00 

XX  1dd , 22C
XX  

Outer Products 

The outer product of two vectors, giving a matrix result, is written throughout this paper as the 
product of a column vector and a conjugate (or reciprocal) row-vector, without the explicit 
product symbol  . For example, the outer product of the column vector X  and row vector 

X  is written as 
XX  instead of the more usual 

  XX , i.e. 

(2.33) 
XX 

  XX . 

All matrix operators given in this paper have an outer product construction, i.e. can be written 
as the linear sum of one or more outer products of the eigenvectors. 

The Outer Product form of I  and I  

Having obtained all particle and anti-particle eigenvector forms, the raising and lowering 
operators, I  and I , can now be given as outer products in terms of URMT eigenvectors, 
stated as follows: 
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(2.34) 

duI  , 
22C




 
XX

I  

udI   
22C




 
XX

I . 

With these definitions, and using the inner products (2.32), the earlier raising and lowering 
operations on the quarks (2.19) can be verified. For example, using  22C

XX , 

(2.35) dI
 

322 C



 XXX  

322 C





XXX
u

X
 

C2
. 

The anti-particle raising and lowering operators are also related to their standard forms by 

negation as per 33 II   (2.28), i.e. 

(2.36) 

  II , 
22C




 
XX

I  

  II , 
22C




 
XX

I . 

Using these and the inner products (2.32), the isospin raising, lowering operator actions on the 
anti-quarks are as given in the textbooks [3], i.e. 

(2.37) 

dIu  , 0Is , 0Id  

0Iu , 0Is , uId  . 

For example, the last equation Id  evaluates as follows, in terms of URMT eigenvectors: 

 (2.38) Id
 

322 C







XXX  

322 C







XXX

u
X




C2
. 

The Eigenvector form of 3I  and 0A  

The 3I  operator is given in terms of its eigenvectors, as outer products, by 

(2.39)  dduuI 
2

1
3 , 

which is actually a spectral decomposition [13], and using the definitions (2.15) and (2.29) the 
URM3-equivalent operator to 3I , i.e. 0A  (2.16), is written in terms of its eigenvectors as 

follows: 
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(2.40)  


  XXXXA
C2

1
0  c.f. 

C2
0

3

A
I   (2.16). 

These two forms of 3I  and 0A , used in conjunction with the inner products (2.32), can be 

used to verify the isospin eigenvectors equations (2.17) and (2.31). In particular, because 3I  

has no strange or strange anti-quark dependence, then 03 sI  (2.17) and 03 Is  (2.31) are 

verified. Similarly, in URMT, 0A has no 0X  or 0X  dependence, and so 000 XA  (2.17) and 

00
0 AX  (2.31). 

Note that, for later reference, the plus and minus matrices also have the following eigenvector 
constructions: 

(2.41)  0
0

1
XXXXA 


 

C
,    XXXXA 0

01

C
 

Summary so far 

Thus far, the three quarks up, down and strange, and their anti-particles, have been given 
URMT eigenvector representations, together with the three isospin operators 3I , I  and I . 

As a consequence, all isospin operator actions on the quarks, such as obtaining their isospin 
component 3I , and raising and lowering their states, have also been given a URMT-

equivalent. 

3 A three-fold Solution 

Given that three quarks can easily be represented within URM3, it might seem enough to now 
move on to six quarks. However, the earlier comparison of URMT operators with angular 
momentum shows that the URMT Pythagoras solution is incomplete, i.e. only the single, 
unity root matrix 0A  has been attributed to a generator of rotations about a single axis (the x 

axis (2.13)), whilst the full treatment of angular momentum in both classical and quantum 
mechanics naturally considers all three Cartesian axes x, y and z. The result of this is that 
URM3 can be expanded, by analogy with angular momentum, to a three-axis solution, and 
with it comes the concept of quark colour, i.e. red, green and blue (RGB). Note that what will 
be seen to be a three-fold, RGB degeneracy in the URM3 solution is not the same as that of 
three quark generations, which also comes in URMT when later extending to six quarks, i.e. 
URMT embraces both quark colour and three-fold degeneracy. 

Two new Matrices and Eigenvectors 

Returning to the definitions of the QM raising and lowering operators of angular momentum, 

J  and J  (c.f. I  and I  for isospin), they are defined in terms of the generators yJ  and zJ  

for rotations about the y and z axis [5] by 

(3.1) zy iJJJ  , zy iJJJ  . 
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However, no equivalent URM3 A matrices have been given for yJ  and zJ , only the founding 

unity root matrix 0A , which has already been equated to the generator ( xJ ) of rotations about 

the x-axis (2.13). Nevertheless, the raising and lowering operators J  and J   have also been 

equivalenced to URMT’s matrices A  and A  (2.13), so that simply by replacing J  and J  

with A  and A , and rearranging, two new A matrices, labelled 0DA  and 0SA  , are obtained 

as defined by 

(3.2) 

   AAA
20

i
D , ~ yJ , y-axis 

   AAA
2

1
0S , ~ zJ , z axis. 

Note that, ordinarily, these new A matrices 0DA  and 0SA  might be subscripted with y and z 

exactly as per yJ  and zJ  but, for various reasons, this is not possible without conflicting or 

causing confusion with other URMT notation. The subscripts ‘D’ and ‘S’ actually denote 
difference and sum respectively, and the trailing subscript zero identifies that these two 
matrices have similar properties to 0A , not least because 0A , 0DA  and 0SA  are the URMT 

equivalents of the generator matrices xJ , yJ  and zJ , as in 

(3.3) 0A ~ x-axis, 0DA ~ y-axis, 0SA ~ z-axis. 

Because of the common subscript of ‘0’ on all three matrices, 0A , 0DA  and 0SA , they are 

known as ‘zero’ matrices in URMT – but this is not because they are trivially zero. 

Just like the founding unity root matrix 0A , there exists zero eigenvectors (i.e. with a zero 

eigenvalue) for 0DA  and 0SA , denoted by 0DX  and 0SX  respectively, satisfying their 

defining equations 

(3.4) 000 DD XA , 000 SS XA , 

and constructed in a similar way to their associated matrices (3.2), i.e. 

(3.5)    XXX
20

i
D ,    XXX

2

1
0S . 

The reciprocals (or conjugates) of 0DX  and 0SX  are defined in the standard way (2.22) as 

(3.6) T
D

D )( 0
0 TXX  , T

S
S )( 0

0 TXX  . 

From the above definition of  0DX  and 0SX , the URMT conjugates 0DX  and 0SX  are thus 

given by 
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(3.7)    XXX
2

0 iD ,    XXX
2

10S . 

With these definitions of 0DX , 0SX  and 0DX , 0SX , and using the inner products (2.26), the 

following additional eigenvector inner product relations can be determined 

(3.8) 
2

0
0 CD

D XX , 2
0

0 CS
S XX  hyperbolic as for 0X  (2.26) 

00
0 S

D XX , 00
0 D

S XX , orthogonal. 

Commutation Relations 

The commutations relations between 0A , 0DA  and 0SA  are stated as follows, with the 

corresponding, equivalent angular momentum relations for the J matrices given on the right: 

(3.9) 

  000 , SD iCAAA   ~   zyx hi JJJ ,  

  000 , AAA iCSD   ~    xzy hi JJJ ,  

  000 , DS iCAAA   ~   yxz hi JJJ , . 

These relations can be verified using the definitions of 0DA  and 0SA  (3.2), in terms of A  

and A , and then using the existing commutation relations (2.12). Evidently, from these 

relations, if C and h  are equated, the correspondence between the A and J matrices is exact. 

Three sets of Matrices and Eigenvectors 

Thus far, URM3 has now been extended to three zero, A matrices, 0A , 0DA  and 0SA . In fact, 

0DA  and 0SA  have identical eigenvalues to 0A , i.e. CC ,0,  (2.7) and come with their own 

plus and minus eigenvector equivalents of X  and X  (for 0A ), given in terms of the base 

set of eigenvectors },,{ 0  XXX , defined as follows: 

(3.10) 

  02

1
XXXX iD   ,   02

1
XXXX iD   , *

  DD XX  

  02

1
XXXX  S ,   02

1
XXXX  S  

Accordingly, these eigenvectors can also be associated with new matrices DA , DA , SA  

and SA , defined in terms of the base set },,{ 0  AAA  in an identical way to the above 

eigenvectors, i.e. 
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(3.11) 

  02

1
AAAA iD   ,   02

1
AAAA iD   ,  *

  DD AA  

  02

1
AAAA  S ,   02

1
AAAA  S . 

In fact, these new matrices have eigenvector relations that are identical to those, (2.7) to 
(2.10), for the base set, i.e., to get the difference and sum set relations, just add the subscript 
‘D’ or ‘S’ respectively, so that 0A  becomes 0DA  or 0SA , A  becomes DA  or SA , and A  

becomes DA  or SA . Exactly the same subscript replacements apply to the eigenvectors, e.g. 

X  becomes DX  or SX  etc. Not only are all eigenvector relations the same for base, 

difference and sum sets, but so too are the inner products as per (2.26) and commutation 
relations (2.12). Lastly, the construction of the difference and sum A matrices, in terms of the 
eigenvectors, is also the same as those for the base set (2.40) and (2.41). See [1] for full 
details of all relations and definitions for the difference and sum sets. 

Summarising... 

So, by analogy with angular momentum, URMT has been expanded from a single axis 
solution in the base set, to a three-axis solution comprising the base, difference and sum sets. 

base matrices },,{ 0  AAA , eigenvectors },,{ 0  XXX , x-axis 

difference matrices },,{ 0  DDD AAA , eigenvectors },,{ 0  DDD XXX , y-axis 

sum matrices },,{ 0  SSS AAA , eigenvectors },,{ 0  SSS XXX , z-axis 

Each set is algebraically identical to each other, e.g. swapping the subscript say, ‘D0’ with ‘S0’, 
will give the same equations, i.e. there is no preferred or special axis, which means that any 
set can be used to represent the three quarks (so far), i.e. up, down and strange, with no 
preferred set, and neither does this property disappear when expanding to all six-quarks. 

Only one of the sets is linearly independent, and the difference and sum sets are given further 
above, in terms of the base set (x-axis) but, for example, the base and difference sets could 
equally well be written in terms of the sum set. Whilst the sets may not be linearly 
independent, the actual eigenvector and matrices are numerically distinct from each other, e.g. 

0A  and 0DA  are not numerically the same matrices, which means that the differing quark 

colours are distinct. 

Because any one of the three sets could equally represent the up, down and strange, there is a 
three-fold redundancy, which is attributed here to each quark coming in one of three colours, 
red, green and blue, as per the theory of Quantum Chromodynamics (QCD). This RGB 
expansion of URMT is not the same as the three-fold redundancy in quark families, (up, 
down), (charm, strange) and (bottom, top), which is embraced in URMT when expanding to 
six quarks, i.e. URM6, Section (5). 



A Quark Flavour Model in Integers 
(Pythagorean Sextuplets as Quarks and Related Invariants) 

Page 17 of 40 
Issue 1.0: 28/04/2017 

4 Eigenvector Evolution and Unitary Transforms 

This section shows that URMT’s parametric, eigenvector evolution takes the same, 
exponentiated form as a unitary transform in QM, and therefore retains all inner products. A 
comparison with the time-dependent evolution of the wavefunction shows that the evolution, 
which is ultimately attributable to URMT’s Invariance Principle (further below), can be 
interpreted as an action principle. 

The URM3 Parametric Solution 

URM3 is a completely solved problem with a parametric solution for all eigenvectors. For 
example, the eigenvector X , comprising the triplet ),,( zyx , is given in terms of arbitrary 
integers k  and l  by the standard parameterization of a Pythagorean triple, i.e.  

(4.1) klx 2 , )( 22 kly  , )( 22 klz  , lk , ℤ. 

The 0X  and X  eigenvectors are also solved in terms of both k , l  and an additional time 

parameter t; see [7] or [10] for more details. Ultimately this solution means that 0X  and X  

evolve with time t, whilst X  remains static, as in the following eigenvector evolution 
equations, where the superscript prime denotes an initial value at time 0t : 

(4.2) 

  XX , static - no t dependence 

00 XXX  t  

  XXXX 0
2 2tt . 

Note here that the eigenvectors are related to each other via calculus relations, i.e. X  is the 

negative of the time derivative of 0X , and 0X  is twice the time derivative of X . Whilst this 

fact is not used in this paper, it is of general importance in URMT physics. 

Clearly, since the three eigenvectors have been put in a one-to-one correspondence with the 
quarks (2.15), so too can the quarks state vectors therefore evolve, and it could be that at some 
particular time (likely very small) in the universe’s evolution the quarks froze (settled) at a 
specific numeric value, i.e. that which we see today. Note that the association of parameter t 
with time is a physical interpretation, it could be an arbitrary integer with no physical 
significance, but assigning it to a temporal parameter fits very well within the Standard 
Physical Interpretation (SPI) of URMT [7], and the aforementioned calculus relations 
amongst the eigenvectors. Ultimately, this parametric freedom (in k,l and t) leads to the ability 
to tune the quark representation such that its eigenvectors may then actually have physically 
significant properties such as mass, and not just be an arbitrary algebraic representation with 
no obvious physical significance. To spell this out, whilst the eigenvector solution set can take 
an infinite set of values, there may be one specific set of parameters k,l,t, which nature has 
somehow picked-out to give the quarks their properties. 

There is also a frequency domain equivalent of the above time-domain evolution, with free 
parameter f. This frequency domain evolution evolves the X  and 0X  eigenvectors, leaving 
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the X  eigenvector static, i.e. frequency independent, and this is a true dual formulation of 

URM3, where X  is considered the dual of X  and vice-versa [7]. 

The base set of initial eigenvectors },,{ 0   XXX  can be taken from any particular solution in 

k, l and t, and a full quark representation given in terms of them. In other words, the quark 
representation is not unique and depends upon both the initial solution (k,l parameterisation), 
and the time t. 

Lastly since the difference and sum sets are dependent upon the base set, they too evolve. Of 
course, the evolution could also start with the difference or sum set instead. It is merely 
URM3 convention that the base set is used since it is historically the first and only solution 
that existed right up until this work on quarks. 

Because the eigenvectors evolve, so too do the A matrices by their eigenvector constructions 
(2.40) and (2.41), and this leads to the same form of evolution equations for these matrices as 
per the eigenvectors, i.e. 

(4.3) 

  AA  static - no t dependence. 

00 AAA  t  , where 00 AA   at 0t . 

  AAAA 0
2 2tt . 

The Invariance Principle 

Of particular note in the above is the evolution of the equation for 0A , which is really a 

statement of URMT’s founding Invariance Principle - an explanation follows: 

The dynamical equations and their solutions are invariant 
to a coordinate transformation in the dynamical variables. 

The dynamical equations are just those three represented by the founding, URMT ‘invariant’ 
eigenvector equation   XXA C0  (2.7), and the coordinate transformation in the dynamical 

variables ( RQP ,, ) is given by expanding 00 AAA  t  (4.3) into the elements RQP ,,  of 

0A   and zyx ,,  of A  to give 

(4.4) 00 AAA  t  ~  

txPP  , tyQQ  , tzRR  , where RQP  ,, = RQP ,,  at 0t . 

It can be seen that the dynamical variables RQP ,,  retain their congruence definition (2.5) 
under this transformation, which is the number-theoretic basis upon which URMT is founded. 
Indeed, URMT can be derived with this principle as the starting point. A key reason to 
mention this point, which may seem out of place, is that URMT’s time-domain evolution is 
really just a statement of the congruential nature of the dynamical variables as unity roots – it 
is pure number theory, no more no less. Yet, as will be seen next, this evolution can be 
expressed in an exponentiated, unitary form common to SU(n) and QM. Before commencing, 
note too that, once again, there is a dual, frequency domain form of the Invariance Principle 
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that is also due to the invariance of the dynamical variable to variations in a frequency 
parameter f, e.g. fPP  , fQQ  , fRR  , where  ,,  are the elements of 

the static (frequency-independent) eigenvector X  (2.2). 

Exponential Evolution 

The above three eigenvector evolution equations in  XXX ,, 0  (4.2) are the classic forms 

given in [7], but can now be more succinctly expressed in an exponentiated, unitary form as 
per QM time-domain evolution. 

The eigenvector matrix ][X  is defined as a row vector of the three, base column eigenvectors 

 XXX ,, 0 , i.e. 

(4.5)   XXXX 0][ , 

with the initial value at 0t  denoted by a superscript prime, as in 

(4.6)    XXXX 0][ , 0t , 

An exponentiated evolution matrix tE  is defined in terms of URMT’s plus matrix A , time t, 

eigenvalue C, by 

(4.7) 





 

 

C
tt

A
E exp , 

where   AA , invariant by definition (4.3). 

Using this evolution matrix tE , then the initial eigenvector matrix ][ X  evolves according to 

the matrix product 

(4.8) ][][  XEX tt . 

Note that there is also no pre-multiplying of the exponent in (4.7) by the unit imaginary 
number i, unlike a standard unitary transform, e.g. σie  in the case of a Pauli spin matrix σ  [5]. 

Justification for (4.8) comes from first expanding the exponential (4.7) to give the following 
infinite sum of matrix terms 

(4.9) 






 

C
t

A
exp

2

!2

1
lim 













 

 C

t

C

t
n

AA
I

n

C

t

nC

t














  AA

!

1
...

!3

1
3

, 

where I  is the identity matrix. 

The important point about the above series expansion is that matrix terms of order 03 A  and 
higher are all zero, i.e. 
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(4.10) 0
nA , 3n . 

This also applies in QM, but the standard SU(2) and SU(3) raising operator, e.g. I  (2.34), 

actually squares (not cubes) to zero, i.e. 02 I  (2.20), noting that, in the case of URMT’s 

raising operator A , this has a non-zero square, i.e. 02 A , The same is true of the lowering 

operators, i.e. 02 I  (2.20), and 03 A , but 02 A . The squaring to zero is related to the 
two-state nature of QM spin, as for URM2 [1], but not URM3’s three-state nature (2.11). 

The outcome of this cubic ‘nilpotency’ is that the sum to infinity in (4.9) is reduced to just the 
three terms, and the evolution matrix tE  becomes 

(4.11) tE
2

2

1













 

C

t

C

t AA
I . 

In other words, what is potentially an infinite series expansion has a finite cut-off. Note that, 
for a standard unitary transformation [5], whilst the series expansion remains infinite, as too in 
URMT when using the 'zero' matrix generators },,{ 000 DS AAA , each element of the resulting 

matrix is a trigonometric series [12] – actually trigonometric in standard QM, but hyperbolic 
trig. i.e. cosh, sinh, in URMT. 

As an example of using tE  (4.11), the evolution of initial eigenvector X  is given by 

(4.12)   XXEt  





 XA

C

t   





 XAA

2

!2

1

C

t
, 

and using 02 XXA  C  (2.10) this becomes 

(4.13)   XXEt 02 X t 0

2

XA 









 C

t
. 

Using   XXA C0  (2.10) gives 

(4.14)   XXEt  XX 2
02 tt , 

and so tE  evolves the minus eigenvector X  exactly as per the classic, algebraic form (4.2). 

The evolution of the other two eigenvectors, X  and 0X , can be verified similarly [1]. 

The inverse of tE  is easily found since, using the relation, 

(4.15) IAA AA   ee)exp()exp( . 

then the inverse ( 1
tE ) of tE  is given by 
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(4.16) 





 
 

C
tt

A
E exp1 . 

Note that (4.15) is actually only possible by virtue that the commutator of a matrix with itself 
is zero, i.e. 0],[ AA , see the Baker-Campbell-Hausdorf identity [13]. 

By defining the conjugate evolution operator tE  as follows: 

(4.17) 1 TTEE T
tt , where TTTT 1 , 

and the conjugate matrix ][X , comprising three rows, each a conjugate, row eigenvector i.e.  

(4.18) 





















X

X

X

X 0][ , 

then the conjugate eigenvectors evolve according to 

(4.19) t][X tEX][  . 

The conjugate operator tE  is actually also the same as the inverse 1
tE  of tE , as in 

(4.20) IEE tt , 

i.e. by (4.16), 

(4.21) 1 tt EE 






 

C
t

A
exp . 

The above equality of the conjugate tE  and inverse 1
tE  shows that URMT conjugation is 

merely a sign change in the exponent, and not a full complex conjugation since there is no 
imaginary unit in the exponential. Most importantly though, URMT relates conjugate forms, 
i.e. the row eigenvectors, to anti-particles (2.29) and so complex conjugation has been 
replaced by a straightforward sign reversal, physically manifest above as a reversal in time, 
i.e. t to –t. 

Thus, to summarise URMT eigenvector evolution, what was once three algebraic evolution 
equations (4.2), has now been re-written in an exponential form as per a standard unitary 
transform in QM, keeping in mind that the URMT evolution equations are merely just an 
expression of the Invariance Principle and, ultimately, due to the congruential nature of the 
unity roots. From a physical perspective the evolution of anti-particles is seen to be a time-
reversal of their standard forms. 
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Time-domain Evolution and the Wave Function 

With URMT evolution now written in an exponential, unitary form, it is intriguing to look at a 
very similar equation in QM. 

For a time-independent Hamiltonian H, the wavefunction at time t, denoted by )(t , is given 
in terms of its initial wavefunction, time 0t , according to  

(4.22) )0()exp()( 
h

itt
H

 . 

Given the wavefunction is a state vector, then comparing this with URMT’s own time-domain 
eigenvector evolution (4.8), the following associations are made between QM and URMT 

(4.23) ~)(t t][X , ~)0( ][ X , 
Ch

i 
AH

~ . 

The Hamiltonian H is time-independent, by definition, and so too the URMT raising operator 

A . The scaled Planck constant h  is, of course, also constant by definition, and so too the 

URMT invariant eigenvalue C. The earlier association of h  with C was made in connection 
with QM angular momentum (or spin) and URMT in (2.13), and now confirmed as above. 

This comparison is quite remarkable given that, once again, URMT’s time-domain evolution, 
is really a consequence of the Invariance Principle, which is pure number theory and just an 
esoteric statement that, due to the congruence relations (2.5), there is an infinite set of 
solutions parameterised by a numeric parameter, ascribed to time here for time-domain 
evolution. 

The above comparison between URMT and QM leads to a modification of URMT’s Standard 
Physical Interpretation (SPI) [7], known as the Quantum Physical Interpretation (QPI), where 
the units of C are now those of Planck’s constant, and the units of A  are those of the 
Hamiltonian i.e. 

(4.24) 
 )(Aunits 22)(  TLJunits H , QPI energy 

)(Cunits 12)(  TLJThunits , QPI action (see below) 

with the ratios C/A  and h/H  possessing the units of frequency. 

Note that this newer QPI is really just a slight adjustment to the more established SPI, which 
primarily speaks in terms energy-related quantities rather than action quantities, as now 
discussed. 

A strong reason to use this new QPI is that the units of Planck’s constant are those of the 
dynamical quantity known as action, and this leads to a subsequent reinterpretation of 
URMT’s Invariance Principle in terms of action quantities. 
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Given the units of C are those of an action quantity, then so too are those of 0A  since C and 

0A  both have the same units as the dynamical variables RQP ,, , as can be deduced from, say, 

(2.4). In addition, since the units of A  are now those of energy (4.24), then the quantity At  
is also that of an action quantity, and so the algebraic form of the Invariance Principle, i.e. 

00 AAA  t  (4.4), is thus a statement on an action quantity, albeit the principle is not per 

se a ‘principle of least action’, but more just a statement on the behaviour of the dynamical, 
eigenvector equations (2.7) under a change ‘  At ’ in action, as above. Looking at the 
equivalent transformations in the dynamical variables RQP ,,  (4.4), the principle states that 

the X  eigenvector solution, comprising coordinates x,y,z, is invariant to a time-domain 
change in the action of the dynamical variables. 

Thus, to summarise this section: URMT eigenvector evolution is unitary since all inner 
products between the time-evolved eigenvectors remain invariant to temporal variation; the 
anti-particle evolution of the conjugate eigenvectors evolves in a time-reversed manner; the 
evolution action on the eigenvectors is seen to be equivalent that of the time-domain evolution 
of the wavefunction; and the URMT invariance Principle that gives these aforementioned 
properties can be interpreted as an action principle. 

5 The Six Quark Solution 

This section expands the URMT three-quark scheme to all six, currently known quarks, plus 
their anti-quarks. The six quarks are usually given in pairs, i.e. up and down, strange and 
charm, bottom and top, each pair forming a ‘generation’, hence the concept of three 
generations of quarks. In nature, the first generation, comprising the up and down quarks, 
form the two stable nucleon particles, i.e. the proton and neutron, whilst the other two 
generations form relatively unstable particles with lifetimes of a maximum ten or so 
nanoseconds. 

Thus, the up and down quarks hold a special position in our atomic world, and this too is 
reflected in the URMT model, whereby the up and down quarks are represented by 
eigenvectors that are Pythagorean in nature, whereas the other four quarks will all be seen to 
possess structurally different ‘zero’ eigenvectors, e.g. 0X  (2.2), that are hyperbolic in nature, 

and with zero isospin, as opposed to non-zero isospin for the up and down quarks. 

The zero-isospin, strange quark has already been equivalenced to the URM3 eigenvector 0X  

(2.15), leaving the three remaining, known quarks, charm, bottom and top to be given the 
same treatment. All four zero-isospin quarks are represented by more zero eigenvectors, 
which are obtained by recourse to the URMT method of ‘lifting’ solutions. 

The URMT method of lifting solutions first appeared in [14], and is the process by which a 
higher order matrix solution, i.e. 6x6 here, can be obtained from a lower-order solution, that is 
3x3 here. Specifically, the URM3 eigenvector solution for the up, down and strange quark is 
lifted to URM6, which preserves the original solution and adds another three additional zero 
eigenvectors (zero isospin eigenvalues) in the process, representing the charm, top and bottom 
quarks. Strictly speaking, it is not the original solution that is exactly preserved in its numeric 
form, but rather all the existing algebraic relations that remain invariant in the lifting process. 
This process adds more variational parameters, which can be used to tune the eigenvector 
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solution. The parametric tuning process is just an extension of URMT evolution, discussed in 
the previous section, but now also highlights the fact that all six quarks can be made to look 
like either the up or down quark, for large temporal parameters. 

To keep the subject matter brief, only the time-domain, lifting method is presented, and 
readers are referred to [1] for the frequency-domain equivalent, which is almost identical, i.e. 
replace time t with frequency f, and swap X  and X . 

The URM6 solution 

Like its URM3 counterpart, this URM6 solution (below) is a completely solved problem, with 
an analytic solution and a full complement of six distinct eigenvectors, but only three unique 
eigenvalues, i.e. 0,C . The zero eigenvalue is repeated four times so that the complete 
set is 0,0,0,0,C . The up and down quarks are now represented by Pythagorean 
sextuplets, as opposed to triplets in the three-quark, URM3 scheme, and the remaining, four 
zero eigenvectors, representing the strange, charm, bottom and top quarks are hyperbolic 
sextuplets. 

Starting with the initial URM3 solution, i.e. 3X , 30X , 3X  (4.2), where 3X  is invariant to 

time-domain variations in 3t  (formerly t (4.2)), i.e.   33 XX , then the initial URM6 

eigenvector solution is given by the following six eigenvectors (using block notation, where 

30  is the three-element null vector): 

(5.1) 



























3

6 0

0

0

X

X , 



























3

6 0

0

0

X

X  























30

60 0

0

0

X

X A , 





















3

60

0

0

0

X
CB , 





















3

60 0

0

0

X
C

C , 





















3

60 0

0

0

X

C

D . 

These eigenvectors then evolve, in the time-domain according to the values of the four 
temporal parameters, 3t , 4t , 5t  and 6t , which are zero in the initial-value solution (and not 

therefore shown above) 

(5.2) 

  66 XX , C , static, no 3t , 4t , 5t , 6t  dependence 

  6
2
3

2
4

2
5

2
66 )( XX tttt   

At 6032 X  6606605604 222 XXXX DCB ttt , C  
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AA t 606360 XXX    0  

BB t 606460 XXX   , 0  

CC t 606560 XXX   , 0  

DD t 606660 XXX   , 0 . 

For clarity, this evolved solution is expanded out in full, block eigenvector form as follows: 

(5.3) 
























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6 0
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X

X , C  


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
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




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


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2
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2
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2
5

2
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0

)(

X

X tttt  
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
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




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t
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

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
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
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tD , 0 . 

The URM6 Unity Root Matrix 

By virtue of the eigenvalues, 0,0,0,0,C , the URM6 unity root matrix 60A  has the same 
spectral decomposition [13] as its URM3 counterpart (2.40), i.e. 

(5.4)  


  6
6

6
660 2

1
XXXXA

C
, 

which is valid for all arbitrary, non-zero temporal parameters, 3t , 4t , 5t  and 6t , using the 

above, evolved forms of the eigenvectors (5.3). 

For the full, six-quark solution, the matrix operator for the axis component of isospin ( 3I ) is 

represented in URMT by the URM6, 6x6 zero matrix 60A . This matrix is also specified 

below, in block matrix form, in terms of the fundamental, 3x3, unity root matrix 0A , which is 

now relabelled 30A  and explicitly written as an evolved function of time 3t  i.e. )( 330 tA  (4.3), 

reproduced below. The matrix 60A  also embeds the URM3 eigenvectors X  and X , now 

relabelled 3X , 3X , plus the three additional integer parameters 4t , 5t , 6t  

(5.5) 























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
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
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330343536

3
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3
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3
6

60

tttt

t

t

t

AXXX

X

X

X

A , 3t , 4t , 5t , 6t ℤ , 

where 

3033330 )( AAA  tt  (4.3), 

  33 AA , invariant, 

30A = )0( 330 tA , initial state 

Notes 

If 4t , 5t , 6t  are all zero then the eigenvector solution (5.3) reduces to the URM3 time-domain 

form (4.2). 

Naming 60A  a ‘unity root’ matrix is a slight misnomer in that it is really now only the 

embedded URM3 matrix 30A  that contains true unity roots RQP ,,  (2.5) – all other elements, 

i.e. those of embedded eigenvectors 3X , 3X  are not unity roots. 
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The URM6 eigenvector equations for 60A  are as per URM3 (2.7), but now with four, zero 
eigenvector equations instead of one, i.e.  

(5.6) 

  6660 XXA C ,   6660 XXA C  

06060 AXA , 06060 BXA , 06060 CXA , 06060 DXA . 

The above, fully expanded, parametric form (5.3) emphasises that the original URM3 solution 
is now a URM6 solution, with four temporal parameters ( 3t , 4t , 5t , 6t ). The frequency domain 

solution also has an additional four frequency parameters ( 3f , 4f , 5f , 6f ) and, together with 

the original URM3 analytic solution, parameterised by integers k and l, (4.1), gives ten free 
parameters to play with.  

Whilst the solution may appear sparse, i.e. numerous zero elements, this is illusory due to the 
fact that the variation has only been given in the time-domain. By also varying the frequency 
domain parameters, this sparsity disappears – see the full example solution in [1] for non-zero 
frequency variation. 

The above general eigenvector solution, as per the URM3 solution, does not form an 
orthogonal basis for any arbitrary time kt 6..3, k , neither are the vectors of unit magnitude 

(most definitely not in fact), but their inner products relations remain invariant with time, 
hence they are unitary. There is a special solution [14], which starts out as orthogonal for zero 

kt , but is not orthogonal for non-zero kt . However, orthogonality is immaterial because the 

vectors are orthogonal to their reciprocal counterparts, as given by the inner products (2.26) – 
replace 0X  (URM3) with A60X , B60X , C60X  and D60X  (URM6). That said, all vectors are 

linearly independent in both the standard (column vector) and reciprocal (row vector) bases, 
regardless of their evolved state, and can thus always form a basis spanning a six-dimensional 
vector space. 

URM6 Conjugate Eigenvectors 

The reciprocal (or conjugate) eigenvectors are defined exactly as per all URMT reciprocal 
vectors via the conjugate relations (2.22), where the T operator is now the following 6x6 
matrix: 

(5.7) 










10

056
6

I
TT . 

(5.8) 
T)( 6

6


  TXX , T)( 6
6


  TXX , 

T
A

A )( 60
60 TXX  , T

B
B )( 60

60 TXX  , T
C

C )( 60
60 TXX  , T

D
D )( 60

60 TXX   

Note that the T operator still retains its Minkowski form (2.21). 

As per URM3 (and all URMT incarnations), the zero eigenvectors are self-conjugate, whereas 
the plus and minus eigenvectors swap their subscript/superscript signage to reflect their 
eigenvalues to 60A  when going from standard to conjugate form and vice versa. 
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Six Quark Eigenvectors 

The six quarks are represented in terms of the URM6 eigenvector solution as follows, which, 
for the up, down and strange quarks, is the same as URM3 (2.15) barring the extension to six-
element vectors: 

(5.9) 

C2
6

X
u   up, 

C2
6

X
d  down, 

C
A60X

s   strange, 
C

C60X
c   charm, 

C
B60X

b   bottom, 
C

D60X
t   top. 

The above ordering tbcsdu ,,,,,  is given in terms of mass, with the lightest two quarks, i.e. 
the up and down quarks, given first, and the heaviest, top quark, last. However, the 
assignment of which zero isospin quark, s, c, t or b, to which zero eigenvector, A60X  to D60X , 

is arbitrary, and has been chosen such that the charm quark is assigned to C60X  merely 

because its eigenvector subscript contains the letter ‘c’, likewise for the bottom quark 
assigned to B60X . The strange quark is assigned to its URM3 equivalent (2.15), thus leaving 

the top quark assigned to D60X . 

The anti-quarks are assigned to the URM6 reciprocal eigenvectors as follows, and also 
compatible with the URM3 assignments (2.29) of the up down and strange quarks: 

(5.10) 

C2

6


X

u , 
C2

6


X

d  

C

A60X
s  , 

C

C60X
c   

C

B60X
b  , 

C

D60X
t  . 

The zero isospin quarks, s, c,t and b are self-conjugate (URMT conjugate that is), unlike the 

up and down quarks, where u  is the URMT conjugate of the down quark, and d  is the 
URMT-conjugate of the up quark – note that the URMT conjugate (2.22) is not exactly the 
same as the Hermitian conjugate, explained in [1]. 

Inner Products 

With six, linearly independent eigenvectors (quarks) and their reciprocals (anti-quarks), there 
are 36 possible inner products. However, they reduce very simply to their URM3, invariant 
forms and are absolutely invariant to all time and frequency variations. All the existing 
URM3, three-quark relations remain valid when the eigenvectors X  and X  are replaced by 

6X  and 6X , and 0X  is replaced by any one of A60X , B60X , C60X  or D60X . 
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The existing up and down quarks are Pythagorean sextuplets, i.e. 

(5.11) 06
6 
XX  ~ 0du , 06

6 
XX  ~ 0ud , Pythagoras 

and the strange, charm top and bottom quarks satisfy the six-dimensional form of the 
hyperbolic DCE (2.26), i.e. 

(5.12) 
2

60
60 CA

A XX  ~ 1ss , 2
60

60 CC
C XX  ~ 1cc , (2.26) 

2
60

60 CB
B XX  ~ 1bb , 2

60
60 CD

D XX  ~ 1tt . 

The only other, two, non-zero inner products are 

(5.13) 2
6

6 2C
XX ~ 1uu , 2

6
6 2C
XX  ~ 1dd , (2.26). 

and all other inner products are zero. 

In quark-equivalent terms, the equations above amount to straightforward normalisation and 
orthogonality, i.e. for quarks },,,,,{, tbcsduvq   then 

(5.14) 1vq , for vq   normalisation : 0vq  for vq   orthogonality. 

The invariance of these inner products to variations in time and frequency domain variation is 
significant because it means that, whatever the particular value of the eigenvectors, unitarity, 
i.e. preservation of the inner product, is retained – a feature absolutely essential in QM to 
preserve probability. 

A Composite Zero Eigenvector 

The above quark assignment has a ‘2+4’ nature to it in that the four, s, c, b and t quarks 
occupy a zero eigenvector subspace (zero isospin), whilst the two, up and down quarks have 
non-zero isospin, as represented by the plus and minus eigenvectors respectively. In URMT 
terms, the zero eigenvectors are hyperbolic in nature, whilst the plus and minus eigenvectors 
are Pythagorean, which means that URMT gives a structurally different representation of the 
zero isospin quarks, i.e. they do not satisfy the same inner product relations. Since the zero 
eigenvectors all satisfy the same, six-dimensional, hyperbolic DCE (5.12), there is a case to 
combine all four zero eigenvectors, A60X  to D60X , into a single, zero eigenvector 60X  so that 

URM6 then effectively possesses just three eigenvectors, i.e. the standard plus, zero and 
minus base eigenvectors 6X , 60X  and 6X . This composite 60X  is formed from the 

following sum: 

(5.15)  DCBA 6060606060 2

1
XXXXX  , T)( 60

60 TXX  . 

Given this form of 60X , it is easily verified, using the individual relations (5.6), that it satisfies 

the zero eigenvector, defining relation, i.e. 
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(5.16) 06060 XA ,  tbcsX 
2

1
~60 , 360 ~ IA , 

and, in fact, every original URM3 eigenvector and inner product relation (2.26) is also 
satisfied. This means that the solution reverts to looking like URM3, even though it is cast in 
the 6x6 matrix form of URM6, i.e. what is a six-dimensional representation can be recast in 
the original, URM3, three-dimensional form. The sub-space of zero eigenvectors being that of 
the zero isospin, strange, charm, top and bottom quarks. Simply stated, the URM6 model 
becomes one of the up and down quarks, plus the four others lumped together as a single, zero 
isospin quark, which is in accord with the special place that the up and down quarks hold in 
our stable world. 

It should be noted that some care must be exercised using 60X  since evolving this composite, 

with the standard URM3-like evolution equation (4.2), is not quite the same as evolving the 
individual zero eigenvectors A60X  to D60X , as per (5.2), and then forming a composite 60X . 

This point is expanded upon in [1], but it is always best to evolve the individual, zero 
eigenvectors A60X  etc. and then combine them. 

Given this URM6 scheme can be reduced to just three, URM3-like eigenvectors, i.e. X , 0X , 

X  (using the composite form 60X  ~ 0X ), then the ‘6’ subscript can be dropped from all 

equations and they then revert to their URM3 form with a single subscript plus, zero or minus. 
Of course, this is all just in terms of the base set },,{ 0  XXX  of eigenvectors, and URM6 is 

three-fold degenerate, just like URM3, with the second and third difference and sum sets, 
},,{ 0  DDD XXX  and },,{ 0  SSS XXX  respectively, defined exactly as before, Section (3), in 

terms of the base set. Any one of the three sets could equally be used for a six-quark solution 
and thus, once again, suggestive of three quark colours. 

Raising and Lowering Operators 

There are the two raising and lowering matrices, 6A  and 6A , that can also be written 

exactly as per URM3 in their eigenvector forms given earlier (2.40) and (2.41). However, 
much the same comments apply here as for URM3, and readers are referred to [1] for more 
URM6/SU(6) specific details. 

Compactification 

Compactification, herein, is the reduction of the six-quark, six-dimensional solution to look 
like a single, three-dimensional quark. 

The 6X  solution (5.2) is quadratic in all four temporal evolutionary parameters kt , for the 

URM3, 6X  component only, whilst the other terms are linear or constant in time. This means 

that, for large evolutionary times 0kt , all the evolved vectors align with 6X  as in 

(5.17) 

  6
2

6 XX t  ~ ud 2t , 0t , 2
3

2
4

2
5

2
6

2 ttttt  , 
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 660 XX t  ~ us 23t , uc 24t , ub 25t , ut 26t , 

i.e. the quarks align with the up quark so that, barring the evolutionary scale factor, i.e. 
disregarding scale, the quarks tend to look like the up quark. 

In the frequency domain, for large frequencies, the situation is reversed and the quarks align 
with the down quark 6X . 

In effect, what is a six-dimensional solution (four time-domain parameters and integers k,l  
(4.1)) appears, over time, to become just a two-dimensional solution (parameterised by k,l), 
i.e. that of the up quark 6X  (5.9), which is basically just the two-parameter, Pythagorean 

triple represented by the URM3, invariant eigenvector 3X  (2.2), hence a two-dimensional 

space (think of a vector pointing in three dimensional space, characterised by two angles, but 
arbitrary magnitude – eigenvectors are arbitrary to within a scale factor, which is 2t  here for 
large t. Thus, the solution exhibits the geometric property of compactification, i.e. the 
apparent shrinkage of higher dimensions with respect to the lower dimensions [14]. In other 
words, for large variations in the time or frequency domain, the six-quark solution can be 
made to look like either the up or down quark (but not both at once), to within a scale factor. 

A three-fold degeneracy – quark families 

A three-fold degeneracy (base, difference and sum-sets) has already been mentioned in 
Section (3) as suggestive of the quark colour degeneracy (RGB), but there is also a three-fold 
degeneracy in having three quark families, whereby only the first family, comprising the up 
and down quarks, form the stable particles of nature, with the other two families (strange, 
charm), (bottom, top), forming the more unstable particles. 

This degeneracy in quark families is actually implicit in the URM6 solution by virtue that it is 
six-dimensional, albeit with a three-dimensional feel to it, i.e. it is a URM3 solution lifted to 
six dimensions (URM6), but retaining the same general features of URM3, notably only two 
non-zero eigenvalues, C  for the up and down quarks, with all four other eigenvalues zero, 
representing the other two degenerate families with zero isospin. 

That URM3 has been used as the starting point, with three quarks, up, down and strange, and 
not just the fundamental, two-quark up and down generation, may seem at odds with these 
degeneracy claims, but what has been completely omitted from this paper is the 2x2 URMT 
solution ‘URM2’, as fully detailed in [1]. In fact, [1] starts with spin and URM2, comprising 
only the up and down quarks, but moves on to URM3 and three quarks as the URM2 
parametric evolution of the eigenvectors runs into difficulties, or at least not in line with 
URMT’s aesthetics (the evolved vectors are no longer Pythagorean ‘doubles’). Nevertheless, 
the URM2 representation theory is a complete, three-axis spin solution, and it is only URMT 
aesthetics, plus the more important fact that there are most definitely at least three quarks, that 
makes URM3, and three quarks, the minimal solution. 

Most importantly though, just like URM3 was lifted here to URM6, in fact URM2 can also be 
lifted to give URM3. In other words, it is possible to start with URM2, and the up and down 
quarks, and go all the way up to URM6 and six quarks, as detailed in [14]. 
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All that said, it is notable that the URMT eigenvector split could be thought of as a ‘2+4’ 
form, rather than ‘2+2+2’. There is also no reason given here to stop at three-generations, i.e. 
why are there only three generations, not four etc.? Of course, there may be such generations, 
albeit it is understood that there are strong arguments against more than three generations. 

Quantum Charge Operators 

So far, only isospin has been given the URMT-treatment as a conserved quantum charge 
(strictly speaking, it is the magnitude of isospin that is conserved only under the strong force) 
but there are, of course, other quantum charges, such as strangeness, represented as usual by 
matrix operators that gives the charge as an eigenvalue to the operator when acting on the 
quark state vector, and these last few sub-sections detail these operators and their URMT-
equivalent operators forms. 

Isospin 

The SU(6) form of this operator 3I , which gives the third component of isospin, is identical to 

that used for SU(3), as per (2.39), reproduced below, 

 dduuI 
2

1
3  (2.39). 

The anti-particle form 3I  is, by (2.28), just the negation, i.e. 

33 II   (2.28). 

The URM6 form of 3I  is also as per the SU(3) form, i.e. 

C2
60

3

A
I   (2.16). 

Strangeness 

Strangeness is given by the strangeness operator S , constructed from the outer product of the 
strange quark and its anti-quark, as in 

(5.18) ssS  , 

and the antiquark form is the usual negation, i.e. 

(5.19) ssSS  . 

Using definitions (2.15) and (2.29) then, in terms of the URMT eigenvectors, S and S  are 
defined as 

(5.20) 
2

60
60

C

A
AXX

S  , 
2

60
60

C

A
AXX

S  . 
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The action of S on the strange quark is given by 

(5.21) )()( ssssssSs  , 

and since 1ss  (2.32) then 

(5.22) sSs  . 

The eigenvalue is therefore -1, and the strangeness of the strange quark accordingly the same 
(negative by convention). Doing the same for the strange anti-quark gives an eigenvalue of 
+1, i.e. the strange anti-quark has a strangeness of +1 as in 

(5.23) ssS  . 

Other quantum charges, defined in a similar way, are summarised below. 

Charm 

The charm operator is defined as 

(5.24) ccC  , ccCC  , 
2

60
60

C

C
C XX

C  , 
2

60
60

C

C
C XX

C   

and the charge is positive for the charm quark, by convention, and negative for its anti-
particle, i.e. the converse of the strange quark, with which it is paired in the second generation 
of quarks. 

Bottom 

The bottom operator is defined as follows, where its symbol B is intentionally superscripted 
here with a ‘q’ to differentiate it from the baryon number operator, (5.27) further below: 

(5.25) bbB q , bbBB 
q

, 
2

60
60

C

B
Bq XX

B  , 
2

60
60

C

B
Bq XX

B   

The charge of the bottom quark is -1, as per convention, and its anti-quark has a charge of +1. 

Top 

The top charge operator is defined as follows, where its symbol qT  is intentionally 
superscripted here with a ‘q’ to differentiate it from the URMT T operator (5.7): 

(5.26) ttT q ,  ttTT  qq
, 

2

60
60

C

D
Dq XX

T  , 
2

60
60

C

D
Dq XX

T   
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The top charge is positive for the top quark, by convention, and negative for its anti-particle 

(as in tTt 
q

), and is intentionally the converse of the bottom quark, with which it is paired 
in the third generation of quarks. 

Baryon Number 

The baryon number (eigenvalue symbol B) of each of the six quarks is 1/3, and -1/3 for the 
anti-quarks, and therefore its operator, symbol B, is defined as 

(5.27) 

 ttbbccssdduuB 
3

1
, BB  , 

  





6
6

6
626

1
XXXXB

C
  B

B
A

AC
60

60
60

6023

1
XXXX  

 D
D

C
CC

60
60

60
6023

1
XXXX  . 

with B , accordingly, its negation. 

Hypercharge operator 

The hypercharge operator is defined in terms of the Baryon operator B (5.27), Strangeness 
operator S (5.20), Charm operator C (5.24), Bottom operator qB  (5.25) and top operator qT  
(5.26): 

(5.28) qq TBCSBY  . 

Using the above definitions for each of the individual operators, this expands in terms of the 
quark eigenvectors to 

(5.29) 

    ttccbbssdduuY  42
3

1
 , YY  ,  

















223

1 6
6

6
6

2

XXXX
Y

C
  B

B
A

AC
60

60
60

6023

2
XXXX  

 D
D

C
CC

60
60

60
6023

4
XXXX   

Electric Charge 

The electric charge (eigenvalue symbol Q) of each of the three quarks, up, charm and strange 
(u,c,t), is 2/3, and -1/3 for the three quarks, down strange and bottom (d,s,b), with the signs 
inverted for their anti-quark forms, and therefore its operator, symbol Q, is defined as 
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(5.30) 

 bbssddttccuuQ  222
3

1
, QQ  . 

  


D
D

C
CC

60
60

60
60

6
62

22
3

1
XXXXXXQ  

 B
B

A
AC

60
60

60
60

6
62

22
6

1
XXXXXX 

 . 

The charge relates to the third component of isospin and hypercharge by 

(5.31) 
23

Y
IQ  . 

This can be verified by substituting for the operator forms of 3I  and Y in place of the 

eigenvalues, to get the operator Q. 

Quark Charges Summary Table 

The following is a summary table of the six-quark charges, which can be verified by the 
action of the appropriate matrix operator upon the quark (eigenvector) to obtain its eigenvalue 
(the charge). 

(5.32) 

 I  3I  Y S B Q C qB  qT  

u ½ ½ 3
1  0 3

1  3
2  0 0 0 

d ½ -½ 3
1  0 3

1  3
1  0 0 0 

s  0 0 3
2  -1 3

1  3
1  0 0 0 

c 0 0 3
4  0 3

1  3
2  1 0 0 

b 0 0 3
2  0 3

1  3
1  0 -1 0 

t 0 0 3
4  0 3

1  3
2  0 0 1 

u  ½ -½ 3
1  0 3

1  3
2  0 0 0 

d  ½ ½ 3
1  0 3

1  3
1  0 0 0 

s  0 0 3
2  1 3

1  3
1  0 0 0 

c  0 0 3
4  0 3

1  3
2  -1 0 0 
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b  0 0 3
2  0 3

1  3
1  0 1 0 

t  0 0 3
4  0 3

1  3
2  0 0 -1 

 

6 A Numeric Example Six-Quark Solution 

This example is taken directly from [1], and is an evolved solution, obtained from a simple 
URM3 solution by lifting and evolving with both non-zero time and frequency domain 
parameters. The numbers are purely illustrative, and actual values in this example are not 
ascribed any physical significance. 

The solution is given for a unity eigenvalue 1C . 

(6.1) 


































621

245

570

6

14

22

2

1
u , 
































187

73

172

2

4

6

2

1
d , 


































195

77

179

2

4

6

s , 


































174

68

160

1

4

6

b , 


































161

63

148

2

3

6

c , 


































148

58

136

2

4

5

t . 

Inspection of the elements of all six quark eigenvectors shows them to be unique with their 
own distinct elements. This means that, whilst they satisfy all the usual inner product relations 
(2.32), at the same time they have different vector magnitudes – all due to the choice of 
evolutionary parameters in the time and/or frequency domain. Choice of the actual parametric 
values thus dictates their magnitude, whilst keeping all inner products invariant, and thus it is 
suggested that the physical properties of the individual quarks, such as mass, can be tuned by 
appropriate choice of the parameters. 

The anti-quarks are obtained from the conjugate eigenvectors as per (5.10), to give 

(6.2) 

 18773172246
2

1
u  

 62124557061422
2

1
d  
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 19577179246 s  

 16163148236 c  

 17468160146 b  

 14858136245 t . 

The up and down quarks are Pythagorean sextuplets as in, for example, 0ud , which, using 
the numeric values above, gives 

(6.3)  62124557061422
2

1
ud 
































621

245

570

6

14

22

2

1
 

0621245)570()6()14()22( 222222  . 

Likewise for the down and up anti-quark, inner product 0du . 

The other four quarks, i.e. the strange, charm, bottom and top, have hyperbolic inner products 

(5.12). For example, the strange and its anti-quark have the hyperbolic inner product 1ss , 
which, using the above numeric values, expands to 

(6.5)  19577179246 ss 
































195

77

179

2

4

6

 

2222222 119577)179()2()4()6(  . 

Third component of Isospin 

Using the definition (2.39) for 3I , and the numeric values (6.1) and (6.2) for the quarks and 

anti-quarks respectively, then 3I  evaluates to 
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(6.6) 






































02411116067194

2410265262168

11126505464182

602654024

672164202

19468182420

2

1
3I . 

Baryon number 

Using the definition (5.27) for B , and the numeric values (6.1) and (6.2) for the quarks and 
anti-quarks respectively, then B evaluates to 

(6.7) 





























100000

010000

001000

000100

000010

000001

3

1
B . 

Hypercharge 

Using the definition (5.29) for Y, and the numeric values (6.1) and (6.2) for the quarks and 
anti-quarks respectively, then Y evaluates to 

(6.8) 






































61429246305636716212031524

2436096592235360477606

56367223535172215011041398

1626015010612

1203477110462030

15246061398123032

3

1
Y . 

Electric charge 

Using the definition (5.30) for Q, and the numeric values (6.1) and (6.2) for the quarks and 
anti-quarks respectively, then Q evaluates to 

(6.9) 






































614292363756700181002942

2508396592314818414402

56034215585172212912852

342138312101224

1404540129602024

2106810194403632

6

1
Q . 
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Finally, using these operators and eigenvectors, some of the charges given in the table (5.32) 
can be verified. 

7 Summary and Conclusions 

A comparison of the eigenvector algebra of URM3 with that of quantum mechanics, shows it 
to be equivalent to a three-state, isospin representation of the up, down and strange quarks. By 
analogy with the mathematically identical, quantum-mechanical treatment of angular 
momentum and/or spin, the existing URM3 incarnation has been expanded from a single-axis, 
to a three-axis, three-fold representation indicative of the red, green, blue colour 
representation of quarks. 

The classic URMT evolution of the eigenvectors, attributed to the number-theoretic 
congruences satisfied by the dynamical variables of the unity root matrix, has been recast in 
an exponential, unitary operator form, which shows the eigenvector evolution to be the same 
as the time-dependent evolution of the wavefunction. This latter equivalence thus enabling a 
recast of URMT’s founding Invariance Principle as a statement in the action of the dynamical 
variables forming the unity root matrix.  

By the URMT method of lifting solutions to higher dimensions, the URM3, three-quark 
scheme has been expanded to encompass all six known quarks in a 6x6, URM6 matrix 
operator representation. This URM6 scheme naturally places the up and down quarks in a 
special category, whereby their eigenvector inner products satisfy Pythagoras, whilst the 
quarks in the second and third redundant generations satisfy hyperbolic Diophantine integer 
equations, thus distinguishing the first quark generation of up and down quarks (forming 
stable nucleons), as structurally different from the second and third generations (that form 
unstable particles). 

From the results presented, it is evident that an integer representation of the quark flavour 
model can be derived purely from number theory, with no recourse to the foundations of 
classical quantum mechanics. 
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